Properties

Label 4.14
Level 4
Weight 14
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 14
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4 = 2^{2} \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(14\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(4))\).

Total New Old
Modular forms 8 1 7
Cusp forms 5 1 4
Eisenstein series 3 0 3

Trace form

\( q + 468 q^{3} + 56214 q^{5} + 333032 q^{7} - 1375299 q^{9} - 6397380 q^{11} + 15199742 q^{13} + 26308152 q^{15} + 43114194 q^{17} - 365115484 q^{19} + 155858976 q^{21} - 57226824 q^{23} + 1939310671 q^{25}+ \cdots + 8798310316620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4.14.a \(\chi_{4}(1, \cdot)\) 4.14.a.a 1 1

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(4))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(4)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)