Properties

Label 4.11
Level 4
Weight 11
Dimension 4
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 11
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4 = 2^{2} \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(11\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(4))\).

Total New Old
Modular forms 6 6 0
Cusp forms 4 4 0
Eisenstein series 2 2 0

Trace form

\( 4 q - 12 q^{2} + 16 q^{4} - 1560 q^{5} + 7200 q^{6} - 36288 q^{8} - 28764 q^{9} + 263240 q^{10} - 915840 q^{12} + 212264 q^{13} + 1901760 q^{14} - 3612416 q^{16} - 171384 q^{17} + 4740372 q^{18} - 3108960 q^{20}+ \cdots - 30380986188 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(4))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4.11.b \(\chi_{4}(3, \cdot)\) 4.11.b.a 4 1