Defining parameters
Level: | \( N \) | \(=\) | \( 4 = 2^{2} \) |
Weight: | \( k \) | \(=\) | \( 19 \) |
Character orbit: | \([\chi]\) | \(=\) | 4.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(9\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{19}(4, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 10 | 0 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{19}^{\mathrm{new}}(4, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
4.19.b.a | $8$ | $8.215$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(84\) | \(0\) | \(860880\) | \(0\) | \(q+(11-\beta _{1})q^{2}-\beta _{2}q^{3}+(44007-9\beta _{1}+\cdots)q^{4}+\cdots\) |