Properties

Label 4.33.b.b.3.2
Level $4$
Weight $33$
Character 4.3
Analytic conductor $25.947$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4 = 2^{2} \)
Weight: \( k \) \(=\) \( 33 \)
Character orbit: \([\chi]\) \(=\) 4.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.9466620569\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Defining polynomial: \(x^{14} + 72511313626452 x^{12} + 2025191977179903324811336518 x^{10} + 27922884728028663894750078705223437415644 x^{8} + 203010662886800095440071970440402438747266446160157745 x^{6} + 758734102549599282271818004575465783845093632382487984186969965640 x^{4} + 1269648449115368448095465842606476325720277486461580161887038301255933321354000 x^{2} + 624216522131873762678666934520680301449631616035103441585151846396220724278849706601312000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{182}\cdot 3^{20}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3.2
Root \(-2.77300e6i\) of defining polynomial
Character \(\chi\) \(=\) 4.3
Dual form 4.33.b.b.3.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-61401.1 + 22910.1i) q^{2} -4.43679e7i q^{3} +(3.24522e9 - 2.81341e9i) q^{4} +1.39224e11 q^{5} +(1.01647e12 + 2.72424e12i) q^{6} +2.23454e13i q^{7} +(-1.34805e14 + 2.47095e14i) q^{8} -1.15494e14 q^{9} +O(q^{10})\) \(q+(-61401.1 + 22910.1i) q^{2} -4.43679e7i q^{3} +(3.24522e9 - 2.81341e9i) q^{4} +1.39224e11 q^{5} +(1.01647e12 + 2.72424e12i) q^{6} +2.23454e13i q^{7} +(-1.34805e14 + 2.47095e14i) q^{8} -1.15494e14 q^{9} +(-8.54848e15 + 3.18962e15i) q^{10} +1.78893e16i q^{11} +(-1.24825e17 - 1.43984e17i) q^{12} +2.16497e17 q^{13} +(-5.11935e17 - 1.37203e18i) q^{14} -6.17706e18i q^{15} +(2.61621e18 - 1.82603e19i) q^{16} -6.14938e19 q^{17} +(7.09149e18 - 2.64599e18i) q^{18} +4.44940e20i q^{19} +(4.51812e20 - 3.91693e20i) q^{20} +9.91420e20 q^{21} +(-4.09845e20 - 1.09842e21i) q^{22} +8.74399e21i q^{23} +(1.09631e22 + 5.98102e21i) q^{24} -3.89986e21 q^{25} +(-1.32931e22 + 4.95995e21i) q^{26} -7.70904e22i q^{27} +(6.28668e22 + 7.25159e22i) q^{28} +4.53622e23 q^{29} +(1.41517e23 + 3.79279e23i) q^{30} +1.07502e24i q^{31} +(2.57706e23 + 1.18114e24i) q^{32} +7.93711e23 q^{33} +(3.77579e24 - 1.40883e24i) q^{34} +3.11101e24i q^{35} +(-3.74805e23 + 3.24933e23i) q^{36} -9.58490e23 q^{37} +(-1.01936e25 - 2.73198e25i) q^{38} -9.60551e24i q^{39} +(-1.87680e25 + 3.44014e25i) q^{40} -1.42325e25 q^{41} +(-6.08743e25 + 2.27135e25i) q^{42} -1.36563e26i q^{43} +(5.03298e25 + 5.80547e25i) q^{44} -1.60796e25 q^{45} +(-2.00325e26 - 5.36891e26i) q^{46} +1.63099e26i q^{47} +(-8.10171e26 - 1.16076e26i) q^{48} +6.05110e26 q^{49} +(2.39456e26 - 8.93461e25i) q^{50} +2.72836e27i q^{51} +(7.02580e26 - 6.09093e26i) q^{52} +6.59943e27 q^{53} +(1.76615e27 + 4.73344e27i) q^{54} +2.49061e27i q^{55} +(-5.52143e27 - 3.01227e27i) q^{56} +1.97411e28 q^{57} +(-2.78529e28 + 1.03925e28i) q^{58} -2.05929e26i q^{59} +(-1.73786e28 - 2.00460e28i) q^{60} +1.66456e28 q^{61} +(-2.46288e28 - 6.60074e28i) q^{62} -2.58077e27i q^{63} +(-4.28834e28 - 6.66192e28i) q^{64} +3.01414e28 q^{65} +(-4.87347e28 + 1.81840e28i) q^{66} +2.31454e29i q^{67} +(-1.99561e29 + 1.73007e29i) q^{68} +3.87953e29 q^{69} +(-7.12735e28 - 1.91019e29i) q^{70} -3.68248e29i q^{71} +(1.55692e28 - 2.85381e28i) q^{72} +2.79454e29 q^{73} +(5.88523e28 - 2.19591e28i) q^{74} +1.73029e29i q^{75} +(1.25180e30 + 1.44393e30i) q^{76} -3.99743e29 q^{77} +(2.20063e29 + 5.89789e29i) q^{78} +2.19129e30i q^{79} +(3.64239e29 - 2.54226e30i) q^{80} -3.63436e30 q^{81} +(8.73891e29 - 3.26068e29i) q^{82} -3.91771e30i q^{83} +(3.21738e30 - 2.78927e30i) q^{84} -8.56139e30 q^{85} +(3.12866e30 + 8.38511e30i) q^{86} -2.01263e31i q^{87} +(-4.42035e30 - 2.41156e30i) q^{88} -2.76276e31 q^{89} +(9.87302e29 - 3.68384e29i) q^{90} +4.83771e30i q^{91} +(2.46004e31 + 2.83762e31i) q^{92} +4.76964e31 q^{93} +(-3.73660e30 - 1.00144e31i) q^{94} +6.19462e31i q^{95} +(5.24047e31 - 1.14339e31i) q^{96} +2.89803e30 q^{97} +(-3.71544e31 + 1.38631e31i) q^{98} -2.06611e30i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q - 23780q^{2} - 2922848368q^{4} + 138121491740q^{5} + 1262734959552q^{6} - 191366550113600q^{8} - 11183509932817650q^{9} + O(q^{10}) \) \( 14q - 23780q^{2} - 2922848368q^{4} + 138121491740q^{5} + 1262734959552q^{6} - 191366550113600q^{8} - 11183509932817650q^{9} + 31775605694457400q^{10} - 356375853407619840q^{12} - 1640418469677858020q^{13} + 7731597686180285568q^{14} - 30570843123186593536q^{16} + 31570967905797256220q^{17} - \)\(35\!\cdots\!40\)\(q^{18} + \)\(20\!\cdots\!60\)\(q^{20} - \)\(21\!\cdots\!16\)\(q^{21} + \)\(54\!\cdots\!80\)\(q^{22} - \)\(25\!\cdots\!32\)\(q^{24} + \)\(10\!\cdots\!50\)\(q^{25} - \)\(10\!\cdots\!24\)\(q^{26} + \)\(28\!\cdots\!20\)\(q^{28} - \)\(38\!\cdots\!16\)\(q^{29} - \)\(58\!\cdots\!20\)\(q^{30} - \)\(30\!\cdots\!00\)\(q^{32} + \)\(30\!\cdots\!00\)\(q^{33} + \)\(29\!\cdots\!16\)\(q^{34} + \)\(40\!\cdots\!96\)\(q^{36} - \)\(10\!\cdots\!40\)\(q^{37} - \)\(23\!\cdots\!60\)\(q^{38} + \)\(46\!\cdots\!00\)\(q^{40} + \)\(36\!\cdots\!48\)\(q^{41} + \)\(11\!\cdots\!00\)\(q^{42} - \)\(34\!\cdots\!40\)\(q^{44} + \)\(80\!\cdots\!80\)\(q^{45} - \)\(29\!\cdots\!48\)\(q^{46} + \)\(22\!\cdots\!60\)\(q^{48} - \)\(48\!\cdots\!90\)\(q^{49} - \)\(51\!\cdots\!00\)\(q^{50} - \)\(96\!\cdots\!20\)\(q^{52} + \)\(18\!\cdots\!80\)\(q^{53} + \)\(56\!\cdots\!36\)\(q^{54} + \)\(63\!\cdots\!52\)\(q^{56} - \)\(45\!\cdots\!40\)\(q^{57} - \)\(38\!\cdots\!60\)\(q^{58} + \)\(47\!\cdots\!00\)\(q^{60} + \)\(10\!\cdots\!08\)\(q^{61} + \)\(21\!\cdots\!00\)\(q^{62} - \)\(19\!\cdots\!88\)\(q^{64} + \)\(11\!\cdots\!00\)\(q^{65} + \)\(12\!\cdots\!60\)\(q^{66} + \)\(35\!\cdots\!00\)\(q^{68} - \)\(51\!\cdots\!84\)\(q^{69} - \)\(51\!\cdots\!80\)\(q^{70} + \)\(11\!\cdots\!60\)\(q^{72} + \)\(14\!\cdots\!60\)\(q^{73} - \)\(98\!\cdots\!84\)\(q^{74} - \)\(78\!\cdots\!00\)\(q^{76} - \)\(30\!\cdots\!40\)\(q^{77} + \)\(87\!\cdots\!00\)\(q^{78} + \)\(62\!\cdots\!40\)\(q^{80} - \)\(42\!\cdots\!22\)\(q^{81} - \)\(45\!\cdots\!80\)\(q^{82} + \)\(18\!\cdots\!96\)\(q^{84} + \)\(67\!\cdots\!00\)\(q^{85} - \)\(23\!\cdots\!48\)\(q^{86} + \)\(11\!\cdots\!80\)\(q^{88} - \)\(18\!\cdots\!76\)\(q^{89} - \)\(25\!\cdots\!00\)\(q^{90} + \)\(60\!\cdots\!00\)\(q^{92} + \)\(43\!\cdots\!40\)\(q^{93} - \)\(13\!\cdots\!12\)\(q^{94} + \)\(34\!\cdots\!32\)\(q^{96} - \)\(20\!\cdots\!20\)\(q^{97} - \)\(46\!\cdots\!00\)\(q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −61401.1 + 22910.1i −0.936907 + 0.349580i
\(3\) 4.43679e7i 1.03069i −0.856982 0.515346i \(-0.827663\pi\)
0.856982 0.515346i \(-0.172337\pi\)
\(4\) 3.24522e9 2.81341e9i 0.755588 0.655048i
\(5\) 1.39224e11 0.912416 0.456208 0.889873i \(-0.349207\pi\)
0.456208 + 0.889873i \(0.349207\pi\)
\(6\) 1.01647e12 + 2.72424e12i 0.360310 + 0.965663i
\(7\) 2.23454e13i 0.672388i 0.941793 + 0.336194i \(0.109140\pi\)
−0.941793 + 0.336194i \(0.890860\pi\)
\(8\) −1.34805e14 + 2.47095e14i −0.478923 + 0.877857i
\(9\) −1.15494e14 −0.0623277
\(10\) −8.54848e15 + 3.18962e15i −0.854848 + 0.318962i
\(11\) 1.78893e16i 0.389323i 0.980870 + 0.194661i \(0.0623608\pi\)
−0.980870 + 0.194661i \(0.937639\pi\)
\(12\) −1.24825e17 1.43984e17i −0.675153 0.778779i
\(13\) 2.16497e17 0.325355 0.162677 0.986679i \(-0.447987\pi\)
0.162677 + 0.986679i \(0.447987\pi\)
\(14\) −5.11935e17 1.37203e18i −0.235053 0.629965i
\(15\) 6.17706e18i 0.940420i
\(16\) 2.61621e18 1.82603e19i 0.141825 0.989892i
\(17\) −6.14938e19 −1.26371 −0.631857 0.775085i \(-0.717707\pi\)
−0.631857 + 0.775085i \(0.717707\pi\)
\(18\) 7.09149e18 2.64599e18i 0.0583952 0.0217885i
\(19\) 4.44940e20i 1.54257i 0.636492 + 0.771283i \(0.280385\pi\)
−0.636492 + 0.771283i \(0.719615\pi\)
\(20\) 4.51812e20 3.91693e20i 0.689410 0.597676i
\(21\) 9.91420e20 0.693025
\(22\) −4.09845e20 1.09842e21i −0.136100 0.364759i
\(23\) 8.74399e21i 1.42582i 0.701256 + 0.712909i \(0.252623\pi\)
−0.701256 + 0.712909i \(0.747377\pi\)
\(24\) 1.09631e22 + 5.98102e21i 0.904801 + 0.493623i
\(25\) −3.89986e21 −0.167498
\(26\) −1.32931e22 + 4.95995e21i −0.304827 + 0.113738i
\(27\) 7.70904e22i 0.966452i
\(28\) 6.28668e22 + 7.25159e22i 0.440446 + 0.508048i
\(29\) 4.53622e23 1.81270 0.906351 0.422526i \(-0.138856\pi\)
0.906351 + 0.422526i \(0.138856\pi\)
\(30\) 1.41517e23 + 3.79279e23i 0.328752 + 0.881086i
\(31\) 1.07502e24i 1.47785i 0.673789 + 0.738924i \(0.264666\pi\)
−0.673789 + 0.738924i \(0.735334\pi\)
\(32\) 2.57706e23 + 1.18114e24i 0.213169 + 0.977015i
\(33\) 7.93711e23 0.401272
\(34\) 3.77579e24 1.40883e24i 1.18398 0.441769i
\(35\) 3.11101e24i 0.613497i
\(36\) −3.74805e23 + 3.24933e23i −0.0470940 + 0.0408276i
\(37\) −9.58490e23 −0.0776891 −0.0388445 0.999245i \(-0.512368\pi\)
−0.0388445 + 0.999245i \(0.512368\pi\)
\(38\) −1.01936e25 2.73198e25i −0.539251 1.44524i
\(39\) 9.60551e24i 0.335341i
\(40\) −1.87680e25 + 3.44014e25i −0.436977 + 0.800970i
\(41\) −1.42325e25 −0.223223 −0.111612 0.993752i \(-0.535601\pi\)
−0.111612 + 0.993752i \(0.535601\pi\)
\(42\) −6.08743e25 + 2.27135e25i −0.649300 + 0.242268i
\(43\) 1.36563e26i 0.999625i −0.866134 0.499813i \(-0.833402\pi\)
0.866134 0.499813i \(-0.166598\pi\)
\(44\) 5.03298e25 + 5.80547e25i 0.255025 + 0.294168i
\(45\) −1.60796e25 −0.0568688
\(46\) −2.00325e26 5.36891e26i −0.498438 1.33586i
\(47\) 1.63099e26i 0.287663i 0.989602 + 0.143832i \(0.0459424\pi\)
−0.989602 + 0.143832i \(0.954058\pi\)
\(48\) −8.10171e26 1.16076e26i −1.02027 0.146178i
\(49\) 6.05110e26 0.547895
\(50\) 2.39456e26 8.93461e25i 0.156930 0.0585539i
\(51\) 2.72836e27i 1.30250i
\(52\) 7.02580e26 6.09093e26i 0.245834 0.213123i
\(53\) 6.59943e27 1.70252 0.851261 0.524743i \(-0.175838\pi\)
0.851261 + 0.524743i \(0.175838\pi\)
\(54\) 1.76615e27 + 4.73344e27i 0.337852 + 0.905475i
\(55\) 2.49061e27i 0.355224i
\(56\) −5.52143e27 3.01227e27i −0.590260 0.322022i
\(57\) 1.97411e28 1.58991
\(58\) −2.78529e28 + 1.03925e28i −1.69833 + 0.633684i
\(59\) 2.05929e26i 0.00955181i −0.999989 0.00477590i \(-0.998480\pi\)
0.999989 0.00477590i \(-0.00152022\pi\)
\(60\) −1.73786e28 2.00460e28i −0.616020 0.710570i
\(61\) 1.66456e28 0.452919 0.226460 0.974021i \(-0.427285\pi\)
0.226460 + 0.974021i \(0.427285\pi\)
\(62\) −2.46288e28 6.60074e28i −0.516626 1.38460i
\(63\) 2.58077e27i 0.0419084i
\(64\) −4.28834e28 6.66192e28i −0.541265 0.840852i
\(65\) 3.01414e28 0.296859
\(66\) −4.87347e28 + 1.81840e28i −0.375955 + 0.140277i
\(67\) 2.31454e29i 1.40368i 0.712336 + 0.701839i \(0.247637\pi\)
−0.712336 + 0.701839i \(0.752363\pi\)
\(68\) −1.99561e29 + 1.73007e29i −0.954847 + 0.827793i
\(69\) 3.87953e29 1.46958
\(70\) −7.12735e28 1.91019e29i −0.214466 0.574789i
\(71\) 3.68248e29i 0.883095i −0.897238 0.441547i \(-0.854430\pi\)
0.897238 0.441547i \(-0.145570\pi\)
\(72\) 1.55692e28 2.85381e28i 0.0298502 0.0547148i
\(73\) 2.79454e29 0.429679 0.214840 0.976649i \(-0.431077\pi\)
0.214840 + 0.976649i \(0.431077\pi\)
\(74\) 5.88523e28 2.19591e28i 0.0727874 0.0271585i
\(75\) 1.73029e29i 0.172639i
\(76\) 1.25180e30 + 1.44393e30i 1.01045 + 1.16554i
\(77\) −3.99743e29 −0.261776
\(78\) 2.20063e29 + 5.89789e29i 0.117229 + 0.314183i
\(79\) 2.19129e30i 0.952063i 0.879428 + 0.476032i \(0.157925\pi\)
−0.879428 + 0.476032i \(0.842075\pi\)
\(80\) 3.64239e29 2.54226e30i 0.129404 0.903193i
\(81\) −3.63436e30 −1.05844
\(82\) 8.73891e29 3.26068e29i 0.209139 0.0780344i
\(83\) 3.91771e30i 0.772294i −0.922437 0.386147i \(-0.873806\pi\)
0.922437 0.386147i \(-0.126194\pi\)
\(84\) 3.21738e30 2.78927e30i 0.523641 0.453965i
\(85\) −8.56139e30 −1.15303
\(86\) 3.12866e30 + 8.38511e30i 0.349449 + 0.936555i
\(87\) 2.01263e31i 1.86834i
\(88\) −4.42035e30 2.41156e30i −0.341770 0.186456i
\(89\) −2.76276e31 −1.78280 −0.891400 0.453217i \(-0.850276\pi\)
−0.891400 + 0.453217i \(0.850276\pi\)
\(90\) 9.87302e29 3.68384e29i 0.0532807 0.0198802i
\(91\) 4.83771e30i 0.218765i
\(92\) 2.46004e31 + 2.83762e31i 0.933979 + 1.07733i
\(93\) 4.76964e31 1.52321
\(94\) −3.73660e30 1.00144e31i −0.100561 0.269514i
\(95\) 6.19462e31i 1.40746i
\(96\) 5.24047e31 1.14339e31i 1.00700 0.219712i
\(97\) 2.89803e30 0.0471798 0.0235899 0.999722i \(-0.492490\pi\)
0.0235899 + 0.999722i \(0.492490\pi\)
\(98\) −3.71544e31 + 1.38631e31i −0.513326 + 0.191533i
\(99\) 2.06611e30i 0.0242656i
\(100\) −1.26559e31 + 1.09719e31i −0.126559 + 0.109719i
\(101\) 2.75294e31 0.234777 0.117388 0.993086i \(-0.462548\pi\)
0.117388 + 0.993086i \(0.462548\pi\)
\(102\) −6.25068e31 1.67524e32i −0.455328 1.22032i
\(103\) 6.01350e30i 0.0374742i 0.999824 + 0.0187371i \(0.00596455\pi\)
−0.999824 + 0.0187371i \(0.994035\pi\)
\(104\) −2.91848e31 + 5.34952e31i −0.155820 + 0.285615i
\(105\) 1.38029e32 0.632327
\(106\) −4.05212e32 + 1.51194e32i −1.59510 + 0.595168i
\(107\) 1.74148e32i 0.589900i −0.955513 0.294950i \(-0.904697\pi\)
0.955513 0.294950i \(-0.0953030\pi\)
\(108\) −2.16887e32 2.50176e32i −0.633072 0.730239i
\(109\) 5.59935e32 1.41031 0.705153 0.709055i \(-0.250878\pi\)
0.705153 + 0.709055i \(0.250878\pi\)
\(110\) −5.70601e31 1.52926e32i −0.124179 0.332812i
\(111\) 4.25262e31i 0.0800736i
\(112\) 4.08034e32 + 5.84604e31i 0.665591 + 0.0953616i
\(113\) −7.28604e32 −1.03095 −0.515474 0.856905i \(-0.672384\pi\)
−0.515474 + 0.856905i \(0.672384\pi\)
\(114\) −1.21212e33 + 4.52270e32i −1.48960 + 0.555802i
\(115\) 1.21737e33i 1.30094i
\(116\) 1.47211e33 1.27622e33i 1.36966 1.18741i
\(117\) −2.50042e31 −0.0202786
\(118\) 4.71785e30 + 1.26443e31i 0.00333912 + 0.00894915i
\(119\) 1.37411e33i 0.849706i
\(120\) 1.52632e33 + 8.32699e32i 0.825554 + 0.450389i
\(121\) 1.79135e33 0.848428
\(122\) −1.02206e33 + 3.81351e32i −0.424343 + 0.158332i
\(123\) 6.31466e32i 0.230075i
\(124\) 3.02447e33 + 3.48868e33i 0.968060 + 1.11664i
\(125\) −3.78450e33 −1.06524
\(126\) 5.91257e31 + 1.58462e32i 0.0146503 + 0.0392642i
\(127\) 1.27122e33i 0.277563i −0.990323 0.138781i \(-0.955681\pi\)
0.990323 0.138781i \(-0.0443185\pi\)
\(128\) 4.15934e33 + 3.10803e33i 0.801060 + 0.598585i
\(129\) −6.05901e33 −1.03031
\(130\) −1.85072e33 + 6.90543e32i −0.278129 + 0.103776i
\(131\) 5.79109e33i 0.769874i −0.922943 0.384937i \(-0.874223\pi\)
0.922943 0.384937i \(-0.125777\pi\)
\(132\) 2.57577e33 2.23303e33i 0.303196 0.262852i
\(133\) −9.94237e33 −1.03720
\(134\) −5.30262e33 1.42115e34i −0.490697 1.31511i
\(135\) 1.07328e34i 0.881806i
\(136\) 8.28967e33 1.51948e34i 0.605222 1.10936i
\(137\) 5.24158e33 0.340356 0.170178 0.985413i \(-0.445566\pi\)
0.170178 + 0.985413i \(0.445566\pi\)
\(138\) −2.38207e34 + 8.88803e33i −1.37686 + 0.513736i
\(139\) 3.31449e34i 1.70679i 0.521267 + 0.853394i \(0.325460\pi\)
−0.521267 + 0.853394i \(0.674540\pi\)
\(140\) 8.75254e33 + 1.00959e34i 0.401870 + 0.463551i
\(141\) 7.23635e33 0.296492
\(142\) 8.43660e33 + 2.26109e34i 0.308712 + 0.827377i
\(143\) 3.87297e33i 0.126668i
\(144\) −3.02158e32 + 2.10896e33i −0.00883964 + 0.0616977i
\(145\) 6.31549e34 1.65394
\(146\) −1.71588e34 + 6.40231e33i −0.402569 + 0.150207i
\(147\) 2.68475e34i 0.564711i
\(148\) −3.11051e33 + 2.69662e33i −0.0587009 + 0.0508900i
\(149\) 5.60725e34 0.950100 0.475050 0.879959i \(-0.342430\pi\)
0.475050 + 0.879959i \(0.342430\pi\)
\(150\) −3.96410e33 1.06242e34i −0.0603511 0.161746i
\(151\) 2.77124e34i 0.379353i 0.981847 + 0.189676i \(0.0607439\pi\)
−0.981847 + 0.189676i \(0.939256\pi\)
\(152\) −1.09942e35 5.99801e34i −1.35415 0.738771i
\(153\) 7.10220e33 0.0787644
\(154\) 2.45447e34 9.15815e33i 0.245260 0.0915117i
\(155\) 1.49668e35i 1.34841i
\(156\) −2.70242e34 3.11720e34i −0.219664 0.253380i
\(157\) −8.55727e34 −0.627973 −0.313986 0.949428i \(-0.601665\pi\)
−0.313986 + 0.949428i \(0.601665\pi\)
\(158\) −5.02025e34 1.34547e35i −0.332822 0.891994i
\(159\) 2.92803e35i 1.75478i
\(160\) 3.58787e34 + 1.64442e35i 0.194499 + 0.891444i
\(161\) −1.95388e35 −0.958703
\(162\) 2.23154e35 8.32634e34i 0.991662 0.370011i
\(163\) 1.94005e35i 0.781287i 0.920542 + 0.390644i \(0.127748\pi\)
−0.920542 + 0.390644i \(0.872252\pi\)
\(164\) −4.61876e34 + 4.00418e34i −0.168665 + 0.146222i
\(165\) 1.10503e35 0.366127
\(166\) 8.97550e34 + 2.40552e35i 0.269979 + 0.723567i
\(167\) 3.97663e35i 1.08655i −0.839553 0.543277i \(-0.817183\pi\)
0.839553 0.543277i \(-0.182817\pi\)
\(168\) −1.33648e35 + 2.44975e35i −0.331906 + 0.608377i
\(169\) −3.95908e35 −0.894144
\(170\) 5.25679e35 1.96142e35i 1.08028 0.403077i
\(171\) 5.13881e34i 0.0961446i
\(172\) −3.84207e35 4.43177e35i −0.654802 0.755304i
\(173\) −1.09919e35 −0.170740 −0.0853698 0.996349i \(-0.527207\pi\)
−0.0853698 + 0.996349i \(0.527207\pi\)
\(174\) 4.61095e35 + 1.23578e36i 0.653134 + 1.75046i
\(175\) 8.71440e34i 0.112623i
\(176\) 3.26663e35 + 4.68022e34i 0.385388 + 0.0552158i
\(177\) −9.13665e33 −0.00984498
\(178\) 1.69636e36 6.32950e35i 1.67032 0.623231i
\(179\) 1.77396e36i 1.59696i 0.602021 + 0.798480i \(0.294362\pi\)
−0.602021 + 0.798480i \(0.705638\pi\)
\(180\) −5.21817e34 + 4.52383e34i −0.0429693 + 0.0372517i
\(181\) 7.69778e34 0.0580107 0.0290054 0.999579i \(-0.490766\pi\)
0.0290054 + 0.999579i \(0.490766\pi\)
\(182\) −1.10832e35 2.97041e35i −0.0764758 0.204962i
\(183\) 7.38529e35i 0.466821i
\(184\) −2.16059e36 1.17873e36i −1.25166 0.682858i
\(185\) −1.33444e35 −0.0708847
\(186\) −2.92861e36 + 1.09273e36i −1.42710 + 0.532483i
\(187\) 1.10008e36i 0.491993i
\(188\) 4.58863e35 + 5.29291e35i 0.188433 + 0.217355i
\(189\) 1.72262e36 0.649831
\(190\) −1.41919e36 3.80356e36i −0.492021 1.31866i
\(191\) 1.79749e36i 0.572971i −0.958085 0.286486i \(-0.907513\pi\)
0.958085 0.286486i \(-0.0924871\pi\)
\(192\) −2.95576e36 + 1.90265e36i −0.866660 + 0.557878i
\(193\) 2.10472e36 0.567908 0.283954 0.958838i \(-0.408354\pi\)
0.283954 + 0.958838i \(0.408354\pi\)
\(194\) −1.77942e35 + 6.63942e34i −0.0442030 + 0.0164931i
\(195\) 1.33731e36i 0.305970i
\(196\) 1.96372e36 1.70242e36i 0.413982 0.358897i
\(197\) −1.10393e36 −0.214528 −0.107264 0.994231i \(-0.534209\pi\)
−0.107264 + 0.994231i \(0.534209\pi\)
\(198\) 4.73348e34 + 1.26862e35i 0.00848277 + 0.0227346i
\(199\) 8.49051e36i 1.40373i 0.712309 + 0.701866i \(0.247650\pi\)
−0.712309 + 0.701866i \(0.752350\pi\)
\(200\) 5.25721e35 9.63635e35i 0.0802186 0.147039i
\(201\) 1.02691e37 1.44676
\(202\) −1.69034e36 + 6.30701e35i −0.219964 + 0.0820732i
\(203\) 1.01364e37i 1.21884i
\(204\) 7.67598e36 + 8.85412e36i 0.853200 + 0.984154i
\(205\) −1.98150e36 −0.203672
\(206\) −1.37770e35 3.69236e35i −0.0131002 0.0351098i
\(207\) 1.00988e36i 0.0888680i
\(208\) 5.66401e35 3.95329e36i 0.0461436 0.322066i
\(209\) −7.95966e36 −0.600557
\(210\) −8.47514e36 + 3.16226e36i −0.592431 + 0.221049i
\(211\) 2.37381e37i 1.53790i −0.639312 0.768948i \(-0.720781\pi\)
0.639312 0.768948i \(-0.279219\pi\)
\(212\) 2.14166e37 1.85669e37i 1.28640 1.11523i
\(213\) −1.63384e37 −0.910200
\(214\) 3.98975e36 + 1.06929e37i 0.206217 + 0.552681i
\(215\) 1.90128e37i 0.912074i
\(216\) 1.90486e37 + 1.03922e37i 0.848406 + 0.462857i
\(217\) −2.40218e37 −0.993687
\(218\) −3.43806e37 + 1.28282e37i −1.32133 + 0.493015i
\(219\) 1.23988e37i 0.442867i
\(220\) 7.00710e36 + 8.08259e36i 0.232689 + 0.268403i
\(221\) −1.33132e37 −0.411156
\(222\) −9.74279e35 2.61116e36i −0.0279921 0.0750214i
\(223\) 5.19320e37i 1.38854i 0.719716 + 0.694268i \(0.244272\pi\)
−0.719716 + 0.694268i \(0.755728\pi\)
\(224\) −2.63930e37 + 5.75855e36i −0.656933 + 0.143333i
\(225\) 4.50412e35 0.0104397
\(226\) 4.47371e37 1.66924e37i 0.965902 0.360399i
\(227\) 2.16268e37i 0.435090i −0.976050 0.217545i \(-0.930195\pi\)
0.976050 0.217545i \(-0.0698049\pi\)
\(228\) 6.40642e37 5.55397e37i 1.20132 1.04147i
\(229\) 3.92200e37 0.685709 0.342854 0.939389i \(-0.388606\pi\)
0.342854 + 0.939389i \(0.388606\pi\)
\(230\) −2.78900e37 7.47478e37i −0.454782 1.21886i
\(231\) 1.77358e37i 0.269811i
\(232\) −6.11505e37 + 1.12088e38i −0.868145 + 1.59129i
\(233\) −1.54117e37 −0.204247 −0.102124 0.994772i \(-0.532564\pi\)
−0.102124 + 0.994772i \(0.532564\pi\)
\(234\) 1.53528e36 5.72847e35i 0.0189992 0.00708900i
\(235\) 2.27072e37i 0.262468i
\(236\) −5.79363e35 6.68286e35i −0.00625689 0.00721723i
\(237\) 9.72229e37 0.981285
\(238\) 3.14809e37 + 8.43716e37i 0.297040 + 0.796095i
\(239\) 2.42617e37i 0.214070i 0.994255 + 0.107035i \(0.0341357\pi\)
−0.994255 + 0.107035i \(0.965864\pi\)
\(240\) −1.12795e38 1.61605e37i −0.930914 0.133375i
\(241\) 1.91142e38 1.47599 0.737996 0.674805i \(-0.235772\pi\)
0.737996 + 0.674805i \(0.235772\pi\)
\(242\) −1.09991e38 + 4.10400e37i −0.794897 + 0.296593i
\(243\) 1.83989e37i 0.124477i
\(244\) 5.40185e37 4.68307e37i 0.342220 0.296684i
\(245\) 8.42456e37 0.499908
\(246\) −1.44669e37 3.87727e37i −0.0804295 0.215558i
\(247\) 9.63280e37i 0.501882i
\(248\) −2.65632e38 1.44918e38i −1.29734 0.707776i
\(249\) −1.73821e38 −0.795998
\(250\) 2.32373e38 8.67033e37i 0.998033 0.372388i
\(251\) 4.00964e38i 1.61557i −0.589477 0.807785i \(-0.700666\pi\)
0.589477 0.807785i \(-0.299334\pi\)
\(252\) −7.26076e36 8.37518e36i −0.0274520 0.0316654i
\(253\) −1.56424e38 −0.555104
\(254\) 2.91238e37 + 7.80543e37i 0.0970304 + 0.260050i
\(255\) 3.79851e38i 1.18842i
\(256\) −3.26593e38 9.55456e37i −0.959771 0.280783i
\(257\) −5.30332e38 −1.46426 −0.732129 0.681166i \(-0.761473\pi\)
−0.732129 + 0.681166i \(0.761473\pi\)
\(258\) 3.72030e38 1.38812e38i 0.965301 0.360175i
\(259\) 2.14179e37i 0.0522372i
\(260\) 9.78157e37 8.48001e37i 0.224303 0.194457i
\(261\) −5.23909e37 −0.112982
\(262\) 1.32674e38 + 3.55579e38i 0.269133 + 0.721300i
\(263\) 9.05669e38i 1.72853i −0.503034 0.864267i \(-0.667783\pi\)
0.503034 0.864267i \(-0.332217\pi\)
\(264\) −1.06996e38 + 1.96122e38i −0.192179 + 0.352260i
\(265\) 9.18797e38 1.55341
\(266\) 6.10473e38 2.27781e38i 0.971762 0.362586i
\(267\) 1.22578e39i 1.83752i
\(268\) 6.51174e38 + 7.51119e38i 0.919475 + 1.06060i
\(269\) −7.91984e38 −1.05361 −0.526805 0.849986i \(-0.676610\pi\)
−0.526805 + 0.849986i \(0.676610\pi\)
\(270\) 2.45889e38 + 6.59006e38i 0.308262 + 0.826170i
\(271\) 7.17026e38i 0.847278i −0.905831 0.423639i \(-0.860752\pi\)
0.905831 0.423639i \(-0.139248\pi\)
\(272\) −1.60881e38 + 1.12289e39i −0.179227 + 1.25094i
\(273\) 2.14639e38 0.225479
\(274\) −3.21839e38 + 1.20085e38i −0.318881 + 0.118982i
\(275\) 6.97657e37i 0.0652107i
\(276\) 1.25899e39 1.09147e39i 1.11040 0.962645i
\(277\) −1.07006e39 −0.890698 −0.445349 0.895357i \(-0.646920\pi\)
−0.445349 + 0.895357i \(0.646920\pi\)
\(278\) −7.59352e38 2.03513e39i −0.596659 1.59910i
\(279\) 1.24159e38i 0.0921108i
\(280\) −7.68714e38 4.19379e38i −0.538563 0.293818i
\(281\) −9.83963e38 −0.651145 −0.325573 0.945517i \(-0.605557\pi\)
−0.325573 + 0.945517i \(0.605557\pi\)
\(282\) −4.44320e38 + 1.65785e38i −0.277786 + 0.103648i
\(283\) 8.98302e38i 0.530688i 0.964154 + 0.265344i \(0.0854855\pi\)
−0.964154 + 0.265344i \(0.914514\pi\)
\(284\) −1.03603e39 1.19505e39i −0.578469 0.667256i
\(285\) 2.74842e39 1.45066
\(286\) −8.87300e37 2.37805e38i −0.0442807 0.118676i
\(287\) 3.18031e38i 0.150093i
\(288\) −2.97636e37 1.36415e38i −0.0132864 0.0608951i
\(289\) 1.41358e39 0.596973
\(290\) −3.87778e39 + 1.44688e39i −1.54958 + 0.578184i
\(291\) 1.28580e38i 0.0486278i
\(292\) 9.06890e38 7.86218e38i 0.324660 0.281460i
\(293\) −3.27044e38 −0.110847 −0.0554235 0.998463i \(-0.517651\pi\)
−0.0554235 + 0.998463i \(0.517651\pi\)
\(294\) 6.15078e38 + 1.64847e39i 0.197412 + 0.529081i
\(295\) 2.86702e37i 0.00871522i
\(296\) 1.29209e38 2.36838e38i 0.0372071 0.0681999i
\(297\) 1.37909e39 0.376262
\(298\) −3.44291e39 + 1.28462e39i −0.890155 + 0.332136i
\(299\) 1.89304e39i 0.463897i
\(300\) 4.86801e38 + 5.61517e38i 0.113087 + 0.130444i
\(301\) 3.05155e39 0.672136
\(302\) −6.34894e38 1.70157e39i −0.132614 0.355418i
\(303\) 1.22142e39i 0.241983i
\(304\) 8.12473e39 + 1.16406e39i 1.52697 + 0.218775i
\(305\) 2.31745e39 0.413251
\(306\) −4.36083e38 + 1.62712e38i −0.0737949 + 0.0275345i
\(307\) 1.67228e39i 0.268592i 0.990941 + 0.134296i \(0.0428774\pi\)
−0.990941 + 0.134296i \(0.957123\pi\)
\(308\) −1.29726e39 + 1.12464e39i −0.197795 + 0.171476i
\(309\) 2.66807e38 0.0386244
\(310\) −3.42891e39 9.18979e39i −0.471378 1.26334i
\(311\) 1.74120e39i 0.227344i 0.993518 + 0.113672i \(0.0362613\pi\)
−0.993518 + 0.113672i \(0.963739\pi\)
\(312\) 2.37347e39 + 1.29487e39i 0.294381 + 0.160603i
\(313\) −1.14924e40 −1.35426 −0.677128 0.735866i \(-0.736776\pi\)
−0.677128 + 0.735866i \(0.736776\pi\)
\(314\) 5.25426e39 1.96048e39i 0.588352 0.219527i
\(315\) 3.59304e38i 0.0382379i
\(316\) 6.16498e39 + 7.11122e39i 0.623647 + 0.719367i
\(317\) −1.00613e40 −0.967623 −0.483811 0.875172i \(-0.660748\pi\)
−0.483811 + 0.875172i \(0.660748\pi\)
\(318\) 6.70815e39 + 1.79784e40i 0.613435 + 1.64406i
\(319\) 8.11498e39i 0.705726i
\(320\) −5.97038e39 9.27496e39i −0.493858 0.767207i
\(321\) −7.72659e39 −0.608006
\(322\) 1.19970e40 4.47636e39i 0.898215 0.335143i
\(323\) 2.73611e40i 1.94936i
\(324\) −1.17943e40 + 1.02249e40i −0.799746 + 0.693331i
\(325\) −8.44307e38 −0.0544962
\(326\) −4.44467e39 1.19121e40i −0.273122 0.731993i
\(327\) 2.48432e40i 1.45359i
\(328\) 1.91861e39 3.51677e39i 0.106907 0.195958i
\(329\) −3.64451e39 −0.193421
\(330\) −6.78502e39 + 2.53164e39i −0.343027 + 0.127991i
\(331\) 4.73509e39i 0.228076i 0.993476 + 0.114038i \(0.0363786\pi\)
−0.993476 + 0.114038i \(0.963621\pi\)
\(332\) −1.10221e40 1.27138e40i −0.505889 0.583536i
\(333\) 1.10700e38 0.00484218
\(334\) 9.11049e39 + 2.44169e40i 0.379838 + 1.01800i
\(335\) 3.22238e40i 1.28074i
\(336\) 2.59377e39 1.81036e40i 0.0982885 0.686020i
\(337\) 3.62976e40 1.31159 0.655797 0.754937i \(-0.272333\pi\)
0.655797 + 0.754937i \(0.272333\pi\)
\(338\) 2.43092e40 9.07029e39i 0.837729 0.312575i
\(339\) 3.23267e40i 1.06259i
\(340\) −2.77836e40 + 2.40867e40i −0.871217 + 0.755291i
\(341\) −1.92313e40 −0.575360
\(342\) 1.17731e39 + 3.15529e39i 0.0336102 + 0.0900785i
\(343\) 3.82003e40i 1.04079i
\(344\) 3.37439e40 + 1.84093e40i 0.877528 + 0.478744i
\(345\) 5.40122e40 1.34087
\(346\) 6.74913e39 2.51825e39i 0.159967 0.0596871i
\(347\) 2.25109e40i 0.509473i −0.967011 0.254736i \(-0.918011\pi\)
0.967011 0.254736i \(-0.0819887\pi\)
\(348\) −5.66235e40 6.53143e40i −1.22385 1.41169i
\(349\) 3.78768e40 0.781928 0.390964 0.920406i \(-0.372142\pi\)
0.390964 + 0.920406i \(0.372142\pi\)
\(350\) 1.99648e39 + 5.35074e39i 0.0393709 + 0.105518i
\(351\) 1.66898e40i 0.314440i
\(352\) −2.11297e40 + 4.61017e39i −0.380374 + 0.0829917i
\(353\) 4.87419e40 0.838508 0.419254 0.907869i \(-0.362292\pi\)
0.419254 + 0.907869i \(0.362292\pi\)
\(354\) 5.61001e38 2.09321e38i 0.00922383 0.00344161i
\(355\) 5.12689e40i 0.805750i
\(356\) −8.96577e40 + 7.77276e40i −1.34706 + 1.16782i
\(357\) −6.09662e40 −0.875786
\(358\) −4.06414e40 1.08923e41i −0.558265 1.49620i
\(359\) 5.11945e40i 0.672531i 0.941767 + 0.336265i \(0.109164\pi\)
−0.941767 + 0.336265i \(0.890836\pi\)
\(360\) 2.16760e39 3.97317e39i 0.0272358 0.0499226i
\(361\) −1.14773e41 −1.37951
\(362\) −4.72652e39 + 1.76357e39i −0.0543506 + 0.0202794i
\(363\) 7.94786e40i 0.874468i
\(364\) 1.36104e40 + 1.56994e40i 0.143301 + 0.165296i
\(365\) 3.89066e40 0.392046
\(366\) 1.69198e40 + 4.53465e40i 0.163191 + 0.437367i
\(367\) 1.13981e41i 1.05239i −0.850364 0.526196i \(-0.823618\pi\)
0.850364 0.526196i \(-0.176382\pi\)
\(368\) 1.59668e41 + 2.28761e40i 1.41141 + 0.202217i
\(369\) 1.64377e39 0.0139130
\(370\) 8.19363e39 3.05722e39i 0.0664124 0.0247799i
\(371\) 1.47467e41i 1.14476i
\(372\) 1.54786e41 1.34190e41i 1.15092 0.997773i
\(373\) −1.95796e41 −1.39464 −0.697319 0.716761i \(-0.745624\pi\)
−0.697319 + 0.716761i \(0.745624\pi\)
\(374\) 2.52029e40 + 6.75462e40i 0.171991 + 0.460951i
\(375\) 1.67911e41i 1.09794i
\(376\) −4.03008e40 2.19865e40i −0.252527 0.137769i
\(377\) 9.82077e40 0.589772
\(378\) −1.05771e41 + 3.94653e40i −0.608831 + 0.227168i
\(379\) 1.25171e40i 0.0690679i 0.999404 + 0.0345339i \(0.0109947\pi\)
−0.999404 + 0.0345339i \(0.989005\pi\)
\(380\) 1.74280e41 + 2.01029e41i 0.921955 + 1.06346i
\(381\) −5.64014e40 −0.286082
\(382\) 4.11807e40 + 1.10368e41i 0.200299 + 0.536821i
\(383\) 2.07290e41i 0.966938i −0.875362 0.483469i \(-0.839377\pi\)
0.875362 0.483469i \(-0.160623\pi\)
\(384\) 1.37897e41 1.84541e41i 0.616957 0.825646i
\(385\) −5.56537e40 −0.238848
\(386\) −1.29232e41 + 4.82194e40i −0.532077 + 0.198529i
\(387\) 1.57722e40i 0.0623043i
\(388\) 9.40477e39 8.15335e39i 0.0356484 0.0309050i
\(389\) 2.02435e41 0.736361 0.368181 0.929754i \(-0.379981\pi\)
0.368181 + 0.929754i \(0.379981\pi\)
\(390\) 3.06380e40 + 8.21125e40i 0.106961 + 0.286666i
\(391\) 5.37701e41i 1.80183i
\(392\) −8.15718e40 + 1.49519e41i −0.262400 + 0.480973i
\(393\) −2.56939e41 −0.793503
\(394\) 6.77827e40 2.52912e40i 0.200992 0.0749946i
\(395\) 3.05079e41i 0.868677i
\(396\) −5.81282e39 6.70500e39i −0.0158951 0.0183348i
\(397\) 1.88519e40 0.0495115 0.0247558 0.999694i \(-0.492119\pi\)
0.0247558 + 0.999694i \(0.492119\pi\)
\(398\) −1.94518e41 5.21327e41i −0.490717 1.31517i
\(399\) 4.41123e41i 1.06904i
\(400\) −1.02029e40 + 7.12125e40i −0.0237554 + 0.165805i
\(401\) 7.93687e41 1.77558 0.887788 0.460252i \(-0.152241\pi\)
0.887788 + 0.460252i \(0.152241\pi\)
\(402\) −6.30535e41 + 2.35266e41i −1.35548 + 0.505758i
\(403\) 2.32738e41i 0.480825i
\(404\) 8.93391e40 7.74515e40i 0.177394 0.153790i
\(405\) −5.05988e41 −0.965740
\(406\) −2.32225e41 6.22385e41i −0.426082 1.14194i
\(407\) 1.71467e40i 0.0302461i
\(408\) −6.74162e41 3.67796e41i −1.14341 0.623798i
\(409\) 1.31441e41 0.214367 0.107183 0.994239i \(-0.465817\pi\)
0.107183 + 0.994239i \(0.465817\pi\)
\(410\) 1.21666e41 4.53963e40i 0.190822 0.0711998i
\(411\) 2.32558e41i 0.350802i
\(412\) 1.69184e40 + 1.95152e40i 0.0245474 + 0.0283150i
\(413\) 4.60157e39 0.00642252
\(414\) 2.31365e40 + 6.20079e40i 0.0310665 + 0.0832610i
\(415\) 5.45437e41i 0.704653i
\(416\) 5.57925e40 + 2.55713e41i 0.0693557 + 0.317877i
\(417\) 1.47057e42 1.75917
\(418\) 4.88732e41 1.82356e41i 0.562665 0.209943i
\(419\) 7.01171e41i 0.776961i 0.921457 + 0.388481i \(0.127000\pi\)
−0.921457 + 0.388481i \(0.873000\pi\)
\(420\) 4.47935e41 3.88332e41i 0.477779 0.414204i
\(421\) −8.56023e41 −0.878966 −0.439483 0.898251i \(-0.644838\pi\)
−0.439483 + 0.898251i \(0.644838\pi\)
\(422\) 5.43842e41 + 1.45755e42i 0.537618 + 1.44086i
\(423\) 1.88370e40i 0.0179294i
\(424\) −8.89636e41 + 1.63068e42i −0.815378 + 1.49457i
\(425\) 2.39817e41 0.211669
\(426\) 1.00320e42 3.74315e41i 0.852772 0.318188i
\(427\) 3.71952e41i 0.304537i
\(428\) −4.89950e41 5.65150e41i −0.386413 0.445721i
\(429\) 1.71836e41 0.130556
\(430\) 4.35584e41 + 1.16740e42i 0.318843 + 0.854528i
\(431\) 5.29035e41i 0.373120i 0.982444 + 0.186560i \(0.0597338\pi\)
−0.982444 + 0.186560i \(0.940266\pi\)
\(432\) −1.40769e42 2.01685e41i −0.956683 0.137067i
\(433\) 2.07497e41 0.135896 0.0679478 0.997689i \(-0.478355\pi\)
0.0679478 + 0.997689i \(0.478355\pi\)
\(434\) 1.47496e42 5.50341e41i 0.930991 0.347373i
\(435\) 2.80205e42i 1.70470i
\(436\) 1.81711e42 1.57533e42i 1.06561 0.923818i
\(437\) −3.89055e42 −2.19942
\(438\) 2.84057e41 + 7.61299e41i 0.154818 + 0.414925i
\(439\) 2.85946e42i 1.50263i 0.659944 + 0.751315i \(0.270580\pi\)
−0.659944 + 0.751315i \(0.729420\pi\)
\(440\) −6.15416e41 3.35747e41i −0.311836 0.170125i
\(441\) −6.98868e40 −0.0341490
\(442\) 8.17446e41 3.05007e41i 0.385214 0.143732i
\(443\) 2.21579e42i 1.00709i −0.863969 0.503545i \(-0.832029\pi\)
0.863969 0.503545i \(-0.167971\pi\)
\(444\) 1.19644e41 + 1.38007e41i 0.0524520 + 0.0605026i
\(445\) −3.84641e42 −1.62665
\(446\) −1.18977e42 3.18868e42i −0.485405 1.30093i
\(447\) 2.48782e42i 0.979261i
\(448\) 1.48863e42 9.58248e41i 0.565379 0.363940i
\(449\) 8.69610e40 0.0318701 0.0159350 0.999873i \(-0.494928\pi\)
0.0159350 + 0.999873i \(0.494928\pi\)
\(450\) −2.76558e40 + 1.03190e40i −0.00978107 + 0.00364953i
\(451\) 2.54609e41i 0.0869059i
\(452\) −2.36448e42 + 2.04986e42i −0.778971 + 0.675320i
\(453\) 1.22954e42 0.390996
\(454\) 4.95473e41 + 1.32791e42i 0.152099 + 0.407639i
\(455\) 6.73523e41i 0.199604i
\(456\) −2.66120e42 + 4.87792e42i −0.761446 + 1.39572i
\(457\) 4.54305e42 1.25513 0.627565 0.778564i \(-0.284052\pi\)
0.627565 + 0.778564i \(0.284052\pi\)
\(458\) −2.40815e42 + 8.98533e41i −0.642445 + 0.239710i
\(459\) 4.74059e42i 1.22132i
\(460\) 3.42496e42 + 3.95064e42i 0.852177 + 0.982973i
\(461\) 4.18043e42 1.00463 0.502315 0.864684i \(-0.332482\pi\)
0.502315 + 0.864684i \(0.332482\pi\)
\(462\) −4.06328e41 1.08900e42i −0.0943204 0.252787i
\(463\) 1.57491e42i 0.353150i 0.984287 + 0.176575i \(0.0565018\pi\)
−0.984287 + 0.176575i \(0.943498\pi\)
\(464\) 1.18677e42 8.28327e42i 0.257087 1.79438i
\(465\) 6.64047e42 1.38980
\(466\) 9.46297e41 3.53084e41i 0.191361 0.0714008i
\(467\) 3.22443e42i 0.630061i −0.949082 0.315031i \(-0.897985\pi\)
0.949082 0.315031i \(-0.102015\pi\)
\(468\) −8.11441e40 + 7.03469e40i −0.0153223 + 0.0132835i
\(469\) −5.17193e42 −0.943815
\(470\) −5.20223e41 1.39425e42i −0.0917537 0.245908i
\(471\) 3.79668e42i 0.647247i
\(472\) 5.08840e40 + 2.77603e40i 0.00838512 + 0.00457458i
\(473\) 2.44301e42 0.389177
\(474\) −5.96959e42 + 2.22738e42i −0.919372 + 0.343038i
\(475\) 1.73520e42i 0.258376i
\(476\) −3.86592e42 4.45928e42i −0.556598 0.642027i
\(477\) −7.62198e41 −0.106114
\(478\) −5.55838e41 1.48970e42i −0.0748346 0.200563i
\(479\) 6.21903e42i 0.809756i 0.914371 + 0.404878i \(0.132686\pi\)
−0.914371 + 0.404878i \(0.867314\pi\)
\(480\) 7.29597e42 1.59187e42i 0.918805 0.200469i
\(481\) −2.07510e41 −0.0252765
\(482\) −1.17363e43 + 4.37908e42i −1.38287 + 0.515977i
\(483\) 8.66897e42i 0.988128i
\(484\) 5.81334e42 5.03980e42i 0.641061 0.555761i
\(485\) 4.03475e41 0.0430475
\(486\) −4.21519e41 1.12971e42i −0.0435148 0.116624i
\(487\) 1.91998e43i 1.91793i −0.283517 0.958967i \(-0.591501\pi\)
0.283517 0.958967i \(-0.408499\pi\)
\(488\) −2.24390e42 + 4.11303e42i −0.216914 + 0.397598i
\(489\) 8.60760e42 0.805267
\(490\) −5.17277e42 + 1.93007e42i −0.468367 + 0.174758i
\(491\) 4.78448e42i 0.419306i −0.977776 0.209653i \(-0.932767\pi\)
0.977776 0.209653i \(-0.0672334\pi\)
\(492\) 1.77657e42 + 2.04925e42i 0.150710 + 0.173841i
\(493\) −2.78950e43 −2.29074
\(494\) −2.20688e42 5.91465e42i −0.175448 0.470216i
\(495\) 2.87652e41i 0.0221403i
\(496\) 1.96302e43 + 2.81248e42i 1.46291 + 0.209596i
\(497\) 8.22867e42 0.593782
\(498\) 1.06728e43 3.98225e42i 0.745776 0.278265i
\(499\) 1.53323e43i 1.03752i −0.854919 0.518762i \(-0.826393\pi\)
0.854919 0.518762i \(-0.173607\pi\)
\(500\) −1.22816e43 + 1.06474e43i −0.804885 + 0.697785i
\(501\) −1.76435e43 −1.11990
\(502\) 9.18612e42 + 2.46196e43i 0.564771 + 1.51364i
\(503\) 2.93216e42i 0.174623i 0.996181 + 0.0873113i \(0.0278275\pi\)
−0.996181 + 0.0873113i \(0.972173\pi\)
\(504\) 6.37695e41 + 3.47901e41i 0.0367895 + 0.0200709i
\(505\) 3.83274e42 0.214214
\(506\) 9.60459e42 3.58368e42i 0.520080 0.194053i
\(507\) 1.75656e43i 0.921588i
\(508\) −3.57646e42 4.12539e42i −0.181817 0.209723i
\(509\) −2.81958e43 −1.38899 −0.694496 0.719497i \(-0.744373\pi\)
−0.694496 + 0.719497i \(0.744373\pi\)
\(510\) −8.70242e42 2.33233e43i −0.415449 1.11344i
\(511\) 6.24451e42i 0.288911i
\(512\) 2.22421e43 1.61567e42i 0.997372 0.0724492i
\(513\) 3.43006e43 1.49082
\(514\) 3.25630e43 1.21499e43i 1.37187 0.511876i
\(515\) 8.37221e41i 0.0341920i
\(516\) −1.96628e43 + 1.70465e43i −0.778487 + 0.674900i
\(517\) −2.91772e42 −0.111994
\(518\) 4.90685e41 + 1.31508e42i 0.0182611 + 0.0489414i
\(519\) 4.87687e42i 0.175980i
\(520\) −4.06321e42 + 7.44779e42i −0.142173 + 0.260600i
\(521\) 3.53836e43 1.20060 0.600300 0.799775i \(-0.295048\pi\)
0.600300 + 0.799775i \(0.295048\pi\)
\(522\) 3.21686e42 1.20028e42i 0.105853 0.0394961i
\(523\) 4.38521e43i 1.39947i 0.714402 + 0.699735i \(0.246699\pi\)
−0.714402 + 0.699735i \(0.753301\pi\)
\(524\) −1.62927e43 1.87934e43i −0.504304 0.581707i
\(525\) −3.86640e42 −0.116080
\(526\) 2.07490e43 + 5.56091e43i 0.604261 + 1.61947i
\(527\) 6.61071e43i 1.86758i
\(528\) 2.07652e42 1.44934e43i 0.0569105 0.397216i
\(529\) −3.88484e43 −1.03296
\(530\) −5.64151e43 + 2.10497e43i −1.45540 + 0.543040i
\(531\) 2.37837e40i 0.000595342i
\(532\) −3.22652e43 + 2.79720e43i −0.783698 + 0.679417i
\(533\) −3.08129e42 −0.0726268
\(534\) −2.80827e43 7.52642e43i −0.642360 1.72158i
\(535\) 2.42455e43i 0.538234i
\(536\) −5.71910e43 3.12011e43i −1.23223 0.672254i
\(537\) 7.87067e43 1.64598
\(538\) 4.86287e43 1.81444e43i 0.987135 0.368321i
\(539\) 1.08250e43i 0.213308i
\(540\) −3.01958e43 3.48304e43i −0.577625 0.666282i
\(541\) −3.92683e43 −0.729266 −0.364633 0.931151i \(-0.618805\pi\)
−0.364633 + 0.931151i \(0.618805\pi\)
\(542\) 1.64271e43 + 4.40262e43i 0.296192 + 0.793821i
\(543\) 3.41535e42i 0.0597912i
\(544\) −1.58473e43 7.26328e43i −0.269385 1.23467i
\(545\) 7.79561e43 1.28679
\(546\) −1.31791e43 + 4.91740e42i −0.211253 + 0.0788230i
\(547\) 4.32555e43i 0.673356i −0.941620 0.336678i \(-0.890697\pi\)
0.941620 0.336678i \(-0.109303\pi\)
\(548\) 1.70101e43 1.47467e43i 0.257168 0.222949i
\(549\) −1.92247e42 −0.0282294
\(550\) 1.59834e42 + 4.28369e42i 0.0227964 + 0.0610963i
\(551\) 2.01835e44i 2.79621i
\(552\) −5.22980e43 + 9.58611e43i −0.703817 + 1.29008i
\(553\) −4.89652e43 −0.640156
\(554\) 6.57026e43 2.45151e43i 0.834500 0.311370i
\(555\) 5.92065e42i 0.0730604i
\(556\) 9.32500e43 + 1.07563e44i 1.11803 + 1.28963i
\(557\) 4.56437e43 0.531738 0.265869 0.964009i \(-0.414341\pi\)
0.265869 + 0.964009i \(0.414341\pi\)
\(558\) 2.84449e42 + 7.62349e42i 0.0322001 + 0.0862992i
\(559\) 2.95654e43i 0.325233i
\(560\) 5.68079e43 + 8.13907e42i 0.607296 + 0.0870094i
\(561\) −4.88083e43 −0.507093
\(562\) 6.04164e43 2.25427e43i 0.610062 0.227627i
\(563\) 1.65440e42i 0.0162370i 0.999967 + 0.00811850i \(0.00258423\pi\)
−0.999967 + 0.00811850i \(0.997416\pi\)
\(564\) 2.34836e43 2.03588e43i 0.224026 0.194217i
\(565\) −1.01439e44 −0.940653
\(566\) −2.05802e43 5.51567e43i −0.185518 0.497205i
\(567\) 8.12113e43i 0.711684i
\(568\) 9.09922e43 + 4.96417e43i 0.775231 + 0.422935i
\(569\) 1.25234e44 1.03735 0.518676 0.854971i \(-0.326425\pi\)
0.518676 + 0.854971i \(0.326425\pi\)
\(570\) −1.68756e44 + 6.29666e43i −1.35913 + 0.507122i
\(571\) 1.77620e44i 1.39096i −0.718546 0.695479i \(-0.755192\pi\)
0.718546 0.695479i \(-0.244808\pi\)
\(572\) 1.08962e43 + 1.25687e43i 0.0829737 + 0.0957089i
\(573\) −7.97510e43 −0.590557
\(574\) 7.28612e42 + 1.95275e43i 0.0524694 + 0.140623i
\(575\) 3.41003e43i 0.238821i
\(576\) 4.95280e42 + 7.69415e42i 0.0337358 + 0.0524084i
\(577\) −2.47656e44 −1.64072 −0.820361 0.571845i \(-0.806228\pi\)
−0.820361 + 0.571845i \(0.806228\pi\)
\(578\) −8.67954e43 + 3.23852e43i −0.559308 + 0.208690i
\(579\) 9.33822e43i 0.585339i
\(580\) 2.04952e44 1.77681e44i 1.24969 1.08341i
\(581\) 8.75429e43 0.519281
\(582\) 2.94577e42 + 7.89494e42i 0.0169993 + 0.0455597i
\(583\) 1.18059e44i 0.662831i
\(584\) −3.76718e43 + 6.90515e43i −0.205783 + 0.377197i
\(585\) −3.48117e42 −0.0185025
\(586\) 2.00808e43 7.49260e42i 0.103853 0.0387499i
\(587\) 1.66894e44i 0.839909i 0.907545 + 0.419954i \(0.137954\pi\)
−0.907545 + 0.419954i \(0.862046\pi\)
\(588\) −7.55329e43 8.71261e43i −0.369913 0.426689i
\(589\) −4.78320e44 −2.27968
\(590\) 6.56836e41 + 1.76038e42i 0.00304667 + 0.00816535i
\(591\) 4.89793e43i 0.221112i
\(592\) −2.50761e42 + 1.75023e43i −0.0110183 + 0.0769038i
\(593\) 2.26180e44 0.967338 0.483669 0.875251i \(-0.339304\pi\)
0.483669 + 0.875251i \(0.339304\pi\)
\(594\) −8.46778e43 + 3.15951e43i −0.352522 + 0.131534i
\(595\) 1.91308e44i 0.775285i
\(596\) 1.81968e44 1.57755e44i 0.717884 0.622361i
\(597\) 3.76706e44 1.44682
\(598\) −4.33698e43 1.16235e44i −0.162169 0.434628i
\(599\) 3.91427e44i 1.42502i 0.701661 + 0.712510i \(0.252442\pi\)
−0.701661 + 0.712510i \(0.747558\pi\)
\(600\) −4.27545e43 2.33251e43i −0.151552 0.0826807i
\(601\) 2.39574e44 0.826891 0.413446 0.910529i \(-0.364325\pi\)
0.413446 + 0.910529i \(0.364325\pi\)
\(602\) −1.87369e44 + 6.99113e43i −0.629728 + 0.234965i
\(603\) 2.67316e43i 0.0874879i
\(604\) 7.79663e43 + 8.99330e43i 0.248494 + 0.286634i
\(605\) 2.49398e44 0.774119
\(606\) 2.79829e43 + 7.49967e43i 0.0845923 + 0.226715i
\(607\) 3.33012e44i 0.980486i −0.871586 0.490243i \(-0.836908\pi\)
0.871586 0.490243i \(-0.163092\pi\)
\(608\) −5.25536e44 + 1.14664e44i −1.50711 + 0.328828i
\(609\) 4.49730e44 1.25625
\(610\) −1.42294e44 + 5.30930e43i −0.387177 + 0.144464i
\(611\) 3.53103e43i 0.0935927i
\(612\) 2.30482e43 1.99814e43i 0.0595134 0.0515944i
\(613\) −2.76813e44 −0.696337 −0.348169 0.937432i \(-0.613196\pi\)
−0.348169 + 0.937432i \(0.613196\pi\)
\(614\) −3.83120e43 1.02680e44i −0.0938945 0.251646i
\(615\) 8.79150e43i 0.209924i
\(616\) 5.38874e43 9.87745e43i 0.125371 0.229802i
\(617\) −2.34450e44 −0.531481 −0.265741 0.964045i \(-0.585616\pi\)
−0.265741 + 0.964045i \(0.585616\pi\)
\(618\) −1.63822e43 + 6.11256e42i −0.0361874 + 0.0135023i
\(619\) 7.46890e44i 1.60771i 0.594828 + 0.803853i \(0.297220\pi\)
−0.594828 + 0.803853i \(0.702780\pi\)
\(620\) 4.21078e44 + 4.85707e44i 0.883273 + 1.01884i
\(621\) 6.74078e44 1.37799
\(622\) −3.98911e43 1.06912e44i −0.0794749 0.213000i
\(623\) 6.17350e44i 1.19873i
\(624\) −1.75399e44 2.51301e43i −0.331951 0.0475598i
\(625\) −4.36091e44 −0.804447
\(626\) 7.05645e44 2.63291e44i 1.26881 0.473421i
\(627\) 3.53154e44i 0.618989i
\(628\) −2.77702e44 + 2.40751e44i −0.474488 + 0.411352i
\(629\) 5.89412e43 0.0981768
\(630\) 8.23169e42 + 2.20617e43i 0.0133672 + 0.0358253i
\(631\) 3.23311e44i 0.511859i −0.966695 0.255930i \(-0.917619\pi\)
0.966695 0.255930i \(-0.0823815\pi\)
\(632\) −5.41455e44 2.95396e44i −0.835775 0.455965i
\(633\) −1.05321e45 −1.58510
\(634\) 6.17775e44 2.30505e44i 0.906572 0.338262i
\(635\) 1.76984e44i 0.253253i
\(636\) −8.23775e44 9.50212e44i −1.14946 1.32589i
\(637\) 1.31004e44 0.178260
\(638\) −1.85915e44 4.98269e44i −0.246708 0.661200i
\(639\) 4.25307e43i 0.0550413i
\(640\) 5.79078e44 + 4.32711e44i 0.730899 + 0.546158i
\(641\) −8.79742e44 −1.08300 −0.541498 0.840702i \(-0.682143\pi\)
−0.541498 + 0.840702i \(0.682143\pi\)
\(642\) 4.74421e44 1.77017e44i 0.569644 0.212547i
\(643\) 1.22266e45i 1.43196i −0.698123 0.715978i \(-0.745981\pi\)
0.698123 0.715978i \(-0.254019\pi\)
\(644\) −6.34078e44 + 5.49706e44i −0.724384 + 0.627996i
\(645\) −8.43557e44 −0.940068
\(646\) 6.26844e44 + 1.68000e45i 0.681458 + 1.82637i
\(647\) 1.76718e44i 0.187419i 0.995600 + 0.0937094i \(0.0298724\pi\)
−0.995600 + 0.0937094i \(0.970128\pi\)
\(648\) 4.89929e44 8.98031e44i 0.506913 0.929161i
\(649\) 3.68392e42 0.00371874
\(650\) 5.18414e43 1.93431e43i 0.0510579 0.0190508i
\(651\) 1.06580e45i 1.02419i
\(652\) 5.45815e44 + 6.29589e44i 0.511780 + 0.590331i
\(653\) 6.63007e44 0.606606 0.303303 0.952894i \(-0.401910\pi\)
0.303303 + 0.952894i \(0.401910\pi\)
\(654\) 5.69159e44 + 1.52540e45i 0.508147 + 1.36188i
\(655\) 8.06256e44i 0.702445i
\(656\) −3.72352e43 + 2.59889e44i −0.0316587 + 0.220967i
\(657\) −3.22754e43 −0.0267809
\(658\) 2.23777e44 8.34959e43i 0.181218 0.0676162i
\(659\) 1.59975e45i 1.26440i −0.774804 0.632202i \(-0.782151\pi\)
0.774804 0.632202i \(-0.217849\pi\)
\(660\) 3.58608e44 3.10891e44i 0.276641 0.239831i
\(661\) 2.05812e45 1.54970 0.774850 0.632145i \(-0.217825\pi\)
0.774850 + 0.632145i \(0.217825\pi\)
\(662\) −1.08481e44 2.90740e44i −0.0797309 0.213686i
\(663\) 5.90680e44i 0.423775i
\(664\) 9.68045e44 + 5.28127e44i 0.677964 + 0.369870i
\(665\) −1.38421e45 −0.946360
\(666\) −6.79712e42 + 2.53615e42i −0.00453667 + 0.00169273i
\(667\) 3.96647e45i 2.58458i
\(668\) −1.11879e45 1.29050e45i −0.711745 0.820987i
\(669\) 2.30412e45 1.43115
\(670\) −7.38250e44 1.97858e45i −0.447720 1.19993i
\(671\) 2.97777e44i 0.176332i
\(672\) 2.55495e44 + 1.17101e45i 0.147732 + 0.677096i
\(673\) −1.30868e45 −0.738911 −0.369455 0.929249i \(-0.620456\pi\)
−0.369455 + 0.929249i \(0.620456\pi\)
\(674\) −2.22871e45 + 8.31581e44i −1.22884 + 0.458507i
\(675\) 3.00642e44i 0.161879i
\(676\) −1.28481e45 + 1.11385e45i −0.675604 + 0.585707i
\(677\) 4.37637e44 0.224748 0.112374 0.993666i \(-0.464155\pi\)
0.112374 + 0.993666i \(0.464155\pi\)
\(678\) −7.40607e44 1.98489e45i −0.371460 0.995548i
\(679\) 6.47578e43i 0.0317231i
\(680\) 1.15412e45 2.11547e45i 0.552214 1.01220i
\(681\) −9.59539e44 −0.448445
\(682\) 1.18083e45 4.40592e44i 0.539058 0.201134i
\(683\) 4.04925e45i 1.80569i −0.429963 0.902846i \(-0.641474\pi\)
0.429963 0.902846i \(-0.358526\pi\)
\(684\) −1.44576e44 1.66766e44i −0.0629793 0.0726457i
\(685\) 7.29751e44 0.310546
\(686\) −8.75173e44 2.34554e45i −0.363838 0.975119i
\(687\) 1.74011e45i 0.706755i
\(688\) −2.49368e45 3.57278e44i −0.989521 0.141772i
\(689\) 1.42875e45 0.553924
\(690\) −3.31641e45 + 1.23742e45i −1.25627 + 0.468741i
\(691\) 7.76543e44i 0.287420i −0.989620 0.143710i \(-0.954097\pi\)
0.989620 0.143710i \(-0.0459032\pi\)
\(692\) −3.56711e44 + 3.09246e44i −0.129009 + 0.111843i
\(693\) 4.61682e43 0.0163159
\(694\) 5.15726e44 + 1.38219e45i 0.178102 + 0.477328i
\(695\) 4.61455e45i 1.55730i
\(696\) 4.97310e45 + 2.71312e45i 1.64013 + 0.894791i
\(697\) 8.75211e44 0.282090
\(698\) −2.32568e45 + 8.67761e44i −0.732594 + 0.273346i
\(699\) 6.83786e44i 0.210516i
\(700\) −2.45172e44 2.82802e44i −0.0737737 0.0850969i
\(701\) 1.30382e45 0.383467 0.191734 0.981447i \(-0.438589\pi\)
0.191734 + 0.981447i \(0.438589\pi\)
\(702\) 3.82365e44 + 1.02477e45i 0.109922 + 0.294601i
\(703\) 4.26471e44i 0.119841i
\(704\) 1.19177e45 7.67154e44i 0.327363 0.210727i
\(705\) 1.00747e45 0.270524
\(706\) −2.99281e45 + 1.11668e45i −0.785603 + 0.293126i
\(707\) 6.15156e44i 0.157861i
\(708\) −2.96505e43 + 2.57051e43i −0.00743874 + 0.00644893i
\(709\) 6.95799e44 0.170665 0.0853324 0.996353i \(-0.472805\pi\)
0.0853324 + 0.996353i \(0.472805\pi\)
\(710\) 1.17457e45 + 3.14796e45i 0.281674 + 0.754912i
\(711\) 2.53081e44i 0.0593399i
\(712\) 3.72433e45 6.82663e45i 0.853825 1.56504i
\(713\) −9.39997e45 −2.10714
\(714\) 3.74339e45 1.39674e45i 0.820529 0.306157i
\(715\) 5.39209e44i 0.115574i
\(716\) 4.99086e45 + 5.75688e45i 1.04609 + 1.20664i
\(717\) 1.07644e45 0.220640
\(718\) −1.17287e45 3.14340e45i −0.235103 0.630099i
\(719\) 8.60509e44i 0.168692i −0.996437 0.0843458i \(-0.973120\pi\)
0.996437 0.0843458i \(-0.0268800\pi\)
\(720\) −4.20675e43 + 2.93617e44i −0.00806542 + 0.0562939i
\(721\) −1.34374e44 −0.0251972
\(722\) 7.04721e45 2.62946e45i 1.29247 0.482250i
\(723\) 8.48059e45i 1.52129i
\(724\) 2.49810e44 2.16570e44i 0.0438322 0.0379998i
\(725\) −1.76906e45 −0.303623
\(726\) 1.82086e45 + 4.88007e45i 0.305697 + 0.819295i
\(727\) 7.29693e45i 1.19837i 0.800612 + 0.599183i \(0.204508\pi\)
−0.800612 + 0.599183i \(0.795492\pi\)
\(728\) −1.19537e45 6.52147e44i −0.192044 0.104772i
\(729\) −5.91822e45 −0.930145
\(730\) −2.38891e45 + 8.91352e44i −0.367310 + 0.137051i
\(731\) 8.39777e45i 1.26324i
\(732\) −2.07778e45 2.39669e45i −0.305790 0.352724i
\(733\) 1.38096e45 0.198846 0.0994228 0.995045i \(-0.468300\pi\)
0.0994228 + 0.995045i \(0.468300\pi\)
\(734\) 2.61132e45 + 6.99859e45i 0.367895 + 0.985992i
\(735\) 3.73780e45i 0.515251i
\(736\) −1.03279e46 + 2.25338e45i −1.39305 + 0.303941i
\(737\) −4.14054e45 −0.546484
\(738\) −1.00930e44 + 3.76590e43i −0.0130352 + 0.00486370i
\(739\) 1.34106e46i 1.69487i −0.530897 0.847437i \(-0.678145\pi\)
0.530897 0.847437i \(-0.321855\pi\)
\(740\) −4.33057e44 + 3.75433e44i −0.0535596 + 0.0464329i
\(741\) 4.27388e45 0.517286
\(742\) −3.37848e45 9.05464e45i −0.400184 1.07253i
\(743\) 6.23466e45i 0.722756i −0.932419 0.361378i \(-0.882306\pi\)
0.932419 0.361378i \(-0.117694\pi\)
\(744\) −6.42972e45 + 1.17855e46i −0.729499 + 1.33716i
\(745\) 7.80661e45 0.866886
\(746\) 1.20221e46 4.48569e45i 1.30665 0.487538i
\(747\) 4.52474e44i 0.0481353i
\(748\) −3.09498e45 3.57001e45i −0.322279 0.371744i
\(749\) 3.89141e45 0.396642
\(750\) −3.84685e45 1.03099e46i −0.383817 1.02867i
\(751\) 3.87283e45i 0.378259i 0.981952 + 0.189130i \(0.0605666\pi\)
−0.981952 + 0.189130i \(0.939433\pi\)
\(752\) 2.97823e45 + 4.26701e44i 0.284755 + 0.0407979i
\(753\) −1.77900e46 −1.66516
\(754\) −6.03006e45