Properties

Label 4.33.b.b.3.10
Level $4$
Weight $33$
Character 4.3
Analytic conductor $25.947$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4 = 2^{2} \)
Weight: \( k \) \(=\) \( 33 \)
Character orbit: \([\chi]\) \(=\) 4.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.9466620569\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Defining polynomial: \(x^{14} + 72511313626452 x^{12} + 2025191977179903324811336518 x^{10} + 27922884728028663894750078705223437415644 x^{8} + 203010662886800095440071970440402438747266446160157745 x^{6} + 758734102549599282271818004575465783845093632382487984186969965640 x^{4} + 1269648449115368448095465842606476325720277486461580161887038301255933321354000 x^{2} + 624216522131873762678666934520680301449631616035103441585151846396220724278849706601312000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{182}\cdot 3^{20}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3.10
Root \(-895767. i\) of defining polynomial
Character \(\chi\) \(=\) 4.3
Dual form 4.33.b.b.3.9

$q$-expansion

\(f(q)\) \(=\) \(q+(32011.4 + 57186.0i) q^{2} -1.43323e7i q^{3} +(-2.24550e9 + 3.66121e9i) q^{4} -4.45746e10 q^{5} +(8.19605e11 - 4.58796e11i) q^{6} +4.42477e13i q^{7} +(-2.81252e14 - 1.12108e13i) q^{8} +1.64761e15 q^{9} +O(q^{10})\) \(q+(32011.4 + 57186.0i) q^{2} -1.43323e7i q^{3} +(-2.24550e9 + 3.66121e9i) q^{4} -4.45746e10 q^{5} +(8.19605e11 - 4.58796e11i) q^{6} +4.42477e13i q^{7} +(-2.81252e14 - 1.12108e13i) q^{8} +1.64761e15 q^{9} +(-1.42690e15 - 2.54904e15i) q^{10} -2.28722e16i q^{11} +(5.24734e16 + 3.21832e16i) q^{12} -7.09707e17 q^{13} +(-2.53035e18 + 1.41643e18i) q^{14} +6.38855e17i q^{15} +(-8.36217e18 - 1.64425e19i) q^{16} -5.13492e19 q^{17} +(5.27422e19 + 9.42200e19i) q^{18} -9.08704e19i q^{19} +(1.00093e20 - 1.63197e20i) q^{20} +6.34170e20 q^{21} +(1.30797e21 - 7.32171e20i) q^{22} -3.40920e21i q^{23} +(-1.60676e20 + 4.03097e21i) q^{24} -2.12962e22 q^{25} +(-2.27187e22 - 4.05853e22i) q^{26} -5.01719e22i q^{27} +(-1.62000e23 - 9.93584e22i) q^{28} -9.75903e22 q^{29} +(-3.65336e22 + 2.04507e22i) q^{30} -8.90972e23i q^{31} +(6.72597e23 - 1.00455e24i) q^{32} -3.27810e23 q^{33} +(-1.64376e24 - 2.93645e24i) q^{34} -1.97232e24i q^{35} +(-3.69971e24 + 6.03223e24i) q^{36} -1.36985e25 q^{37} +(5.19651e24 - 2.90889e24i) q^{38} +1.01717e25i q^{39} +(1.25367e25 + 4.99716e23i) q^{40} +9.45224e25 q^{41} +(2.03007e25 + 3.62656e25i) q^{42} +2.05450e26i q^{43} +(8.37398e25 + 5.13596e25i) q^{44} -7.34414e25 q^{45} +(1.94959e26 - 1.09133e26i) q^{46} +6.70394e25i q^{47} +(-2.35659e26 + 1.19849e26i) q^{48} -8.53431e26 q^{49} +(-6.81721e26 - 1.21784e27i) q^{50} +7.35950e26i q^{51} +(1.59365e27 - 2.59839e27i) q^{52} -3.12663e27 q^{53} +(2.86913e27 - 1.60607e27i) q^{54} +1.01952e27i q^{55} +(4.96051e26 - 1.24447e28i) q^{56} -1.30238e27 q^{57} +(-3.12400e27 - 5.58079e27i) q^{58} +4.03005e28i q^{59} +(-2.33898e27 - 1.43455e27i) q^{60} -4.61340e28 q^{61} +(5.09511e28 - 2.85213e28i) q^{62} +7.29028e28i q^{63} +(7.89768e28 + 6.30610e27i) q^{64} +3.16349e28 q^{65} +(-1.04937e28 - 1.87461e28i) q^{66} +2.83386e29i q^{67} +(1.15305e29 - 1.88000e29i) q^{68} -4.88616e28 q^{69} +(1.12789e29 - 6.31369e28i) q^{70} -3.78115e29i q^{71} +(-4.63392e29 - 1.84710e28i) q^{72} -8.28433e29 q^{73} +(-4.38508e29 - 7.83360e29i) q^{74} +3.05222e29i q^{75} +(3.32696e29 + 2.04050e29i) q^{76} +1.01204e30 q^{77} +(-5.81679e29 + 3.25611e29i) q^{78} -3.22124e30i q^{79} +(3.72740e29 + 7.32919e29i) q^{80} +2.33397e30 q^{81} +(3.02580e30 + 5.40536e30i) q^{82} -3.96300e29i q^{83} +(-1.42403e30 + 2.32183e30i) q^{84} +2.28887e30 q^{85} +(-1.17489e31 + 6.57676e30i) q^{86} +1.39869e30i q^{87} +(-2.56415e29 + 6.43284e30i) q^{88} +1.44641e31 q^{89} +(-2.35097e30 - 4.19982e30i) q^{90} -3.14029e31i q^{91} +(1.24818e31 + 7.65538e30i) q^{92} -1.27696e31 q^{93} +(-3.83372e30 + 2.14603e30i) q^{94} +4.05052e30i q^{95} +(-1.43974e31 - 9.63984e30i) q^{96} +5.69349e30 q^{97} +(-2.73195e31 - 4.88043e31i) q^{98} -3.76843e31i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q - 23780q^{2} - 2922848368q^{4} + 138121491740q^{5} + 1262734959552q^{6} - 191366550113600q^{8} - 11183509932817650q^{9} + O(q^{10}) \) \( 14q - 23780q^{2} - 2922848368q^{4} + 138121491740q^{5} + 1262734959552q^{6} - 191366550113600q^{8} - 11183509932817650q^{9} + 31775605694457400q^{10} - 356375853407619840q^{12} - 1640418469677858020q^{13} + 7731597686180285568q^{14} - 30570843123186593536q^{16} + 31570967905797256220q^{17} - \)\(35\!\cdots\!40\)\(q^{18} + \)\(20\!\cdots\!60\)\(q^{20} - \)\(21\!\cdots\!16\)\(q^{21} + \)\(54\!\cdots\!80\)\(q^{22} - \)\(25\!\cdots\!32\)\(q^{24} + \)\(10\!\cdots\!50\)\(q^{25} - \)\(10\!\cdots\!24\)\(q^{26} + \)\(28\!\cdots\!20\)\(q^{28} - \)\(38\!\cdots\!16\)\(q^{29} - \)\(58\!\cdots\!20\)\(q^{30} - \)\(30\!\cdots\!00\)\(q^{32} + \)\(30\!\cdots\!00\)\(q^{33} + \)\(29\!\cdots\!16\)\(q^{34} + \)\(40\!\cdots\!96\)\(q^{36} - \)\(10\!\cdots\!40\)\(q^{37} - \)\(23\!\cdots\!60\)\(q^{38} + \)\(46\!\cdots\!00\)\(q^{40} + \)\(36\!\cdots\!48\)\(q^{41} + \)\(11\!\cdots\!00\)\(q^{42} - \)\(34\!\cdots\!40\)\(q^{44} + \)\(80\!\cdots\!80\)\(q^{45} - \)\(29\!\cdots\!48\)\(q^{46} + \)\(22\!\cdots\!60\)\(q^{48} - \)\(48\!\cdots\!90\)\(q^{49} - \)\(51\!\cdots\!00\)\(q^{50} - \)\(96\!\cdots\!20\)\(q^{52} + \)\(18\!\cdots\!80\)\(q^{53} + \)\(56\!\cdots\!36\)\(q^{54} + \)\(63\!\cdots\!52\)\(q^{56} - \)\(45\!\cdots\!40\)\(q^{57} - \)\(38\!\cdots\!60\)\(q^{58} + \)\(47\!\cdots\!00\)\(q^{60} + \)\(10\!\cdots\!08\)\(q^{61} + \)\(21\!\cdots\!00\)\(q^{62} - \)\(19\!\cdots\!88\)\(q^{64} + \)\(11\!\cdots\!00\)\(q^{65} + \)\(12\!\cdots\!60\)\(q^{66} + \)\(35\!\cdots\!00\)\(q^{68} - \)\(51\!\cdots\!84\)\(q^{69} - \)\(51\!\cdots\!80\)\(q^{70} + \)\(11\!\cdots\!60\)\(q^{72} + \)\(14\!\cdots\!60\)\(q^{73} - \)\(98\!\cdots\!84\)\(q^{74} - \)\(78\!\cdots\!00\)\(q^{76} - \)\(30\!\cdots\!40\)\(q^{77} + \)\(87\!\cdots\!00\)\(q^{78} + \)\(62\!\cdots\!40\)\(q^{80} - \)\(42\!\cdots\!22\)\(q^{81} - \)\(45\!\cdots\!80\)\(q^{82} + \)\(18\!\cdots\!96\)\(q^{84} + \)\(67\!\cdots\!00\)\(q^{85} - \)\(23\!\cdots\!48\)\(q^{86} + \)\(11\!\cdots\!80\)\(q^{88} - \)\(18\!\cdots\!76\)\(q^{89} - \)\(25\!\cdots\!00\)\(q^{90} + \)\(60\!\cdots\!00\)\(q^{92} + \)\(43\!\cdots\!40\)\(q^{93} - \)\(13\!\cdots\!12\)\(q^{94} + \)\(34\!\cdots\!32\)\(q^{96} - \)\(20\!\cdots\!20\)\(q^{97} - \)\(46\!\cdots\!00\)\(q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32011.4 + 57186.0i 0.488456 + 0.872589i
\(3\) 1.43323e7i 0.332947i −0.986046 0.166473i \(-0.946762\pi\)
0.986046 0.166473i \(-0.0532380\pi\)
\(4\) −2.24550e9 + 3.66121e9i −0.522822 + 0.852442i
\(5\) −4.45746e10 −0.292124 −0.146062 0.989275i \(-0.546660\pi\)
−0.146062 + 0.989275i \(0.546660\pi\)
\(6\) 8.19605e11 4.58796e11i 0.290526 0.162630i
\(7\) 4.42477e13i 1.33144i 0.746201 + 0.665721i \(0.231876\pi\)
−0.746201 + 0.665721i \(0.768124\pi\)
\(8\) −2.81252e14 1.12108e13i −0.999207 0.0398287i
\(9\) 1.64761e15 0.889146
\(10\) −1.42690e15 2.54904e15i −0.142690 0.254904i
\(11\) 2.28722e16i 0.497765i −0.968534 0.248883i \(-0.919937\pi\)
0.968534 0.248883i \(-0.0800633\pi\)
\(12\) 5.24734e16 + 3.21832e16i 0.283818 + 0.174072i
\(13\) −7.09707e17 −1.06656 −0.533280 0.845939i \(-0.679041\pi\)
−0.533280 + 0.845939i \(0.679041\pi\)
\(14\) −2.53035e18 + 1.41643e18i −1.16180 + 0.650350i
\(15\) 6.38855e17i 0.0972618i
\(16\) −8.36217e18 1.64425e19i −0.453314 0.891351i
\(17\) −5.13492e19 −1.05524 −0.527619 0.849481i \(-0.676915\pi\)
−0.527619 + 0.849481i \(0.676915\pi\)
\(18\) 5.27422e19 + 9.42200e19i 0.434309 + 0.775859i
\(19\) 9.08704e19i 0.315039i −0.987516 0.157520i \(-0.949650\pi\)
0.987516 0.157520i \(-0.0503498\pi\)
\(20\) 1.00093e20 1.63197e20i 0.152729 0.249019i
\(21\) 6.34170e20 0.443299
\(22\) 1.30797e21 7.32171e20i 0.434344 0.243136i
\(23\) 3.40920e21i 0.555914i −0.960594 0.277957i \(-0.910343\pi\)
0.960594 0.277957i \(-0.0896573\pi\)
\(24\) −1.60676e20 + 4.03097e21i −0.0132608 + 0.332683i
\(25\) −2.12962e22 −0.914663
\(26\) −2.27187e22 4.05853e22i −0.520967 0.930668i
\(27\) 5.01719e22i 0.628985i
\(28\) −1.62000e23 9.93584e22i −1.13498 0.696107i
\(29\) −9.75903e22 −0.389977 −0.194988 0.980806i \(-0.562467\pi\)
−0.194988 + 0.980806i \(0.562467\pi\)
\(30\) −3.65336e22 + 2.04507e22i −0.0848696 + 0.0475081i
\(31\) 8.90972e23i 1.22483i −0.790535 0.612416i \(-0.790198\pi\)
0.790535 0.612416i \(-0.209802\pi\)
\(32\) 6.72597e23 1.00455e24i 0.556359 0.830942i
\(33\) −3.27810e23 −0.165729
\(34\) −1.64376e24 2.93645e24i −0.515437 0.920789i
\(35\) 1.97232e24i 0.388946i
\(36\) −3.69971e24 + 6.03223e24i −0.464865 + 0.757946i
\(37\) −1.36985e25 −1.11031 −0.555155 0.831747i \(-0.687341\pi\)
−0.555155 + 0.831747i \(0.687341\pi\)
\(38\) 5.19651e24 2.90889e24i 0.274900 0.153883i
\(39\) 1.01717e25i 0.355108i
\(40\) 1.25367e25 + 4.99716e23i 0.291892 + 0.0116349i
\(41\) 9.45224e25 1.48249 0.741247 0.671232i \(-0.234235\pi\)
0.741247 + 0.671232i \(0.234235\pi\)
\(42\) 2.03007e25 + 3.62656e25i 0.216532 + 0.386818i
\(43\) 2.05450e26i 1.50387i 0.659235 + 0.751937i \(0.270880\pi\)
−0.659235 + 0.751937i \(0.729120\pi\)
\(44\) 8.37398e25 + 5.13596e25i 0.424316 + 0.260243i
\(45\) −7.34414e25 −0.259741
\(46\) 1.94959e26 1.09133e26i 0.485084 0.271539i
\(47\) 6.70394e25i 0.118240i 0.998251 + 0.0591200i \(0.0188295\pi\)
−0.998251 + 0.0591200i \(0.981171\pi\)
\(48\) −2.35659e26 + 1.19849e26i −0.296772 + 0.150929i
\(49\) −8.53431e26 −0.772736
\(50\) −6.81721e26 1.21784e27i −0.446773 0.798125i
\(51\) 7.35950e26i 0.351338i
\(52\) 1.59365e27 2.59839e27i 0.557621 0.909180i
\(53\) −3.12663e27 −0.806609 −0.403305 0.915066i \(-0.632139\pi\)
−0.403305 + 0.915066i \(0.632139\pi\)
\(54\) 2.86913e27 1.60607e27i 0.548845 0.307231i
\(55\) 1.01952e27i 0.145409i
\(56\) 4.96051e26 1.24447e28i 0.0530296 1.33038i
\(57\) −1.30238e27 −0.104891
\(58\) −3.12400e27 5.58079e27i −0.190486 0.340289i
\(59\) 4.03005e28i 1.86930i 0.355572 + 0.934649i \(0.384286\pi\)
−0.355572 + 0.934649i \(0.615714\pi\)
\(60\) −2.33898e27 1.43455e27i −0.0829100 0.0508506i
\(61\) −4.61340e28 −1.25529 −0.627644 0.778500i \(-0.715981\pi\)
−0.627644 + 0.778500i \(0.715981\pi\)
\(62\) 5.09511e28 2.85213e28i 1.06878 0.598276i
\(63\) 7.29028e28i 1.18385i
\(64\) 7.89768e28 + 6.30610e27i 0.996827 + 0.0795942i
\(65\) 3.16349e28 0.311568
\(66\) −1.04937e28 1.87461e28i −0.0809514 0.144614i
\(67\) 2.83386e29i 1.71863i 0.511448 + 0.859314i \(0.329109\pi\)
−0.511448 + 0.859314i \(0.670891\pi\)
\(68\) 1.15305e29 1.88000e29i 0.551702 0.899529i
\(69\) −4.88616e28 −0.185090
\(70\) 1.12789e29 6.31369e28i 0.339390 0.189983i
\(71\) 3.78115e29i 0.906756i −0.891318 0.453378i \(-0.850219\pi\)
0.891318 0.453378i \(-0.149781\pi\)
\(72\) −4.63392e29 1.84710e28i −0.888441 0.0354135i
\(73\) −8.28433e29 −1.27377 −0.636886 0.770958i \(-0.719778\pi\)
−0.636886 + 0.770958i \(0.719778\pi\)
\(74\) −4.38508e29 7.83360e29i −0.542337 0.968845i
\(75\) 3.05222e29i 0.304534i
\(76\) 3.32696e29 + 2.04050e29i 0.268553 + 0.164710i
\(77\) 1.01204e30 0.662745
\(78\) −5.81679e29 + 3.25611e29i −0.309863 + 0.173454i
\(79\) 3.22124e30i 1.39955i −0.714362 0.699776i \(-0.753283\pi\)
0.714362 0.699776i \(-0.246717\pi\)
\(80\) 3.72740e29 + 7.32919e29i 0.132424 + 0.260385i
\(81\) 2.33397e30 0.679728
\(82\) 3.02580e30 + 5.40536e30i 0.724133 + 1.29361i
\(83\) 3.96300e29i 0.0781223i −0.999237 0.0390611i \(-0.987563\pi\)
0.999237 0.0390611i \(-0.0124367\pi\)
\(84\) −1.42403e30 + 2.32183e30i −0.231767 + 0.377887i
\(85\) 2.28887e30 0.308261
\(86\) −1.17489e31 + 6.57676e30i −1.31226 + 0.734576i
\(87\) 1.39869e30i 0.129841i
\(88\) −2.56415e29 + 6.43284e30i −0.0198253 + 0.497370i
\(89\) 1.44641e31 0.933363 0.466682 0.884425i \(-0.345449\pi\)
0.466682 + 0.884425i \(0.345449\pi\)
\(90\) −2.35097e30 4.19982e30i −0.126872 0.226647i
\(91\) 3.14029e31i 1.42006i
\(92\) 1.24818e31 + 7.65538e30i 0.473884 + 0.290644i
\(93\) −1.27696e31 −0.407804
\(94\) −3.83372e30 + 2.14603e30i −0.103175 + 0.0577550i
\(95\) 4.05052e30i 0.0920307i
\(96\) −1.43974e31 9.63984e30i −0.276659 0.185238i
\(97\) 5.69349e30 0.0926896 0.0463448 0.998926i \(-0.485243\pi\)
0.0463448 + 0.998926i \(0.485243\pi\)
\(98\) −2.73195e31 4.88043e31i −0.377447 0.674280i
\(99\) 3.76843e31i 0.442586i
\(100\) 4.78206e31 7.79697e31i 0.478206 0.779697i
\(101\) −1.45062e32 −1.23712 −0.618559 0.785738i \(-0.712283\pi\)
−0.618559 + 0.785738i \(0.712283\pi\)
\(102\) −4.20860e31 + 2.35588e31i −0.306574 + 0.171613i
\(103\) 2.12151e32i 1.32206i 0.750362 + 0.661028i \(0.229879\pi\)
−0.750362 + 0.661028i \(0.770121\pi\)
\(104\) 1.99606e32 + 7.95637e30i 1.06571 + 0.0424797i
\(105\) −2.82679e31 −0.129498
\(106\) −1.00088e32 1.78800e32i −0.393993 0.703838i
\(107\) 4.23255e32i 1.43371i 0.697222 + 0.716855i \(0.254419\pi\)
−0.697222 + 0.716855i \(0.745581\pi\)
\(108\) 1.83690e32 + 1.12661e32i 0.536173 + 0.328847i
\(109\) 4.59934e32 1.15844 0.579218 0.815173i \(-0.303358\pi\)
0.579218 + 0.815173i \(0.303358\pi\)
\(110\) −5.83022e31 + 3.26362e31i −0.126883 + 0.0710260i
\(111\) 1.96330e32i 0.369674i
\(112\) 7.27544e32 3.70007e32i 1.18678 0.603561i
\(113\) −5.97121e32 −0.844904 −0.422452 0.906385i \(-0.638830\pi\)
−0.422452 + 0.906385i \(0.638830\pi\)
\(114\) −4.16910e31 7.44778e31i −0.0512348 0.0915270i
\(115\) 1.51964e32i 0.162396i
\(116\) 2.19139e32 3.57298e32i 0.203888 0.332432i
\(117\) −1.16932e33 −0.948328
\(118\) −2.30462e33 + 1.29008e33i −1.63113 + 0.913069i
\(119\) 2.27208e33i 1.40499i
\(120\) 7.16207e30 1.79679e32i 0.00387381 0.0971847i
\(121\) 1.58824e33 0.752230
\(122\) −1.47681e33 2.63822e33i −0.613153 1.09535i
\(123\) 1.35472e33i 0.493592i
\(124\) 3.26203e33 + 2.00068e33i 1.04410 + 0.640370i
\(125\) 1.98710e33 0.559320
\(126\) −4.16902e33 + 2.33372e33i −1.03301 + 0.578256i
\(127\) 3.79574e33i 0.828775i −0.910101 0.414387i \(-0.863996\pi\)
0.910101 0.414387i \(-0.136004\pi\)
\(128\) 2.16754e33 + 4.71823e33i 0.417453 + 0.908699i
\(129\) 2.94457e33 0.500710
\(130\) 1.01268e33 + 1.80907e33i 0.152187 + 0.271871i
\(131\) 2.68711e33i 0.357227i 0.983919 + 0.178614i \(0.0571612\pi\)
−0.983919 + 0.178614i \(0.942839\pi\)
\(132\) 7.36099e32 1.20018e33i 0.0866470 0.141275i
\(133\) 4.02081e33 0.419457
\(134\) −1.62057e34 + 9.07160e33i −1.49966 + 0.839474i
\(135\) 2.23639e33i 0.183742i
\(136\) 1.44420e34 + 5.75664e32i 1.05440 + 0.0420288i
\(137\) −1.03106e34 −0.669509 −0.334755 0.942305i \(-0.608653\pi\)
−0.334755 + 0.942305i \(0.608653\pi\)
\(138\) −1.56413e33 2.79420e33i −0.0904081 0.161507i
\(139\) 4.16304e33i 0.214375i −0.994239 0.107188i \(-0.965815\pi\)
0.994239 0.107188i \(-0.0341845\pi\)
\(140\) 7.22109e33 + 4.42886e33i 0.331554 + 0.203350i
\(141\) 9.60827e32 0.0393676
\(142\) 2.16229e34 1.21040e34i 0.791225 0.442910i
\(143\) 1.62325e34i 0.530896i
\(144\) −1.37776e34 2.70908e34i −0.403063 0.792541i
\(145\) 4.35005e33 0.113922
\(146\) −2.65193e34 4.73748e34i −0.622181 1.11148i
\(147\) 1.22316e34i 0.257280i
\(148\) 3.07600e34 5.01530e34i 0.580495 0.946475i
\(149\) −6.24485e34 −1.05814 −0.529069 0.848579i \(-0.677459\pi\)
−0.529069 + 0.848579i \(0.677459\pi\)
\(150\) −1.74544e34 + 9.77060e33i −0.265733 + 0.148751i
\(151\) 2.99336e34i 0.409759i 0.978787 + 0.204879i \(0.0656802\pi\)
−0.978787 + 0.204879i \(0.934320\pi\)
\(152\) −1.01873e33 + 2.55575e34i −0.0125476 + 0.314789i
\(153\) −8.46032e34 −0.938262
\(154\) 3.23969e34 + 5.78745e34i 0.323722 + 0.578304i
\(155\) 3.97147e34i 0.357803i
\(156\) −3.72408e34 2.28406e34i −0.302709 0.185658i
\(157\) 1.31988e35 0.968593 0.484297 0.874904i \(-0.339076\pi\)
0.484297 + 0.874904i \(0.339076\pi\)
\(158\) 1.84210e35 1.03116e35i 1.22123 0.683619i
\(159\) 4.48118e34i 0.268558i
\(160\) −2.99807e34 + 4.47773e34i −0.162526 + 0.242738i
\(161\) 1.50849e35 0.740167
\(162\) 7.47137e34 + 1.33470e35i 0.332017 + 0.593123i
\(163\) 1.20065e35i 0.483522i 0.970336 + 0.241761i \(0.0777250\pi\)
−0.970336 + 0.241761i \(0.922275\pi\)
\(164\) −2.12250e35 + 3.46066e35i −0.775081 + 1.26374i
\(165\) 1.46120e34 0.0484136
\(166\) 2.26628e34 1.26861e34i 0.0681686 0.0381593i
\(167\) 6.52369e35i 1.78250i −0.453511 0.891251i \(-0.649829\pi\)
0.453511 0.891251i \(-0.350171\pi\)
\(168\) −1.78361e35 7.10954e33i −0.442947 0.0176560i
\(169\) 6.09044e34 0.137550
\(170\) 7.32700e34 + 1.30891e35i 0.150572 + 0.268985i
\(171\) 1.49719e35i 0.280116i
\(172\) −7.52197e35 4.61340e35i −1.28197 0.786259i
\(173\) −2.42455e35 −0.376611 −0.188305 0.982111i \(-0.560299\pi\)
−0.188305 + 0.982111i \(0.560299\pi\)
\(174\) −7.99854e34 + 4.47741e34i −0.113298 + 0.0634218i
\(175\) 9.42306e35i 1.21782i
\(176\) −3.76076e35 + 1.91261e35i −0.443683 + 0.225644i
\(177\) 5.77598e35 0.622377
\(178\) 4.63016e35 + 8.27143e35i 0.455907 + 0.814442i
\(179\) 2.94586e35i 0.265194i 0.991170 + 0.132597i \(0.0423316\pi\)
−0.991170 + 0.132597i \(0.957668\pi\)
\(180\) 1.64913e35 2.68884e35i 0.135798 0.221414i
\(181\) −8.89528e35 −0.670351 −0.335176 0.942156i \(-0.608796\pi\)
−0.335176 + 0.942156i \(0.608796\pi\)
\(182\) 1.79580e36 1.00525e36i 1.23913 0.693637i
\(183\) 6.61205e35i 0.417944i
\(184\) −3.82198e34 + 9.58844e35i −0.0221413 + 0.555473i
\(185\) 6.10604e35 0.324349
\(186\) −4.08774e35 7.30244e35i −0.199194 0.355845i
\(187\) 1.17447e36i 0.525261i
\(188\) −2.45445e35 1.50537e35i −0.100793 0.0618185i
\(189\) 2.21999e36 0.837457
\(190\) −2.31633e35 + 1.29663e35i −0.0803049 + 0.0449529i
\(191\) 6.11925e36i 1.95058i 0.220924 + 0.975291i \(0.429093\pi\)
−0.220924 + 0.975291i \(0.570907\pi\)
\(192\) 9.03807e34 1.13192e36i 0.0265006 0.331890i
\(193\) −7.19445e36 −1.94125 −0.970623 0.240607i \(-0.922653\pi\)
−0.970623 + 0.240607i \(0.922653\pi\)
\(194\) 1.82257e35 + 3.25588e35i 0.0452748 + 0.0808799i
\(195\) 4.53400e35i 0.103736i
\(196\) 1.91638e36 3.12459e36i 0.404003 0.658712i
\(197\) 8.26602e35 0.160634 0.0803169 0.996769i \(-0.474407\pi\)
0.0803169 + 0.996769i \(0.474407\pi\)
\(198\) 2.15502e36 1.20633e36i 0.386196 0.216184i
\(199\) 1.58369e36i 0.261831i −0.991394 0.130916i \(-0.958208\pi\)
0.991394 0.130916i \(-0.0417917\pi\)
\(200\) 5.98958e36 + 2.38747e35i 0.913938 + 0.0364298i
\(201\) 4.06157e36 0.572212
\(202\) −4.64364e36 8.29550e36i −0.604277 1.07950i
\(203\) 4.31814e36i 0.519231i
\(204\) −2.69447e36 1.65258e36i −0.299495 0.183687i
\(205\) −4.21330e36 −0.433073
\(206\) −1.21321e37 + 6.79126e36i −1.15361 + 0.645765i
\(207\) 5.61703e36i 0.494289i
\(208\) 5.93469e36 + 1.16694e37i 0.483487 + 0.950679i
\(209\) −2.07840e36 −0.156816
\(210\) −9.04895e35 1.61653e36i −0.0632542 0.112999i
\(211\) 3.90069e36i 0.252710i −0.991985 0.126355i \(-0.959672\pi\)
0.991985 0.126355i \(-0.0403278\pi\)
\(212\) 7.02087e36 1.14473e37i 0.421713 0.687588i
\(213\) −5.41924e36 −0.301901
\(214\) −2.42042e37 + 1.35490e37i −1.25104 + 0.700304i
\(215\) 9.15787e36i 0.439318i
\(216\) −5.62466e35 + 1.41109e37i −0.0250517 + 0.628486i
\(217\) 3.94234e37 1.63079
\(218\) 1.47232e37 + 2.63018e37i 0.565844 + 1.01084i
\(219\) 1.18733e37i 0.424098i
\(220\) −3.73267e36 2.28933e36i −0.123953 0.0760232i
\(221\) 3.64428e37 1.12548
\(222\) −1.12273e37 + 6.28481e36i −0.322574 + 0.180570i
\(223\) 1.06246e37i 0.284076i −0.989861 0.142038i \(-0.954635\pi\)
0.989861 0.142038i \(-0.0453655\pi\)
\(224\) 4.44489e37 + 2.97609e37i 1.10635 + 0.740759i
\(225\) −3.50877e37 −0.813270
\(226\) −1.91147e37 3.41469e37i −0.412698 0.737253i
\(227\) 9.86501e36i 0.198465i −0.995064 0.0992325i \(-0.968361\pi\)
0.995064 0.0992325i \(-0.0316388\pi\)
\(228\) 2.92450e36 4.76828e36i 0.0548395 0.0894138i
\(229\) −2.89076e37 −0.505410 −0.252705 0.967543i \(-0.581320\pi\)
−0.252705 + 0.967543i \(0.581320\pi\)
\(230\) −8.69021e36 + 4.86458e36i −0.141705 + 0.0793232i
\(231\) 1.45048e37i 0.220659i
\(232\) 2.74474e37 + 1.09406e36i 0.389667 + 0.0155323i
\(233\) −5.22180e37 −0.692031 −0.346015 0.938229i \(-0.612465\pi\)
−0.346015 + 0.938229i \(0.612465\pi\)
\(234\) −3.74315e37 6.68686e37i −0.463216 0.827500i
\(235\) 2.98826e36i 0.0345408i
\(236\) −1.47549e38 9.04950e37i −1.59347 0.977310i
\(237\) −4.61676e37 −0.465976
\(238\) 1.29931e38 7.27326e37i 1.22598 0.686274i
\(239\) 2.02819e38i 1.78955i 0.446522 + 0.894773i \(0.352663\pi\)
−0.446522 + 0.894773i \(0.647337\pi\)
\(240\) 1.05044e37 5.34222e36i 0.0866944 0.0440902i
\(241\) 2.98788e37 0.230723 0.115361 0.993324i \(-0.463197\pi\)
0.115361 + 0.993324i \(0.463197\pi\)
\(242\) 5.08419e37 + 9.08251e37i 0.367431 + 0.656387i
\(243\) 1.26421e38i 0.855298i
\(244\) 1.03594e38 1.68906e38i 0.656293 1.07006i
\(245\) 3.80413e37 0.225735
\(246\) 7.74710e37 4.33665e37i 0.430703 0.241098i
\(247\) 6.44914e37i 0.336009i
\(248\) −9.98849e36 + 2.50587e38i −0.0487835 + 1.22386i
\(249\) −5.67988e36 −0.0260106
\(250\) 6.36100e37 + 1.13634e38i 0.273203 + 0.488056i
\(251\) 4.02684e38i 1.62250i 0.584698 + 0.811251i \(0.301213\pi\)
−0.584698 + 0.811251i \(0.698787\pi\)
\(252\) −2.66912e38 1.63703e38i −1.00916 0.618941i
\(253\) −7.79759e37 −0.276715
\(254\) 2.17063e38 1.21507e38i 0.723180 0.404820i
\(255\) 3.28047e37i 0.102634i
\(256\) −2.00431e38 + 2.74990e38i −0.589013 + 0.808124i
\(257\) 2.02522e38 0.559167 0.279583 0.960121i \(-0.409804\pi\)
0.279583 + 0.960121i \(0.409804\pi\)
\(258\) 9.42599e37 + 1.68388e38i 0.244575 + 0.436914i
\(259\) 6.06126e38i 1.47831i
\(260\) −7.10363e37 + 1.15822e38i −0.162895 + 0.265594i
\(261\) −1.60790e38 −0.346746
\(262\) −1.53665e38 + 8.60182e37i −0.311713 + 0.174490i
\(263\) 4.37514e38i 0.835027i −0.908671 0.417513i \(-0.862902\pi\)
0.908671 0.417513i \(-0.137098\pi\)
\(264\) 9.21971e37 + 3.67501e36i 0.165598 + 0.00660078i
\(265\) 1.39369e38 0.235630
\(266\) 1.28712e38 + 2.29934e38i 0.204886 + 0.366013i
\(267\) 2.07303e38i 0.310760i
\(268\) −1.03754e39 6.36345e38i −1.46503 0.898537i
\(269\) 9.84294e38 1.30945 0.654724 0.755868i \(-0.272785\pi\)
0.654724 + 0.755868i \(0.272785\pi\)
\(270\) −1.27890e38 + 7.15902e37i −0.160331 + 0.0897497i
\(271\) 5.82572e38i 0.688400i −0.938896 0.344200i \(-0.888150\pi\)
0.938896 0.344200i \(-0.111850\pi\)
\(272\) 4.29390e38 + 8.44310e38i 0.478354 + 0.940588i
\(273\) −4.50075e38 −0.472805
\(274\) −3.30058e38 5.89624e38i −0.327026 0.584206i
\(275\) 4.87090e38i 0.455288i
\(276\) 1.09719e38 1.78893e38i 0.0967690 0.157778i
\(277\) −7.68908e38 −0.640027 −0.320013 0.947413i \(-0.603687\pi\)
−0.320013 + 0.947413i \(0.603687\pi\)
\(278\) 2.38068e38 1.33265e38i 0.187061 0.104713i
\(279\) 1.46797e39i 1.08906i
\(280\) −2.21113e37 + 5.54719e38i −0.0154912 + 0.388638i
\(281\) −3.37707e38 −0.223480 −0.111740 0.993737i \(-0.535642\pi\)
−0.111740 + 0.993737i \(0.535642\pi\)
\(282\) 3.07574e37 + 5.49458e37i 0.0192293 + 0.0343518i
\(283\) 2.20946e39i 1.30528i 0.757668 + 0.652641i \(0.226339\pi\)
−0.757668 + 0.652641i \(0.773661\pi\)
\(284\) 1.38436e39 + 8.49059e38i 0.772956 + 0.474072i
\(285\) 5.80531e37 0.0306413
\(286\) −9.28273e38 + 5.19627e38i −0.463254 + 0.259319i
\(287\) 4.18240e39i 1.97385i
\(288\) 1.10817e39 1.65510e39i 0.494685 0.738829i
\(289\) 2.68825e38 0.113528
\(290\) 1.39251e38 + 2.48762e38i 0.0556457 + 0.0994067i
\(291\) 8.16007e37i 0.0308607i
\(292\) 1.86025e39 3.03307e39i 0.665956 1.08582i
\(293\) 2.28152e39 0.773291 0.386646 0.922228i \(-0.373634\pi\)
0.386646 + 0.922228i \(0.373634\pi\)
\(294\) −6.99476e38 + 3.91551e38i −0.224499 + 0.125670i
\(295\) 1.79638e39i 0.546067i
\(296\) 3.85272e39 + 1.53571e38i 1.10943 + 0.0442222i
\(297\) −1.14754e39 −0.313087
\(298\) −1.99907e39 3.57118e39i −0.516853 0.923319i
\(299\) 2.41953e39i 0.592916i
\(300\) −1.11748e39 6.85378e38i −0.259598 0.159217i
\(301\) −9.09070e39 −2.00232
\(302\) −1.71178e39 + 9.58218e38i −0.357551 + 0.200149i
\(303\) 2.07906e39i 0.411894i
\(304\) −1.49414e39 + 7.59874e38i −0.280811 + 0.142812i
\(305\) 2.05641e39 0.366700
\(306\) −2.70827e39 4.83812e39i −0.458299 0.818716i
\(307\) 9.88725e39i 1.58804i −0.607892 0.794020i \(-0.707984\pi\)
0.607892 0.794020i \(-0.292016\pi\)
\(308\) −2.27254e39 + 3.70529e39i −0.346498 + 0.564952i
\(309\) 3.04061e39 0.440174
\(310\) −2.27113e39 + 1.27133e39i −0.312215 + 0.174771i
\(311\) 2.75970e39i 0.360326i −0.983637 0.180163i \(-0.942337\pi\)
0.983637 0.180163i \(-0.0576625\pi\)
\(312\) 1.14033e38 2.86081e39i 0.0141435 0.354826i
\(313\) 3.86301e39 0.455215 0.227607 0.973753i \(-0.426910\pi\)
0.227607 + 0.973753i \(0.426910\pi\)
\(314\) 4.22514e39 + 7.54789e39i 0.473115 + 0.845183i
\(315\) 3.24961e39i 0.345830i
\(316\) 1.17936e40 + 7.23330e39i 1.19304 + 0.731717i
\(317\) 2.74902e39 0.264381 0.132190 0.991224i \(-0.457799\pi\)
0.132190 + 0.991224i \(0.457799\pi\)
\(318\) −2.56260e39 + 1.43449e39i −0.234341 + 0.131179i
\(319\) 2.23210e39i 0.194117i
\(320\) −3.52036e39 2.81092e38i −0.291197 0.0232514i
\(321\) 6.06620e39 0.477349
\(322\) 4.82890e39 + 8.62647e39i 0.361539 + 0.645861i
\(323\) 4.66612e39i 0.332442i
\(324\) −5.24094e39 + 8.54516e39i −0.355377 + 0.579428i
\(325\) 1.51140e40 0.975543
\(326\) −6.86606e39 + 3.84347e39i −0.421916 + 0.236179i
\(327\) 6.59190e39i 0.385697i
\(328\) −2.65846e40 1.05967e39i −1.48132 0.0590458i
\(329\) −2.96634e39 −0.157430
\(330\) 4.67751e38 + 8.35602e38i 0.0236479 + 0.0422451i
\(331\) 2.88587e39i 0.139005i 0.997582 + 0.0695023i \(0.0221411\pi\)
−0.997582 + 0.0695023i \(0.977859\pi\)
\(332\) 1.45094e39 + 8.89894e38i 0.0665947 + 0.0408441i
\(333\) −2.25697e40 −0.987229
\(334\) 3.73064e40 2.08833e40i 1.55539 0.870673i
\(335\) 1.26318e40i 0.502053i
\(336\) −5.30303e39 1.04273e40i −0.200954 0.395135i
\(337\) −3.46962e39 −0.125373 −0.0626865 0.998033i \(-0.519967\pi\)
−0.0626865 + 0.998033i \(0.519967\pi\)
\(338\) 1.94964e39 + 3.48288e39i 0.0671873 + 0.120025i
\(339\) 8.55810e39i 0.281308i
\(340\) −5.13967e39 + 8.38003e39i −0.161166 + 0.262774i
\(341\) −2.03785e40 −0.609679
\(342\) 8.56181e39 4.79271e39i 0.244426 0.136824i
\(343\) 1.11060e40i 0.302589i
\(344\) 2.30326e39 5.77832e40i 0.0598973 1.50268i
\(345\) 2.17799e39 0.0540692
\(346\) −7.76132e39 1.38650e40i −0.183958 0.328626i
\(347\) 6.04708e39i 0.136859i 0.997656 + 0.0684296i \(0.0217989\pi\)
−0.997656 + 0.0684296i \(0.978201\pi\)
\(348\) −5.12090e39 3.14076e39i −0.110682 0.0678840i
\(349\) 2.56362e40 0.529232 0.264616 0.964354i \(-0.414755\pi\)
0.264616 + 0.964354i \(0.414755\pi\)
\(350\) 5.38867e40 3.01646e40i 1.06266 0.594851i
\(351\) 3.56073e40i 0.670850i
\(352\) −2.29762e40 1.53837e40i −0.413614 0.276936i
\(353\) −6.22211e40 −1.07039 −0.535195 0.844728i \(-0.679762\pi\)
−0.535195 + 0.844728i \(0.679762\pi\)
\(354\) 1.84897e40 + 3.30305e40i 0.304003 + 0.543079i
\(355\) 1.68543e40i 0.264885i
\(356\) −3.24792e40 + 5.29560e40i −0.487983 + 0.795638i
\(357\) −3.25641e40 −0.467786
\(358\) −1.68462e40 + 9.43012e39i −0.231405 + 0.129535i
\(359\) 6.52926e40i 0.857735i 0.903367 + 0.428867i \(0.141087\pi\)
−0.903367 + 0.428867i \(0.858913\pi\)
\(360\) 2.06555e40 + 8.23336e38i 0.259535 + 0.0103452i
\(361\) 7.49410e40 0.900750
\(362\) −2.84751e40 5.08685e40i −0.327437 0.584941i
\(363\) 2.27631e40i 0.250452i
\(364\) 1.14973e41 + 7.05153e40i 1.21052 + 0.742440i
\(365\) 3.69271e40 0.372100
\(366\) −3.78116e40 + 2.11661e40i −0.364694 + 0.204147i
\(367\) 2.37914e39i 0.0219666i −0.999940 0.0109833i \(-0.996504\pi\)
0.999940 0.0109833i \(-0.00349617\pi\)
\(368\) −5.60559e40 + 2.85083e40i −0.495514 + 0.252004i
\(369\) 1.55736e41 1.31815
\(370\) 1.95463e40 + 3.49180e40i 0.158430 + 0.283023i
\(371\) 1.38346e41i 1.07395i
\(372\) 2.86743e40 4.67523e40i 0.213209 0.347629i
\(373\) −1.72340e41 −1.22756 −0.613782 0.789476i \(-0.710352\pi\)
−0.613782 + 0.789476i \(0.710352\pi\)
\(374\) −6.71630e40 + 3.75964e40i −0.458337 + 0.256567i
\(375\) 2.84797e40i 0.186224i
\(376\) 7.51564e38 1.88549e40i 0.00470935 0.118146i
\(377\) 6.92605e40 0.415933
\(378\) 7.10651e40 + 1.26952e41i 0.409061 + 0.730755i
\(379\) 1.76915e41i 0.976199i −0.872788 0.488099i \(-0.837690\pi\)
0.872788 0.488099i \(-0.162310\pi\)
\(380\) −1.48298e40 9.09545e39i −0.0784508 0.0481157i
\(381\) −5.44015e40 −0.275938
\(382\) −3.49935e41 + 1.95886e41i −1.70206 + 0.952773i
\(383\) 4.14172e41i 1.93197i −0.258600 0.965984i \(-0.583261\pi\)
0.258600 0.965984i \(-0.416739\pi\)
\(384\) 6.76230e40 3.10658e40i 0.302548 0.138990i
\(385\) −4.51113e40 −0.193604
\(386\) −2.30304e41 4.11421e41i −0.948212 1.69391i
\(387\) 3.38501e41i 1.33716i
\(388\) −1.27848e40 + 2.08451e40i −0.0484602 + 0.0790125i
\(389\) 9.84662e40 0.358174 0.179087 0.983833i \(-0.442686\pi\)
0.179087 + 0.983833i \(0.442686\pi\)
\(390\) 2.59281e40 1.45140e40i 0.0905185 0.0506702i
\(391\) 1.75060e41i 0.586622i
\(392\) 2.40029e41 + 9.56762e39i 0.772122 + 0.0307770i
\(393\) 3.85124e40 0.118938
\(394\) 2.64607e40 + 4.72701e40i 0.0784625 + 0.140167i
\(395\) 1.43585e41i 0.408843i
\(396\) 1.37970e41 + 8.46203e40i 0.377279 + 0.231394i
\(397\) 2.57975e40 0.0677530 0.0338765 0.999426i \(-0.489215\pi\)
0.0338765 + 0.999426i \(0.489215\pi\)
\(398\) 9.05649e40 5.06962e40i 0.228471 0.127893i
\(399\) 5.76273e40i 0.139657i
\(400\) 1.78082e41 + 3.50163e41i 0.414630 + 0.815286i
\(401\) −1.27557e41 −0.285360 −0.142680 0.989769i \(-0.545572\pi\)
−0.142680 + 0.989769i \(0.545572\pi\)
\(402\) 1.30017e41 + 2.32265e41i 0.279500 + 0.499306i
\(403\) 6.32329e41i 1.30636i
\(404\) 3.25737e41 5.31102e41i 0.646793 1.05457i
\(405\) −1.04036e41 −0.198565
\(406\) 2.46937e41 1.38230e41i 0.453075 0.253621i
\(407\) 3.13314e41i 0.552674i
\(408\) 8.25057e39 2.06987e41i 0.0139933 0.351059i
\(409\) 7.78521e41 1.26969 0.634844 0.772640i \(-0.281064\pi\)
0.634844 + 0.772640i \(0.281064\pi\)
\(410\) −1.34874e41 2.40942e41i −0.211537 0.377894i
\(411\) 1.47775e41i 0.222911i
\(412\) −7.76729e41 4.76386e41i −1.12698 0.691200i
\(413\) −1.78321e42 −2.48886
\(414\) 3.21215e41 1.79809e41i 0.431311 0.241438i
\(415\) 1.76649e40i 0.0228214i
\(416\) −4.77346e41 + 7.12934e41i −0.593390 + 0.886250i
\(417\) −5.96659e40 −0.0713755
\(418\) −6.65327e40 1.18856e41i −0.0765975 0.136836i
\(419\) 4.49421e41i 0.498000i −0.968503 0.249000i \(-0.919898\pi\)
0.968503 0.249000i \(-0.0801019\pi\)
\(420\) 6.34756e40 1.03495e41i 0.0677046 0.110390i
\(421\) −4.94700e40 −0.0507959 −0.0253979 0.999677i \(-0.508085\pi\)
−0.0253979 + 0.999677i \(0.508085\pi\)
\(422\) 2.23065e41 1.24867e41i 0.220512 0.123438i
\(423\) 1.10455e41i 0.105133i
\(424\) 8.79371e41 + 3.50520e40i 0.805969 + 0.0321262i
\(425\) 1.09354e42 0.965188
\(426\) −1.73478e41 3.09905e41i −0.147465 0.263436i
\(427\) 2.04132e42i 1.67134i
\(428\) −1.54963e42 9.50421e41i −1.22216 0.749576i
\(429\) 2.32649e41 0.176760
\(430\) 5.23702e41 2.93157e41i 0.383344 0.214587i
\(431\) 2.94290e41i 0.207558i 0.994600 + 0.103779i \(0.0330934\pi\)
−0.994600 + 0.103779i \(0.966907\pi\)
\(432\) −8.24953e41 + 4.19546e41i −0.560647 + 0.285128i
\(433\) 1.53346e42 1.00431 0.502153 0.864779i \(-0.332542\pi\)
0.502153 + 0.864779i \(0.332542\pi\)
\(434\) 1.26200e42 + 2.25447e42i 0.796570 + 1.42301i
\(435\) 6.23461e40i 0.0379298i
\(436\) −1.03278e42 + 1.68392e42i −0.605656 + 0.987499i
\(437\) −3.09796e41 −0.175135
\(438\) −6.78988e41 + 3.80082e41i −0.370063 + 0.207153i
\(439\) 1.32023e42i 0.693771i −0.937907 0.346886i \(-0.887239\pi\)
0.937907 0.346886i \(-0.112761\pi\)
\(440\) 1.14296e40 2.86741e41i 0.00579146 0.145294i
\(441\) −1.40612e42 −0.687075
\(442\) 1.16659e42 + 2.08402e42i 0.549745 + 0.982077i
\(443\) 1.15073e42i 0.523016i 0.965201 + 0.261508i \(0.0842198\pi\)
−0.965201 + 0.261508i \(0.915780\pi\)
\(444\) −7.18806e41 4.40860e41i −0.315126 0.193274i
\(445\) −6.44731e41 −0.272658
\(446\) 6.07577e41 3.40108e41i 0.247881 0.138758i
\(447\) 8.95029e41i 0.352303i
\(448\) −2.79030e41 + 3.49454e42i −0.105975 + 1.32722i
\(449\) 2.92673e42 1.07261 0.536303 0.844025i \(-0.319820\pi\)
0.536303 + 0.844025i \(0.319820\pi\)
\(450\) −1.12321e42 2.00652e42i −0.397246 0.709650i
\(451\) 2.16193e42i 0.737934i
\(452\) 1.34084e42 2.18619e42i 0.441734 0.720231i
\(453\) 4.29017e41 0.136428
\(454\) 5.64140e41 3.15793e41i 0.173178 0.0969414i
\(455\) 1.39977e42i 0.414835i
\(456\) 3.66296e41 + 1.46007e40i 0.104808 + 0.00417769i
\(457\) 3.62955e42 1.00275 0.501376 0.865230i \(-0.332827\pi\)
0.501376 + 0.865230i \(0.332827\pi\)
\(458\) −9.25372e41 1.65311e42i −0.246870 0.441015i
\(459\) 2.57629e42i 0.663729i
\(460\) −5.56372e41 3.41236e41i −0.138433 0.0849042i
\(461\) −5.81945e42 −1.39852 −0.699258 0.714870i \(-0.746486\pi\)
−0.699258 + 0.714870i \(0.746486\pi\)
\(462\) 8.29473e41 4.64321e41i 0.192544 0.107782i
\(463\) 2.14237e42i 0.480396i −0.970724 0.240198i \(-0.922788\pi\)
0.970724 0.240198i \(-0.0772123\pi\)
\(464\) 8.16066e41 + 1.60463e42i 0.176782 + 0.347606i
\(465\) 5.69202e41 0.119129
\(466\) −1.67157e42 2.98614e42i −0.338026 0.603858i
\(467\) 2.32316e42i 0.453951i 0.973900 + 0.226975i \(0.0728837\pi\)
−0.973900 + 0.226975i \(0.927116\pi\)
\(468\) 2.62571e42 4.28112e42i 0.495807 0.808394i
\(469\) −1.25392e43 −2.28825
\(470\) 1.70886e41 9.56584e40i 0.0301399 0.0168716i
\(471\) 1.89169e42i 0.322490i
\(472\) 4.51800e41 1.13346e43i 0.0744517 1.86781i
\(473\) 4.69910e42 0.748576
\(474\) −1.47789e42 2.64014e42i −0.227609 0.406606i
\(475\) 1.93519e42i 0.288155i
\(476\) 8.31857e42 + 5.10197e42i 1.19767 + 0.734559i
\(477\) −5.15146e42 −0.717194
\(478\) −1.15984e43 + 6.49253e42i −1.56154 + 0.874114i
\(479\) 1.10819e43i 1.44294i 0.692447 + 0.721469i \(0.256533\pi\)
−0.692447 + 0.721469i \(0.743467\pi\)
\(480\) 6.41761e41 + 4.29692e41i 0.0808189 + 0.0541125i
\(481\) 9.72190e42 1.18421
\(482\) 9.56464e41 + 1.70865e42i 0.112698 + 0.201326i
\(483\) 2.16201e42i 0.246436i
\(484\) −3.56640e42 + 5.81488e42i −0.393282 + 0.641232i
\(485\) −2.53785e41 −0.0270769
\(486\) 7.22949e42 4.04691e42i 0.746324 0.417775i
\(487\) 7.03406e42i 0.702656i −0.936252 0.351328i \(-0.885730\pi\)
0.936252 0.351328i \(-0.114270\pi\)
\(488\) 1.29753e43 + 5.17198e41i 1.25429 + 0.0499965i
\(489\) 1.72081e42 0.160987
\(490\) 1.21776e42 + 2.17543e42i 0.110261 + 0.196974i
\(491\) 8.92602e42i 0.782265i 0.920334 + 0.391132i \(0.127917\pi\)
−0.920334 + 0.391132i \(0.872083\pi\)
\(492\) 4.95992e42 + 3.04203e42i 0.420758 + 0.258061i
\(493\) 5.01118e42 0.411518
\(494\) −3.68800e42 + 2.06446e42i −0.293197 + 0.164125i
\(495\) 1.67977e42i 0.129290i
\(496\) −1.46498e43 + 7.45045e42i −1.09176 + 0.555234i
\(497\) 1.67307e43 1.20729
\(498\) −1.81821e41 3.24810e41i −0.0127050 0.0226965i
\(499\) 2.62413e43i 1.77573i −0.460102 0.887866i \(-0.652187\pi\)
0.460102 0.887866i \(-0.347813\pi\)
\(500\) −4.46205e42 + 7.27520e42i −0.292425 + 0.476787i
\(501\) −9.34993e42 −0.593478
\(502\) −2.30279e43 + 1.28905e43i −1.41578 + 0.792520i
\(503\) 4.05670e42i 0.241593i 0.992677 + 0.120797i \(0.0385449\pi\)
−0.992677 + 0.120797i \(0.961455\pi\)
\(504\) 8.17297e41 2.05040e43i 0.0471510 1.18291i
\(505\) 6.46608e42 0.361392
\(506\) −2.49612e42 4.45913e42i −0.135163 0.241458i
\(507\) 8.72899e41i 0.0457969i
\(508\) 1.38970e43 + 8.52334e42i 0.706482 + 0.433302i
\(509\) −2.68863e43 −1.32449 −0.662243 0.749289i \(-0.730395\pi\)
−0.662243 + 0.749289i \(0.730395\pi\)
\(510\) 1.87597e42 1.05013e42i 0.0895576 0.0501324i
\(511\) 3.66563e43i 1.69595i
\(512\) −2.21417e43 2.65899e42i −0.992866 0.119233i
\(513\) −4.55914e42 −0.198155
\(514\) 6.48300e42 + 1.15814e43i 0.273128 + 0.487923i
\(515\) 9.45655e42i 0.386204i
\(516\) −6.61204e42 + 1.07807e43i −0.261782 + 0.426826i
\(517\) 1.53334e42 0.0588558
\(518\) 3.46619e43 1.94030e43i 1.28996 0.722090i
\(519\) 3.47492e42i 0.125391i
\(520\) −8.89737e42 3.54652e41i −0.311321 0.0124093i
\(521\) 3.82848e43 1.29904 0.649520 0.760344i \(-0.274970\pi\)
0.649520 + 0.760344i \(0.274970\pi\)
\(522\) −5.14713e42 9.19495e42i −0.169370 0.302567i
\(523\) 1.05305e43i 0.336065i 0.985781 + 0.168033i \(0.0537414\pi\)
−0.985781 + 0.168033i \(0.946259\pi\)
\(524\) −9.83807e42 6.03392e42i −0.304516 0.186766i
\(525\) −1.35054e43 −0.405469
\(526\) 2.50197e43 1.40055e43i 0.728635 0.407873i
\(527\) 4.57506e43i 1.29249i
\(528\) 2.74120e42 + 5.39002e42i 0.0751274 + 0.147723i
\(529\) 2.59862e43 0.690960
\(530\) 4.46139e42 + 7.96993e42i 0.115095 + 0.205608i
\(531\) 6.63994e43i 1.66208i
\(532\) −9.02874e42 + 1.47210e43i −0.219301 + 0.357562i
\(533\) −6.70832e43 −1.58117
\(534\) 1.18548e43 6.63607e42i 0.271166 0.151793i
\(535\) 1.88664e43i 0.418822i
\(536\) 3.17698e42 7.97029e43i 0.0684507 1.71726i
\(537\) 4.22208e42 0.0882955
\(538\) 3.15087e43 + 5.62878e43i 0.639608 + 1.14261i
\(539\) 1.95198e43i 0.384641i
\(540\) −8.18791e42 5.02183e42i −0.156629 0.0960643i
\(541\) 1.27835e43 0.237408 0.118704 0.992930i \(-0.462126\pi\)
0.118704 + 0.992930i \(0.462126\pi\)
\(542\) 3.33149e43 1.86490e43i 0.600690 0.336253i
\(543\) 1.27489e43i 0.223191i
\(544\) −3.45373e43 + 5.15827e43i −0.587091 + 0.876842i
\(545\) −2.05014e43 −0.338407
\(546\) −1.44075e43 2.57380e43i −0.230944 0.412564i
\(547\) 1.15299e43i 0.179485i 0.995965 + 0.0897424i \(0.0286044\pi\)
−0.995965 + 0.0897424i \(0.971396\pi\)
\(548\) 2.31526e43 3.77494e43i 0.350034 0.570718i
\(549\) −7.60107e43 −1.11614
\(550\) −2.78547e43 + 1.55924e43i −0.397279 + 0.222388i
\(551\) 8.86807e42i 0.122858i
\(552\) 1.37424e43 + 5.47777e41i 0.184943 + 0.00737188i
\(553\) 1.42532e44 1.86342
\(554\) −2.46138e43 4.39707e43i −0.312625 0.558480i
\(555\) 8.75134e42i 0.107991i
\(556\) 1.52418e43 + 9.34813e42i 0.182742 + 0.112080i
\(557\) −6.49038e43 −0.756114 −0.378057 0.925782i \(-0.623408\pi\)
−0.378057 + 0.925782i \(0.623408\pi\)
\(558\) 8.39473e43 4.69918e43i 0.950298 0.531955i
\(559\) 1.45809e44i 1.60397i
\(560\) −3.24300e43 + 1.64929e43i −0.346688 + 0.176315i
\(561\) 1.68328e43 0.174884
\(562\) −1.08105e43 1.93121e43i −0.109160 0.195006i
\(563\) 1.15419e44i 1.13277i −0.824140 0.566387i \(-0.808341\pi\)
0.824140 0.566387i \(-0.191659\pi\)
\(564\) −2.15754e42 + 3.51779e42i −0.0205823 + 0.0335586i
\(565\) 2.66164e43 0.246817
\(566\) −1.26350e44 + 7.07281e43i −1.13897 + 0.637572i
\(567\) 1.03273e44i 0.905018i
\(568\) −4.23896e42 + 1.06345e44i −0.0361149 + 0.906036i
\(569\) −1.20494e44 −0.998091 −0.499045 0.866576i \(-0.666316\pi\)
−0.499045 + 0.866576i \(0.666316\pi\)
\(570\) 1.85836e42 + 3.31982e42i 0.0149669 + 0.0267373i
\(571\) 1.72878e44i 1.35382i −0.736064 0.676911i \(-0.763318\pi\)
0.736064 0.676911i \(-0.236682\pi\)
\(572\) −5.94307e43 3.64502e43i −0.452558 0.277564i
\(573\) 8.77027e43 0.649440
\(574\) −2.39175e44 + 1.33885e44i −1.72236 + 0.964140i
\(575\) 7.26030e43i 0.508474i
\(576\) 1.30123e44 + 1.03900e43i 0.886325 + 0.0707709i
\(577\) 1.82754e44 1.21075 0.605375 0.795941i \(-0.293023\pi\)
0.605375 + 0.795941i \(0.293023\pi\)
\(578\) 8.60547e42 + 1.53730e43i 0.0554535 + 0.0990635i
\(579\) 1.03113e44i 0.646331i
\(580\) −9.76805e42 + 1.59264e43i −0.0595608 + 0.0971116i
\(581\) 1.75354e43 0.104015
\(582\) 4.66641e42 2.61215e42i 0.0269287 0.0150741i
\(583\) 7.15129e43i 0.401502i
\(584\) 2.32998e44 + 9.28738e42i 1.27276 + 0.0507327i
\(585\) 5.21219e43 0.277030
\(586\) 7.30348e43 + 1.30471e44i 0.377718 + 0.674765i
\(587\) 1.97836e44i 0.995624i −0.867285 0.497812i \(-0.834137\pi\)
0.867285 0.497812i \(-0.165863\pi\)
\(588\) −4.47824e43 2.74661e43i −0.219316 0.134512i
\(589\) −8.09630e43 −0.385871
\(590\) 1.02728e44 5.75047e43i 0.476492 0.266730i
\(591\) 1.18471e43i 0.0534825i
\(592\) 1.14549e44 + 2.25237e44i 0.503319 + 0.989676i
\(593\) 6.82693e43 0.291978 0.145989 0.989286i \(-0.453364\pi\)
0.145989 + 0.989286i \(0.453364\pi\)
\(594\) −3.67344e43 6.56232e43i −0.152929 0.273196i
\(595\) 1.01277e44i 0.410431i
\(596\) 1.40228e44 2.28637e44i 0.553218 0.902000i
\(597\) −2.26979e43 −0.0871758
\(598\) −1.38363e44 + 7.74528e43i −0.517371 + 0.289613i
\(599\) 2.54468e44i 0.926413i 0.886250 + 0.463206i \(0.153301\pi\)
−0.886250 + 0.463206i \(0.846699\pi\)
\(600\) 3.42178e42 8.58443e43i 0.0121292 0.304293i
\(601\) −4.10791e44 −1.41785 −0.708924 0.705285i \(-0.750819\pi\)
−0.708924 + 0.705285i \(0.750819\pi\)
\(602\) −2.91006e44 5.19861e44i −0.978045 1.74720i
\(603\) 4.66909e44i 1.52811i
\(604\) −1.09593e44 6.72161e43i −0.349295 0.214231i
\(605\) −7.07953e43 −0.219745
\(606\) −1.18893e44 + 6.65538e43i −0.359414 + 0.201192i
\(607\) 6.36172e44i 1.87308i −0.350565 0.936538i \(-0.614010\pi\)
0.350565 0.936538i \(-0.385990\pi\)
\(608\) −9.12836e43 6.11192e43i −0.261780 0.175275i
\(609\) −6.18888e43 −0.172876
\(610\) 6.58285e43 + 1.17598e44i 0.179117 + 0.319979i
\(611\) 4.75783e43i 0.126110i
\(612\) 1.89977e44 3.09750e44i 0.490544 0.799813i
\(613\) 5.83540e43 0.146792 0.0733961 0.997303i \(-0.476616\pi\)
0.0733961 + 0.997303i \(0.476616\pi\)
\(614\) 5.65412e44 3.16505e44i 1.38571 0.775687i
\(615\) 6.03862e43i 0.144190i
\(616\) −2.84638e44 1.13458e43i −0.662219 0.0263963i
\(617\) −2.60007e44 −0.589417 −0.294709 0.955587i \(-0.595223\pi\)
−0.294709 + 0.955587i \(0.595223\pi\)
\(618\) 9.73341e43 + 1.73880e44i 0.215005 + 0.384091i
\(619\) 1.93411e44i 0.416324i 0.978094 + 0.208162i \(0.0667481\pi\)
−0.978094 + 0.208162i \(0.933252\pi\)
\(620\) −1.45404e44 8.91796e43i −0.305007 0.187067i
\(621\) −1.71046e44 −0.349662
\(622\) 1.57816e44 8.83419e43i 0.314416 0.176003i
\(623\) 6.40002e44i 1.24272i
\(624\) 1.67249e44 8.50575e43i 0.316526 0.160975i
\(625\) 4.07266e44 0.751273
\(626\) 1.23660e44 + 2.20910e44i 0.222352 + 0.397215i
\(627\) 2.97882e43i 0.0522113i
\(628\) −2.96381e44 + 4.83237e44i −0.506402 + 0.825669i
\(629\) 7.03405e44 1.17164
\(630\) 1.85832e44 1.04025e44i 0.301768 0.168923i
\(631\) 6.02399e44i 0.953707i −0.878983 0.476853i \(-0.841777\pi\)
0.878983 0.476853i \(-0.158223\pi\)
\(632\) −3.61126e43 + 9.05978e44i −0.0557423 + 1.39844i
\(633\) −5.59057e43 −0.0841389
\(634\) 8.80001e43 + 1.57205e44i 0.129138 + 0.230696i
\(635\) 1.69194e44i 0.242105i
\(636\) −1.64065e44 1.00625e44i −0.228930 0.140408i
\(637\) 6.05685e44 0.824169
\(638\) −1.27645e44 + 7.14528e43i −0.169384 + 0.0948174i
\(639\) 6.22985e44i 0.806239i
\(640\) −9.66173e43 2.10313e44i −0.121948 0.265453i
\(641\) −1.17050e45 −1.44093 −0.720465 0.693491i \(-0.756072\pi\)
−0.720465 + 0.693491i \(0.756072\pi\)
\(642\) 1.94188e44 + 3.46902e44i 0.233164 + 0.416530i
\(643\) 6.41412e44i 0.751210i −0.926780 0.375605i \(-0.877435\pi\)
0.926780 0.375605i \(-0.122565\pi\)
\(644\) −3.38733e44 + 5.52291e44i −0.386976 + 0.630949i
\(645\) −1.31253e44 −0.146270
\(646\) −2.66837e44 + 1.49369e44i −0.290085 + 0.162383i
\(647\) 6.68917e44i 0.709421i 0.934976 + 0.354710i \(0.115421\pi\)
−0.934976 + 0.354710i \(0.884579\pi\)
\(648\) −6.56433e44 2.61656e43i −0.679189 0.0270727i
\(649\) 9.21761e44 0.930471
\(650\) 4.83822e44 + 8.64311e44i 0.476510 + 0.851248i
\(651\) 5.65027e44i 0.542967i
\(652\) −4.39585e44 2.69608e44i −0.412175 0.252796i
\(653\) 9.73888e44 0.891042 0.445521 0.895271i \(-0.353018\pi\)
0.445521 + 0.895271i \(0.353018\pi\)
\(654\) 3.76964e44 2.11016e44i 0.336555 0.188396i
\(655\) 1.19777e44i 0.104355i
\(656\) −7.90412e44 1.55419e45i −0.672036 1.32142i
\(657\) −1.36493e45 −1.13257
\(658\) −9.49568e43 1.69633e44i −0.0768974 0.137371i
\(659\) 1.33156e45i 1.05243i −0.850352 0.526215i \(-0.823611\pi\)
0.850352 0.526215i \(-0.176389\pi\)
\(660\) −3.28113e43 + 5.34976e43i −0.0253117 + 0.0412697i
\(661\) 1.18916e45 0.895398 0.447699 0.894184i \(-0.352244\pi\)
0.447699 + 0.894184i \(0.352244\pi\)
\(662\) −1.65031e44 + 9.23808e43i −0.121294 + 0.0678975i
\(663\) 5.22309e44i 0.374723i
\(664\) −4.44284e42 + 1.11460e44i −0.00311151 + 0.0780603i
\(665\) −1.79226e44 −0.122533
\(666\) −7.22488e44 1.29067e45i −0.482217 0.861445i
\(667\) 3.32705e44i 0.216793i
\(668\) 2.38846e45 + 1.46490e45i 1.51948 + 0.931931i
\(669\) −1.52274e44 −0.0945821
\(670\) 7.22364e44 4.04363e44i 0.438086 0.245231i
\(671\) 1.05518e45i 0.624839i
\(672\) 4.26540e44 6.37053e44i 0.246633 0.368356i
\(673\) −3.07010e45 −1.73345 −0.866726 0.498784i \(-0.833780\pi\)
−0.866726 + 0.498784i \(0.833780\pi\)
\(674\) −1.11068e44 1.98414e44i −0.0612392 0.109399i
\(675\) 1.06847e45i 0.575310i
\(676\) −1.36761e44 + 2.22984e44i −0.0719144 + 0.117254i
\(677\) −1.15491e44 −0.0593100 −0.0296550 0.999560i \(-0.509441\pi\)
−0.0296550 + 0.999560i \(0.509441\pi\)
\(678\) −4.89403e44 + 2.73957e44i −0.245466 + 0.137406i
\(679\) 2.51924e44i 0.123411i
\(680\) −6.43748e44 2.56600e43i −0.308016 0.0122776i
\(681\) −1.41388e44 −0.0660783
\(682\) −6.52344e44 1.16536e45i −0.297801 0.531999i
\(683\) 4.36205e45i 1.94518i 0.232530 + 0.972589i \(0.425300\pi\)
−0.232530 + 0.972589i \(0.574700\pi\)
\(684\) 5.48152e44 + 3.36194e44i 0.238783 + 0.146451i
\(685\) 4.59593e44 0.195580
\(686\) −6.35110e44 + 3.55520e44i −0.264036 + 0.147801i
\(687\) 4.14311e44i 0.168275i
\(688\) 3.37812e45 1.71801e45i 1.34048 0.681727i
\(689\) 2.21899e45 0.860297
\(690\) 6.97205e43 + 1.24550e44i 0.0264104 + 0.0471802i
\(691\) 1.13389e43i 0.00419684i 0.999998 + 0.00209842i \(0.000667948\pi\)
−0.999998 + 0.00209842i \(0.999332\pi\)
\(692\) 5.44433e44 8.87677e44i 0.196900 0.321039i
\(693\) 1.66745e45 0.589277
\(694\) −3.45808e44 + 1.93576e44i −0.119422 + 0.0668496i
\(695\) 1.85566e44i 0.0626242i
\(696\) 1.56804e43 3.93384e44i 0.00517142 0.129738i
\(697\) −4.85365e45 −1.56439
\(698\) 8.20650e44 + 1.46603e45i 0.258506 + 0.461802i
\(699\) 7.48402e44i 0.230409i
\(700\) 3.44998e45 + 2.11595e45i 1.03812 + 0.636704i
\(701\) 2.51171e45 0.738722 0.369361 0.929286i \(-0.379577\pi\)
0.369361 + 0.929286i \(0.379577\pi\)
\(702\) −2.03624e45 + 1.13984e45i −0.585377 + 0.327681i
\(703\) 1.24479e45i 0.349792i
\(704\) 1.44234e44 1.80637e45i 0.0396192 0.496186i
\(705\) −4.28285e43 −0.0115002
\(706\) −1.99179e45 3.55817e45i −0.522838 0.934011i
\(707\) 6.41865e45i 1.64715i
\(708\) −1.29700e45 + 2.11471e45i −0.325392 + 0.530540i
\(709\) 2.49801e45 0.612710 0.306355 0.951917i \(-0.400891\pi\)
0.306355 + 0.951917i \(0.400891\pi\)
\(710\) −9.63831e44 + 5.39531e44i −0.231136 + 0.129385i
\(711\) 5.30733e45i 1.24441i
\(712\) −4.06805e45 1.62154e44i −0.932623 0.0371746i
\(713\) −3.03750e45 −0.680901
\(714\) −1.04242e45 1.86221e45i −0.228493 0.408185i
\(715\) 7.23559e44i 0.155088i
\(716\) −1.07854e45 6.61494e44i −0.226062 0.138649i
\(717\) 2.90686e45 0.595823
\(718\) −3.73382e45 + 2.09011e45i −0.748450 + 0.418965i
\(719\) 1.24854e45i 0.244759i −0.992483 0.122380i \(-0.960947\pi\)
0.992483 0.122380i \(-0.0390526\pi\)
\(720\) 6.14130e44 + 1.20756e45i 0.117744 + 0.231521i
\(721\) −9.38719e45 −1.76024
\(722\) 2.39897e45 + 4.28557e45i 0.439976 + 0.785984i
\(723\) 4.28231e44i 0.0768184i
\(724\) 1.99744e45 3.25675e45i 0.350474 0.571435i
\(725\) 2.07830e45 0.356697
\(726\) 1.30173e45 7.28679e44i 0.218542 0.122335i
\(727\) 2.70587e45i 0.444382i 0.975003 + 0.222191i \(0.0713209\pi\)
−0.975003 + 0.222191i \(0.928679\pi\)
\(728\) −3.52051e44 + 8.83211e45i −0.0565592 + 1.41894i
\(729\) 2.51300e45 0.394959
\(730\) 1.18209e45 + 2.11171e45i 0.181754 + 0.324690i
\(731\) 1.05497e46i 1.58695i
\(732\) −2.42081e45 1.48474e45i −0.356273 0.218511i
\(733\) 1.08091e46 1.55642 0.778212 0.628002i \(-0.216127\pi\)
0.778212 + 0.628002i \(0.216127\pi\)
\(734\) 1.36054e44 7.61598e43i 0.0191678 0.0107297i
\(735\) 5.45219e44i 0.0751577i
\(736\) −3.42471e45 2.29302e45i −0.461932 0.309288i
\(737\) 6.48166e45 0.855473
\(738\) 4.98532e45 + 8.90590e45i 0.643860 + 1.15021i
\(739\) 1.01661e46i 1.28482i 0.766360 + 0.642412i \(0.222066\pi\)
−0.766360 + 0.642412i \(0.777934\pi\)
\(740\) −1.37111e45 + 2.23555e45i −0.169577 + 0.276488i
\(741\) 9.24307e44 0.111873
\(742\) 7.91147e45 4.42867e45i 0.937119 0.524578i
\(743\) 1.12410e46i 1.30312i 0.758596 + 0.651562i \(0.225886\pi\)
−0.758596 + 0.651562i \(0.774114\pi\)
\(744\) 3.59148e45 + 1.43158e44i 0.407480 + 0.0162423i
\(745\) 2.78362e45 0.309108
\(746\) −5.51684e45 9.85541e45i −0.599610 1.07116i
\(747\) 6.52947e44i 0.0694621i
\(748\) −4.29997e45 2.63727e45i −0.447754 0.274618i
\(749\) −1.87281e46 −1.90890
\(750\) 1.62864e45 9.11675e44i 0.162497 0.0909620i
\(751\) 2.21834e45i 0.216665i 0.994115 + 0.108332i \(0.0345511\pi\)
−0.994115 + 0.108332i \(0.965449\pi\)
\(752\) 1.10230e45 5.60595e44i 0.105393 0.0535999i
\(753\) 5.77138e45 0.540207
\(754\)