Properties

Label 4.10
Level 4
Weight 10
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 10
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4 = 2^{2} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(4))\).

Total New Old
Modular forms 6 1 5
Cusp forms 3 1 2
Eisenstein series 3 0 3

Trace form

\( q + 228 q^{3} - 666 q^{5} - 6328 q^{7} + 32301 q^{9} - 30420 q^{11} - 32338 q^{13} - 151848 q^{15} + 590994 q^{17} + 34676 q^{19} - 1442784 q^{21} + 1048536 q^{23} - 1509569 q^{25} + 2876904 q^{27} + 4409406 q^{29}+ \cdots - 982596420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4.10.a \(\chi_{4}(1, \cdot)\) 4.10.a.a 1 1

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(4))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(4)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)