Properties

Label 399.2.j.d.58.3
Level $399$
Weight $2$
Character 399.58
Analytic conductor $3.186$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(58,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.58"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 58.3
Root \(-0.198169 + 0.343239i\) of defining polynomial
Character \(\chi\) \(=\) 399.58
Dual form 399.2.j.d.172.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.198169 - 0.343239i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.921458 + 1.59601i) q^{4} +(0.421458 - 0.729986i) q^{5} +0.396339 q^{6} +(1.79981 - 1.93925i) q^{7} +1.52310 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.167040 - 0.289322i) q^{10} +(0.0179894 + 0.0311586i) q^{11} +(-0.921458 + 1.59601i) q^{12} +1.96402 q^{13} +(-0.308961 - 1.00206i) q^{14} +0.842916 q^{15} +(-1.54109 + 2.66924i) q^{16} +(-1.62676 - 2.81763i) q^{17} +(0.198169 + 0.343239i) q^{18} +(-0.500000 + 0.866025i) q^{19} +1.55342 q^{20} +(2.57934 + 0.589053i) q^{21} +0.0142598 q^{22} +(-0.641921 + 1.11184i) q^{23} +(0.761548 + 1.31904i) q^{24} +(2.14475 + 3.71481i) q^{25} +(0.389209 - 0.674129i) q^{26} -1.00000 q^{27} +(4.75351 + 1.08558i) q^{28} -7.06045 q^{29} +(0.167040 - 0.289322i) q^{30} +(1.80976 + 3.13460i) q^{31} +(2.13389 + 3.69600i) q^{32} +(-0.0179894 + 0.0311586i) q^{33} -1.28949 q^{34} +(-0.657084 - 2.13115i) q^{35} -1.84292 q^{36} +(1.08137 - 1.87298i) q^{37} +(0.198169 + 0.343239i) q^{38} +(0.982011 + 1.70089i) q^{39} +(0.641921 - 1.11184i) q^{40} +0.130805 q^{41} +(0.713333 - 0.768600i) q^{42} -4.50884 q^{43} +(-0.0331530 + 0.0574227i) q^{44} +(0.421458 + 0.729986i) q^{45} +(0.254418 + 0.440665i) q^{46} +(3.99277 - 6.91568i) q^{47} -3.08217 q^{48} +(-0.521390 - 6.98056i) q^{49} +1.70009 q^{50} +(1.62676 - 2.81763i) q^{51} +(1.80976 + 3.13460i) q^{52} +(-1.49085 - 2.58222i) q^{53} +(-0.198169 + 0.343239i) q^{54} +0.0303272 q^{55} +(2.74128 - 2.95366i) q^{56} -1.00000 q^{57} +(-1.39916 + 2.42342i) q^{58} +(-6.48994 - 11.2409i) q^{59} +(0.776711 + 1.34530i) q^{60} +(-1.29380 + 2.24092i) q^{61} +1.43456 q^{62} +(0.779537 + 2.52830i) q^{63} -4.47286 q^{64} +(0.827752 - 1.43371i) q^{65} +(0.00712991 + 0.0123494i) q^{66} +(-2.25952 - 3.91361i) q^{67} +(2.99798 - 5.19265i) q^{68} -1.28384 q^{69} +(-0.861707 - 0.196791i) q^{70} -2.64985 q^{71} +(-0.761548 + 1.31904i) q^{72} +(-3.10649 - 5.38059i) q^{73} +(-0.428588 - 0.742336i) q^{74} +(-2.14475 + 3.71481i) q^{75} -1.84292 q^{76} +(0.0928019 + 0.0211935i) q^{77} +0.778417 q^{78} +(-5.18641 + 8.98312i) q^{79} +(1.29900 + 2.24994i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.0259214 - 0.0448973i) q^{82} +10.2752 q^{83} +(1.43662 + 4.65945i) q^{84} -2.74244 q^{85} +(-0.893513 + 1.54761i) q^{86} +(-3.53023 - 6.11453i) q^{87} +(0.0273996 + 0.0474576i) q^{88} +(-4.18641 + 7.25107i) q^{89} +0.334080 q^{90} +(3.53486 - 3.80873i) q^{91} -2.36601 q^{92} +(-1.80976 + 3.13460i) q^{93} +(-1.58249 - 2.74095i) q^{94} +(0.421458 + 0.729986i) q^{95} +(-2.13389 + 3.69600i) q^{96} -2.55162 q^{97} +(-2.49932 - 1.20437i) q^{98} -0.0359789 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 4 q^{5} + 2 q^{7} - 6 q^{8} - 4 q^{9} + 3 q^{10} + 2 q^{11} + 12 q^{13} + 2 q^{14} - 8 q^{15} + 4 q^{16} + 2 q^{17} - 4 q^{19} + 24 q^{20} + q^{21} - 12 q^{22} - 5 q^{23} - 3 q^{24} + 4 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.198169 0.343239i 0.140127 0.242707i −0.787417 0.616420i \(-0.788582\pi\)
0.927544 + 0.373713i \(0.121916\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.921458 + 1.59601i 0.460729 + 0.798006i
\(5\) 0.421458 0.729986i 0.188482 0.326460i −0.756263 0.654268i \(-0.772977\pi\)
0.944744 + 0.327808i \(0.106310\pi\)
\(6\) 0.396339 0.161805
\(7\) 1.79981 1.93925i 0.680263 0.732968i
\(8\) 1.52310 0.538496
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.167040 0.289322i −0.0528227 0.0914916i
\(11\) 0.0179894 + 0.0311586i 0.00542402 + 0.00939468i 0.868725 0.495295i \(-0.164940\pi\)
−0.863301 + 0.504690i \(0.831607\pi\)
\(12\) −0.921458 + 1.59601i −0.266002 + 0.460729i
\(13\) 1.96402 0.544721 0.272361 0.962195i \(-0.412196\pi\)
0.272361 + 0.962195i \(0.412196\pi\)
\(14\) −0.308961 1.00206i −0.0825732 0.267813i
\(15\) 0.842916 0.217640
\(16\) −1.54109 + 2.66924i −0.385271 + 0.667309i
\(17\) −1.62676 2.81763i −0.394547 0.683375i 0.598497 0.801125i \(-0.295765\pi\)
−0.993043 + 0.117751i \(0.962432\pi\)
\(18\) 0.198169 + 0.343239i 0.0467089 + 0.0809023i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i
\(20\) 1.55342 0.347356
\(21\) 2.57934 + 0.589053i 0.562859 + 0.128542i
\(22\) 0.0142598 0.00304020
\(23\) −0.641921 + 1.11184i −0.133850 + 0.231834i −0.925157 0.379584i \(-0.876067\pi\)
0.791308 + 0.611418i \(0.209401\pi\)
\(24\) 0.761548 + 1.31904i 0.155450 + 0.269248i
\(25\) 2.14475 + 3.71481i 0.428949 + 0.742962i
\(26\) 0.389209 0.674129i 0.0763301 0.132208i
\(27\) −1.00000 −0.192450
\(28\) 4.75351 + 1.08558i 0.898330 + 0.205154i
\(29\) −7.06045 −1.31109 −0.655546 0.755155i \(-0.727562\pi\)
−0.655546 + 0.755155i \(0.727562\pi\)
\(30\) 0.167040 0.289322i 0.0304972 0.0528227i
\(31\) 1.80976 + 3.13460i 0.325043 + 0.562991i 0.981521 0.191354i \(-0.0612879\pi\)
−0.656478 + 0.754345i \(0.727955\pi\)
\(32\) 2.13389 + 3.69600i 0.377221 + 0.653367i
\(33\) −0.0179894 + 0.0311586i −0.00313156 + 0.00542402i
\(34\) −1.28949 −0.221146
\(35\) −0.657084 2.13115i −0.111068 0.360230i
\(36\) −1.84292 −0.307153
\(37\) 1.08137 1.87298i 0.177776 0.307917i −0.763343 0.645994i \(-0.776443\pi\)
0.941118 + 0.338077i \(0.109776\pi\)
\(38\) 0.198169 + 0.343239i 0.0321473 + 0.0556808i
\(39\) 0.982011 + 1.70089i 0.157248 + 0.272361i
\(40\) 0.641921 1.11184i 0.101497 0.175797i
\(41\) 0.130805 0.0204282 0.0102141 0.999948i \(-0.496749\pi\)
0.0102141 + 0.999948i \(0.496749\pi\)
\(42\) 0.713333 0.768600i 0.110070 0.118598i
\(43\) −4.50884 −0.687591 −0.343796 0.939045i \(-0.611713\pi\)
−0.343796 + 0.939045i \(0.611713\pi\)
\(44\) −0.0331530 + 0.0574227i −0.00499801 + 0.00865680i
\(45\) 0.421458 + 0.729986i 0.0628272 + 0.108820i
\(46\) 0.254418 + 0.440665i 0.0375119 + 0.0649725i
\(47\) 3.99277 6.91568i 0.582405 1.00876i −0.412788 0.910827i \(-0.635445\pi\)
0.995193 0.0979283i \(-0.0312216\pi\)
\(48\) −3.08217 −0.444873
\(49\) −0.521390 6.98056i −0.0744842 0.997222i
\(50\) 1.70009 0.240429
\(51\) 1.62676 2.81763i 0.227792 0.394547i
\(52\) 1.80976 + 3.13460i 0.250969 + 0.434691i
\(53\) −1.49085 2.58222i −0.204783 0.354695i 0.745280 0.666751i \(-0.232316\pi\)
−0.950064 + 0.312056i \(0.898982\pi\)
\(54\) −0.198169 + 0.343239i −0.0269674 + 0.0467089i
\(55\) 0.0303272 0.00408931
\(56\) 2.74128 2.95366i 0.366319 0.394700i
\(57\) −1.00000 −0.132453
\(58\) −1.39916 + 2.42342i −0.183719 + 0.318211i
\(59\) −6.48994 11.2409i −0.844919 1.46344i −0.885692 0.464273i \(-0.846315\pi\)
0.0407734 0.999168i \(-0.487018\pi\)
\(60\) 0.776711 + 1.34530i 0.100273 + 0.173678i
\(61\) −1.29380 + 2.24092i −0.165654 + 0.286921i −0.936887 0.349632i \(-0.886307\pi\)
0.771234 + 0.636552i \(0.219640\pi\)
\(62\) 1.43456 0.182189
\(63\) 0.779537 + 2.52830i 0.0982125 + 0.318536i
\(64\) −4.47286 −0.559107
\(65\) 0.827752 1.43371i 0.102670 0.177830i
\(66\) 0.00712991 + 0.0123494i 0.000877631 + 0.00152010i
\(67\) −2.25952 3.91361i −0.276045 0.478124i 0.694353 0.719634i \(-0.255690\pi\)
−0.970398 + 0.241511i \(0.922357\pi\)
\(68\) 2.99798 5.19265i 0.363558 0.629701i
\(69\) −1.28384 −0.154556
\(70\) −0.861707 0.196791i −0.102994 0.0235210i
\(71\) −2.64985 −0.314480 −0.157240 0.987560i \(-0.550260\pi\)
−0.157240 + 0.987560i \(0.550260\pi\)
\(72\) −0.761548 + 1.31904i −0.0897493 + 0.155450i
\(73\) −3.10649 5.38059i −0.363587 0.629751i 0.624961 0.780656i \(-0.285115\pi\)
−0.988548 + 0.150905i \(0.951781\pi\)
\(74\) −0.428588 0.742336i −0.0498223 0.0862948i
\(75\) −2.14475 + 3.71481i −0.247654 + 0.428949i
\(76\) −1.84292 −0.211397
\(77\) 0.0928019 + 0.0211935i 0.0105758 + 0.00241522i
\(78\) 0.778417 0.0881384
\(79\) −5.18641 + 8.98312i −0.583516 + 1.01068i 0.411542 + 0.911391i \(0.364990\pi\)
−0.995059 + 0.0992892i \(0.968343\pi\)
\(80\) 1.29900 + 2.24994i 0.145233 + 0.251551i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.0259214 0.0448973i 0.00286255 0.00495807i
\(83\) 10.2752 1.12785 0.563927 0.825825i \(-0.309290\pi\)
0.563927 + 0.825825i \(0.309290\pi\)
\(84\) 1.43662 + 4.65945i 0.156748 + 0.508388i
\(85\) −2.74244 −0.297459
\(86\) −0.893513 + 1.54761i −0.0963499 + 0.166883i
\(87\) −3.53023 6.11453i −0.378480 0.655546i
\(88\) 0.0273996 + 0.0474576i 0.00292081 + 0.00505899i
\(89\) −4.18641 + 7.25107i −0.443758 + 0.768612i −0.997965 0.0637675i \(-0.979688\pi\)
0.554207 + 0.832379i \(0.313022\pi\)
\(90\) 0.334080 0.0352151
\(91\) 3.53486 3.80873i 0.370554 0.399263i
\(92\) −2.36601 −0.246674
\(93\) −1.80976 + 3.13460i −0.187664 + 0.325043i
\(94\) −1.58249 2.74095i −0.163221 0.282707i
\(95\) 0.421458 + 0.729986i 0.0432407 + 0.0748950i
\(96\) −2.13389 + 3.69600i −0.217789 + 0.377221i
\(97\) −2.55162 −0.259077 −0.129539 0.991574i \(-0.541350\pi\)
−0.129539 + 0.991574i \(0.541350\pi\)
\(98\) −2.49932 1.20437i −0.252470 0.121660i
\(99\) −0.0359789 −0.00361601
\(100\) −3.95259 + 6.84608i −0.395259 + 0.684608i
\(101\) −3.56508 6.17491i −0.354739 0.614426i 0.632334 0.774696i \(-0.282097\pi\)
−0.987073 + 0.160270i \(0.948764\pi\)
\(102\) −0.644747 1.11673i −0.0638394 0.110573i
\(103\) −1.45461 + 2.51946i −0.143327 + 0.248250i −0.928748 0.370713i \(-0.879113\pi\)
0.785420 + 0.618963i \(0.212447\pi\)
\(104\) 2.99139 0.293330
\(105\) 1.51709 1.63463i 0.148052 0.159523i
\(106\) −1.18176 −0.114783
\(107\) −4.30466 + 7.45588i −0.416147 + 0.720788i −0.995548 0.0942550i \(-0.969953\pi\)
0.579401 + 0.815042i \(0.303286\pi\)
\(108\) −0.921458 1.59601i −0.0886673 0.153576i
\(109\) −0.287469 0.497911i −0.0275346 0.0476913i 0.851930 0.523656i \(-0.175432\pi\)
−0.879464 + 0.475965i \(0.842099\pi\)
\(110\) 0.00600991 0.0104095i 0.000573023 0.000992505i
\(111\) 2.16274 0.205278
\(112\) 2.40267 + 7.79266i 0.227031 + 0.736337i
\(113\) −15.2784 −1.43727 −0.718637 0.695385i \(-0.755234\pi\)
−0.718637 + 0.695385i \(0.755234\pi\)
\(114\) −0.198169 + 0.343239i −0.0185603 + 0.0321473i
\(115\) 0.541085 + 0.937187i 0.0504564 + 0.0873931i
\(116\) −6.50591 11.2686i −0.604058 1.04626i
\(117\) −0.982011 + 1.70089i −0.0907869 + 0.157248i
\(118\) −5.14443 −0.473583
\(119\) −8.39193 1.91649i −0.769287 0.175685i
\(120\) 1.28384 0.117198
\(121\) 5.49935 9.52516i 0.499941 0.865923i
\(122\) 0.512782 + 0.888164i 0.0464251 + 0.0804106i
\(123\) 0.0654023 + 0.113280i 0.00589713 + 0.0102141i
\(124\) −3.33524 + 5.77681i −0.299513 + 0.518772i
\(125\) 7.83026 0.700360
\(126\) 1.02229 + 0.233464i 0.0910731 + 0.0207987i
\(127\) 1.02235 0.0907193 0.0453597 0.998971i \(-0.485557\pi\)
0.0453597 + 0.998971i \(0.485557\pi\)
\(128\) −5.15416 + 8.92726i −0.455567 + 0.789066i
\(129\) −2.25442 3.90477i −0.198490 0.343796i
\(130\) −0.328070 0.568234i −0.0287736 0.0498374i
\(131\) 8.49106 14.7070i 0.741868 1.28495i −0.209776 0.977749i \(-0.567274\pi\)
0.951644 0.307203i \(-0.0993930\pi\)
\(132\) −0.0663061 −0.00577120
\(133\) 0.779537 + 2.52830i 0.0675945 + 0.219232i
\(134\) −1.79107 −0.154725
\(135\) −0.421458 + 0.729986i −0.0362733 + 0.0628272i
\(136\) −2.47771 4.29151i −0.212462 0.367994i
\(137\) 1.12111 + 1.94181i 0.0957825 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(138\) −0.254418 + 0.440665i −0.0216575 + 0.0375119i
\(139\) 16.8301 1.42751 0.713753 0.700397i \(-0.246994\pi\)
0.713753 + 0.700397i \(0.246994\pi\)
\(140\) 2.79586 3.01248i 0.236293 0.254601i
\(141\) 7.98554 0.672504
\(142\) −0.525119 + 0.909533i −0.0440670 + 0.0763263i
\(143\) 0.0353316 + 0.0611962i 0.00295458 + 0.00511748i
\(144\) −1.54109 2.66924i −0.128424 0.222436i
\(145\) −2.97568 + 5.15403i −0.247117 + 0.428019i
\(146\) −2.46244 −0.203793
\(147\) 5.78464 3.94181i 0.477109 0.325115i
\(148\) 3.98574 0.327626
\(149\) −6.36601 + 11.0263i −0.521524 + 0.903306i 0.478163 + 0.878271i \(0.341303\pi\)
−0.999687 + 0.0250347i \(0.992030\pi\)
\(150\) 0.850046 + 1.47232i 0.0694059 + 0.120215i
\(151\) 5.91342 + 10.2424i 0.481228 + 0.833511i 0.999768 0.0215425i \(-0.00685771\pi\)
−0.518540 + 0.855053i \(0.673524\pi\)
\(152\) −0.761548 + 1.31904i −0.0617697 + 0.106988i
\(153\) 3.25351 0.263031
\(154\) 0.0256649 0.0276534i 0.00206814 0.00222837i
\(155\) 3.05096 0.245059
\(156\) −1.80976 + 3.13460i −0.144897 + 0.250969i
\(157\) −3.68843 6.38855i −0.294369 0.509862i 0.680469 0.732777i \(-0.261776\pi\)
−0.974838 + 0.222915i \(0.928443\pi\)
\(158\) 2.05557 + 3.56036i 0.163533 + 0.283247i
\(159\) 1.49085 2.58222i 0.118232 0.204783i
\(160\) 3.59737 0.284397
\(161\) 1.00080 + 3.24594i 0.0788743 + 0.255816i
\(162\) −0.396339 −0.0311393
\(163\) 9.02470 15.6312i 0.706869 1.22433i −0.259144 0.965839i \(-0.583440\pi\)
0.966013 0.258494i \(-0.0832263\pi\)
\(164\) 0.120531 + 0.208766i 0.00941188 + 0.0163019i
\(165\) 0.0151636 + 0.0262641i 0.00118048 + 0.00204466i
\(166\) 2.03624 3.52686i 0.158043 0.273738i
\(167\) 22.6354 1.75158 0.875790 0.482693i \(-0.160341\pi\)
0.875790 + 0.482693i \(0.160341\pi\)
\(168\) 3.92859 + 0.897184i 0.303097 + 0.0692193i
\(169\) −9.14262 −0.703279
\(170\) −0.543467 + 0.941312i −0.0416820 + 0.0721954i
\(171\) −0.500000 0.866025i −0.0382360 0.0662266i
\(172\) −4.15470 7.19616i −0.316793 0.548702i
\(173\) −3.44141 + 5.96070i −0.261646 + 0.453183i −0.966679 0.255990i \(-0.917598\pi\)
0.705034 + 0.709174i \(0.250932\pi\)
\(174\) −2.79833 −0.212141
\(175\) 11.0641 + 2.52674i 0.836366 + 0.191003i
\(176\) −0.110893 −0.00835888
\(177\) 6.48994 11.2409i 0.487814 0.844919i
\(178\) 1.65923 + 2.87388i 0.124365 + 0.215406i
\(179\) −0.310439 0.537696i −0.0232033 0.0401893i 0.854191 0.519960i \(-0.174053\pi\)
−0.877394 + 0.479771i \(0.840720\pi\)
\(180\) −0.776711 + 1.34530i −0.0578926 + 0.100273i
\(181\) −9.31058 −0.692050 −0.346025 0.938225i \(-0.612469\pi\)
−0.346025 + 0.938225i \(0.612469\pi\)
\(182\) −0.606805 1.96808i −0.0449794 0.145883i
\(183\) −2.58759 −0.191280
\(184\) −0.977707 + 1.69344i −0.0720775 + 0.124842i
\(185\) −0.911502 1.57877i −0.0670150 0.116073i
\(186\) 0.717279 + 1.24236i 0.0525934 + 0.0910945i
\(187\) 0.0585289 0.101375i 0.00428006 0.00741328i
\(188\) 14.7167 1.07332
\(189\) −1.79981 + 1.93925i −0.130917 + 0.141060i
\(190\) 0.334080 0.0242367
\(191\) −9.16919 + 15.8815i −0.663459 + 1.14915i 0.316241 + 0.948679i \(0.397579\pi\)
−0.979701 + 0.200466i \(0.935754\pi\)
\(192\) −2.23643 3.87361i −0.161400 0.279554i
\(193\) 7.60019 + 13.1639i 0.547074 + 0.947559i 0.998473 + 0.0552373i \(0.0175915\pi\)
−0.451400 + 0.892322i \(0.649075\pi\)
\(194\) −0.505652 + 0.875814i −0.0363037 + 0.0628798i
\(195\) 1.65550 0.118553
\(196\) 10.6606 7.26443i 0.761472 0.518888i
\(197\) 7.77205 0.553736 0.276868 0.960908i \(-0.410704\pi\)
0.276868 + 0.960908i \(0.410704\pi\)
\(198\) −0.00712991 + 0.0123494i −0.000506701 + 0.000877631i
\(199\) −12.8631 22.2795i −0.911840 1.57935i −0.811463 0.584403i \(-0.801329\pi\)
−0.100377 0.994950i \(-0.532005\pi\)
\(200\) 3.26665 + 5.65801i 0.230987 + 0.400082i
\(201\) 2.25952 3.91361i 0.159375 0.276045i
\(202\) −2.82596 −0.198834
\(203\) −12.7074 + 13.6920i −0.891888 + 0.960989i
\(204\) 5.99595 0.419801
\(205\) 0.0551286 0.0954856i 0.00385035 0.00666900i
\(206\) 0.576518 + 0.998559i 0.0401679 + 0.0695729i
\(207\) −0.641921 1.11184i −0.0446166 0.0772782i
\(208\) −3.02672 + 5.24244i −0.209866 + 0.363498i
\(209\) −0.0359789 −0.00248871
\(210\) −0.260428 0.844656i −0.0179712 0.0582868i
\(211\) 17.2470 1.18733 0.593667 0.804711i \(-0.297680\pi\)
0.593667 + 0.804711i \(0.297680\pi\)
\(212\) 2.74750 4.75882i 0.188699 0.326837i
\(213\) −1.32493 2.29484i −0.0907825 0.157240i
\(214\) 1.70610 + 2.95505i 0.116627 + 0.202003i
\(215\) −1.90028 + 3.29139i −0.129598 + 0.224471i
\(216\) −1.52310 −0.103634
\(217\) 9.33600 + 2.13209i 0.633769 + 0.144736i
\(218\) −0.227870 −0.0154333
\(219\) 3.10649 5.38059i 0.209917 0.363587i
\(220\) 0.0279452 + 0.0484025i 0.00188407 + 0.00326330i
\(221\) −3.19499 5.53388i −0.214918 0.372249i
\(222\) 0.428588 0.742336i 0.0287649 0.0498223i
\(223\) 15.7257 1.05307 0.526537 0.850152i \(-0.323490\pi\)
0.526537 + 0.850152i \(0.323490\pi\)
\(224\) 11.0081 + 2.51395i 0.735507 + 0.167970i
\(225\) −4.28949 −0.285966
\(226\) −3.02772 + 5.24416i −0.201401 + 0.348836i
\(227\) 3.25181 + 5.63230i 0.215830 + 0.373829i 0.953529 0.301301i \(-0.0974209\pi\)
−0.737699 + 0.675130i \(0.764088\pi\)
\(228\) −0.921458 1.59601i −0.0610250 0.105698i
\(229\) −3.93630 + 6.81788i −0.260118 + 0.450538i −0.966273 0.257519i \(-0.917095\pi\)
0.706155 + 0.708057i \(0.250428\pi\)
\(230\) 0.428906 0.0282812
\(231\) 0.0280469 + 0.0909656i 0.00184535 + 0.00598510i
\(232\) −10.7537 −0.706018
\(233\) −11.1395 + 19.2941i −0.729771 + 1.26400i 0.227208 + 0.973846i \(0.427040\pi\)
−0.956980 + 0.290155i \(0.906293\pi\)
\(234\) 0.389209 + 0.674129i 0.0254434 + 0.0440692i
\(235\) −3.36557 5.82933i −0.219545 0.380264i
\(236\) 11.9604 20.7161i 0.778557 1.34850i
\(237\) −10.3728 −0.673787
\(238\) −2.32084 + 2.50065i −0.150438 + 0.162093i
\(239\) 26.5221 1.71557 0.857784 0.514009i \(-0.171840\pi\)
0.857784 + 0.514009i \(0.171840\pi\)
\(240\) −1.29900 + 2.24994i −0.0838504 + 0.145233i
\(241\) −5.54028 9.59605i −0.356881 0.618136i 0.630557 0.776143i \(-0.282827\pi\)
−0.987438 + 0.158007i \(0.949493\pi\)
\(242\) −2.17961 3.77519i −0.140110 0.242678i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −4.76872 −0.305286
\(245\) −5.31545 2.56140i −0.339592 0.163642i
\(246\) 0.0518429 0.00330538
\(247\) −0.982011 + 1.70089i −0.0624838 + 0.108225i
\(248\) 2.75644 + 4.77430i 0.175034 + 0.303168i
\(249\) 5.13762 + 8.89861i 0.325583 + 0.563927i
\(250\) 1.55172 2.68765i 0.0981392 0.169982i
\(251\) 3.32163 0.209659 0.104830 0.994490i \(-0.466570\pi\)
0.104830 + 0.994490i \(0.466570\pi\)
\(252\) −3.31689 + 3.57388i −0.208945 + 0.225133i
\(253\) −0.0461912 −0.00290401
\(254\) 0.202599 0.350912i 0.0127122 0.0220182i
\(255\) −1.37122 2.37502i −0.0858691 0.148730i
\(256\) −2.43007 4.20900i −0.151879 0.263062i
\(257\) −15.0595 + 26.0837i −0.939383 + 1.62706i −0.172758 + 0.984964i \(0.555268\pi\)
−0.766625 + 0.642095i \(0.778065\pi\)
\(258\) −1.78703 −0.111255
\(259\) −1.68593 5.46805i −0.104759 0.339768i
\(260\) 3.05096 0.189212
\(261\) 3.53023 6.11453i 0.218515 0.378480i
\(262\) −3.36534 5.82893i −0.207911 0.360113i
\(263\) 12.7833 + 22.1414i 0.788253 + 1.36529i 0.927036 + 0.374972i \(0.122348\pi\)
−0.138783 + 0.990323i \(0.544319\pi\)
\(264\) −0.0273996 + 0.0474576i −0.00168633 + 0.00292081i
\(265\) −2.51332 −0.154392
\(266\) 1.02229 + 0.233464i 0.0626808 + 0.0143146i
\(267\) −8.37281 −0.512408
\(268\) 4.16411 7.21245i 0.254364 0.440571i
\(269\) 3.17565 + 5.50038i 0.193623 + 0.335364i 0.946448 0.322856i \(-0.104643\pi\)
−0.752825 + 0.658220i \(0.771310\pi\)
\(270\) 0.167040 + 0.289322i 0.0101657 + 0.0176076i
\(271\) −3.93087 + 6.80846i −0.238783 + 0.413585i −0.960365 0.278744i \(-0.910082\pi\)
0.721582 + 0.692329i \(0.243415\pi\)
\(272\) 10.0279 0.608030
\(273\) 5.06589 + 1.15691i 0.306601 + 0.0700195i
\(274\) 0.888674 0.0536868
\(275\) −0.0771656 + 0.133655i −0.00465326 + 0.00805968i
\(276\) −1.18301 2.04903i −0.0712086 0.123337i
\(277\) 2.93784 + 5.08849i 0.176518 + 0.305738i 0.940686 0.339280i \(-0.110183\pi\)
−0.764168 + 0.645018i \(0.776850\pi\)
\(278\) 3.33520 5.77674i 0.200032 0.346466i
\(279\) −3.61953 −0.216695
\(280\) −1.00080 3.24594i −0.0598094 0.193982i
\(281\) 16.7309 0.998084 0.499042 0.866578i \(-0.333685\pi\)
0.499042 + 0.866578i \(0.333685\pi\)
\(282\) 1.58249 2.74095i 0.0942358 0.163221i
\(283\) 10.4479 + 18.0962i 0.621060 + 1.07571i 0.989289 + 0.145973i \(0.0466312\pi\)
−0.368228 + 0.929735i \(0.620036\pi\)
\(284\) −2.44173 4.22920i −0.144890 0.250957i
\(285\) −0.421458 + 0.729986i −0.0249650 + 0.0432407i
\(286\) 0.0280066 0.00165606
\(287\) 0.235423 0.253663i 0.0138966 0.0149732i
\(288\) −4.26777 −0.251481
\(289\) 3.20732 5.55525i 0.188666 0.326779i
\(290\) 1.17938 + 2.04274i 0.0692554 + 0.119954i
\(291\) −1.27581 2.20976i −0.0747892 0.129539i
\(292\) 5.72499 9.91598i 0.335030 0.580289i
\(293\) −12.1831 −0.711744 −0.355872 0.934535i \(-0.615816\pi\)
−0.355872 + 0.934535i \(0.615816\pi\)
\(294\) −0.206647 2.76666i −0.0120519 0.161355i
\(295\) −10.9409 −0.637007
\(296\) 1.64703 2.85273i 0.0957315 0.165812i
\(297\) −0.0179894 0.0311586i −0.00104385 0.00180801i
\(298\) 2.52310 + 4.37013i 0.146159 + 0.253155i
\(299\) −1.26075 + 2.18368i −0.0729108 + 0.126285i
\(300\) −7.90517 −0.456405
\(301\) −8.11503 + 8.74376i −0.467743 + 0.503982i
\(302\) 4.68744 0.269732
\(303\) 3.56508 6.17491i 0.204809 0.354739i
\(304\) −1.54109 2.66924i −0.0883873 0.153091i
\(305\) 1.09056 + 1.88891i 0.0624454 + 0.108159i
\(306\) 0.644747 1.11673i 0.0368577 0.0638394i
\(307\) −25.2971 −1.44378 −0.721890 0.692008i \(-0.756726\pi\)
−0.721890 + 0.692008i \(0.756726\pi\)
\(308\) 0.0516880 + 0.167642i 0.00294520 + 0.00955228i
\(309\) −2.90922 −0.165500
\(310\) 0.604606 1.04721i 0.0343393 0.0594774i
\(311\) −4.94365 8.56265i −0.280329 0.485543i 0.691137 0.722724i \(-0.257110\pi\)
−0.971466 + 0.237180i \(0.923777\pi\)
\(312\) 1.49570 + 2.59062i 0.0846771 + 0.146665i
\(313\) 0.687371 1.19056i 0.0388525 0.0672945i −0.845945 0.533270i \(-0.820963\pi\)
0.884798 + 0.465975i \(0.154296\pi\)
\(314\) −2.92373 −0.164996
\(315\) 2.17417 + 0.496522i 0.122501 + 0.0279758i
\(316\) −19.1162 −1.07537
\(317\) −13.3451 + 23.1144i −0.749535 + 1.29823i 0.198511 + 0.980099i \(0.436390\pi\)
−0.948046 + 0.318134i \(0.896944\pi\)
\(318\) −0.590880 1.02343i −0.0331349 0.0573913i
\(319\) −0.127014 0.219994i −0.00711140 0.0123173i
\(320\) −1.88512 + 3.26513i −0.105381 + 0.182526i
\(321\) −8.60931 −0.480525
\(322\) 1.31246 + 0.299731i 0.0731407 + 0.0167034i
\(323\) 3.25351 0.181030
\(324\) 0.921458 1.59601i 0.0511921 0.0886673i
\(325\) 4.21233 + 7.29597i 0.233658 + 0.404707i
\(326\) −3.57684 6.19526i −0.198103 0.343124i
\(327\) 0.287469 0.497911i 0.0158971 0.0275346i
\(328\) 0.199228 0.0110005
\(329\) −6.22502 20.1899i −0.343197 1.11310i
\(330\) 0.0120198 0.000661670
\(331\) 18.1868 31.5004i 0.999635 1.73142i 0.476412 0.879222i \(-0.341937\pi\)
0.523223 0.852196i \(-0.324729\pi\)
\(332\) 9.46819 + 16.3994i 0.519635 + 0.900034i
\(333\) 1.08137 + 1.87298i 0.0592586 + 0.102639i
\(334\) 4.48564 7.76935i 0.245443 0.425120i
\(335\) −3.80918 −0.208118
\(336\) −5.54731 + 5.97710i −0.302631 + 0.326078i
\(337\) 30.0191 1.63524 0.817622 0.575756i \(-0.195292\pi\)
0.817622 + 0.575756i \(0.195292\pi\)
\(338\) −1.81179 + 3.13811i −0.0985482 + 0.170690i
\(339\) −7.63922 13.2315i −0.414906 0.718637i
\(340\) −2.52704 4.37696i −0.137048 0.237374i
\(341\) −0.0651132 + 0.112779i −0.00352608 + 0.00610735i
\(342\) −0.396339 −0.0214315
\(343\) −14.4755 11.5525i −0.781601 0.623779i
\(344\) −6.86739 −0.370265
\(345\) −0.541085 + 0.937187i −0.0291310 + 0.0504564i
\(346\) 1.36396 + 2.36245i 0.0733271 + 0.127006i
\(347\) −14.1044 24.4295i −0.757162 1.31144i −0.944292 0.329108i \(-0.893252\pi\)
0.187131 0.982335i \(-0.440081\pi\)
\(348\) 6.50591 11.2686i 0.348753 0.604058i
\(349\) −4.32568 −0.231548 −0.115774 0.993276i \(-0.536935\pi\)
−0.115774 + 0.993276i \(0.536935\pi\)
\(350\) 3.05984 3.29690i 0.163555 0.176227i
\(351\) −1.96402 −0.104832
\(352\) −0.0767749 + 0.132978i −0.00409211 + 0.00708775i
\(353\) 10.1227 + 17.5330i 0.538776 + 0.933187i 0.998970 + 0.0453691i \(0.0144464\pi\)
−0.460194 + 0.887818i \(0.652220\pi\)
\(354\) −2.57221 4.45521i −0.136712 0.236792i
\(355\) −1.11680 + 1.93436i −0.0592737 + 0.102665i
\(356\) −15.4304 −0.817809
\(357\) −2.53624 8.22587i −0.134232 0.435359i
\(358\) −0.246078 −0.0130056
\(359\) −6.57989 + 11.3967i −0.347273 + 0.601495i −0.985764 0.168134i \(-0.946226\pi\)
0.638491 + 0.769629i \(0.279559\pi\)
\(360\) 0.641921 + 1.11184i 0.0338322 + 0.0585991i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) −1.84507 + 3.19576i −0.0969747 + 0.167965i
\(363\) 10.9987 0.577282
\(364\) 9.33600 + 2.13209i 0.489339 + 0.111752i
\(365\) −5.23701 −0.274118
\(366\) −0.512782 + 0.888164i −0.0268035 + 0.0464251i
\(367\) −12.2002 21.1314i −0.636848 1.10305i −0.986120 0.166031i \(-0.946905\pi\)
0.349273 0.937021i \(-0.386429\pi\)
\(368\) −1.97851 3.42688i −0.103137 0.178638i
\(369\) −0.0654023 + 0.113280i −0.00340471 + 0.00589713i
\(370\) −0.722527 −0.0375624
\(371\) −7.69081 1.75638i −0.399287 0.0911864i
\(372\) −6.67048 −0.345848
\(373\) −1.23438 + 2.13800i −0.0639136 + 0.110702i −0.896212 0.443627i \(-0.853692\pi\)
0.832298 + 0.554328i \(0.187025\pi\)
\(374\) −0.0231973 0.0401788i −0.00119950 0.00207760i
\(375\) 3.91513 + 6.78120i 0.202176 + 0.350180i
\(376\) 6.08137 10.5332i 0.313623 0.543210i
\(377\) −13.8669 −0.714180
\(378\) 0.308961 + 1.00206i 0.0158912 + 0.0515406i
\(379\) −18.7800 −0.964665 −0.482332 0.875988i \(-0.660210\pi\)
−0.482332 + 0.875988i \(0.660210\pi\)
\(380\) −0.776711 + 1.34530i −0.0398445 + 0.0690126i
\(381\) 0.511177 + 0.885385i 0.0261884 + 0.0453597i
\(382\) 3.63410 + 6.29445i 0.185937 + 0.322052i
\(383\) −15.8144 + 27.3914i −0.808081 + 1.39964i 0.106111 + 0.994354i \(0.466160\pi\)
−0.914192 + 0.405282i \(0.867173\pi\)
\(384\) −10.3083 −0.526044
\(385\) 0.0545831 0.0588120i 0.00278181 0.00299734i
\(386\) 6.02449 0.306639
\(387\) 2.25442 3.90477i 0.114599 0.198490i
\(388\) −2.35121 4.07241i −0.119364 0.206745i
\(389\) 2.16873 + 3.75636i 0.109959 + 0.190455i 0.915754 0.401741i \(-0.131595\pi\)
−0.805794 + 0.592196i \(0.798261\pi\)
\(390\) 0.328070 0.568234i 0.0166125 0.0287736i
\(391\) 4.17700 0.211240
\(392\) −0.794126 10.6321i −0.0401094 0.537000i
\(393\) 16.9821 0.856635
\(394\) 1.54018 2.66767i 0.0775932 0.134395i
\(395\) 4.37170 + 7.57201i 0.219964 + 0.380989i
\(396\) −0.0331530 0.0574227i −0.00166600 0.00288560i
\(397\) −0.682778 + 1.18261i −0.0342676 + 0.0593533i −0.882651 0.470030i \(-0.844243\pi\)
0.848383 + 0.529383i \(0.177577\pi\)
\(398\) −10.1963 −0.511093
\(399\) −1.79981 + 1.93925i −0.0901030 + 0.0970840i
\(400\) −13.2209 −0.661047
\(401\) −11.3302 + 19.6246i −0.565806 + 0.980004i 0.431169 + 0.902271i \(0.358101\pi\)
−0.996974 + 0.0777327i \(0.975232\pi\)
\(402\) −0.895536 1.55111i −0.0446653 0.0773626i
\(403\) 3.55441 + 6.15642i 0.177058 + 0.306673i
\(404\) 6.57015 11.3798i 0.326877 0.566168i
\(405\) −0.842916 −0.0418848
\(406\) 2.18140 + 7.07503i 0.108261 + 0.351128i
\(407\) 0.0778128 0.00385704
\(408\) 2.47771 4.29151i 0.122665 0.212462i
\(409\) 13.3916 + 23.1950i 0.662174 + 1.14692i 0.980043 + 0.198785i \(0.0636994\pi\)
−0.317869 + 0.948135i \(0.602967\pi\)
\(410\) −0.0218496 0.0378446i −0.00107907 0.00186901i
\(411\) −1.12111 + 1.94181i −0.0553000 + 0.0957825i
\(412\) −5.36145 −0.264140
\(413\) −33.4796 7.64584i −1.64742 0.376227i
\(414\) −0.508836 −0.0250079
\(415\) 4.33058 7.50078i 0.212580 0.368199i
\(416\) 4.19100 + 7.25902i 0.205481 + 0.355903i
\(417\) 8.41503 + 14.5753i 0.412086 + 0.713753i
\(418\) −0.00712991 + 0.0123494i −0.000348735 + 0.000604027i
\(419\) 29.9706 1.46416 0.732081 0.681218i \(-0.238549\pi\)
0.732081 + 0.681218i \(0.238549\pi\)
\(420\) 4.00681 + 0.915048i 0.195512 + 0.0446498i
\(421\) −28.9616 −1.41150 −0.705750 0.708460i \(-0.749390\pi\)
−0.705750 + 0.708460i \(0.749390\pi\)
\(422\) 3.41783 5.91986i 0.166377 0.288174i
\(423\) 3.99277 + 6.91568i 0.194135 + 0.336252i
\(424\) −2.27070 3.93297i −0.110275 0.191002i
\(425\) 6.97796 12.0862i 0.338481 0.586266i
\(426\) −1.05024 −0.0508842
\(427\) 2.01713 + 6.54222i 0.0976156 + 0.316600i
\(428\) −15.8662 −0.766924
\(429\) −0.0353316 + 0.0611962i −0.00170583 + 0.00295458i
\(430\) 0.753156 + 1.30450i 0.0363204 + 0.0629088i
\(431\) −10.4379 18.0789i −0.502774 0.870831i −0.999995 0.00320655i \(-0.998979\pi\)
0.497220 0.867624i \(-0.334354\pi\)
\(432\) 1.54109 2.66924i 0.0741455 0.128424i
\(433\) −7.01266 −0.337007 −0.168503 0.985701i \(-0.553893\pi\)
−0.168503 + 0.985701i \(0.553893\pi\)
\(434\) 2.58193 2.78197i 0.123936 0.133539i
\(435\) −5.95137 −0.285346
\(436\) 0.529782 0.917609i 0.0253719 0.0439455i
\(437\) −0.641921 1.11184i −0.0307072 0.0531865i
\(438\) −1.23122 2.13254i −0.0588300 0.101897i
\(439\) 0.874034 1.51387i 0.0417153 0.0722531i −0.844414 0.535691i \(-0.820051\pi\)
0.886129 + 0.463438i \(0.153384\pi\)
\(440\) 0.0461912 0.00220208
\(441\) 6.30603 + 3.03874i 0.300287 + 0.144702i
\(442\) −2.53259 −0.120463
\(443\) 9.44051 16.3514i 0.448532 0.776880i −0.549759 0.835323i \(-0.685280\pi\)
0.998291 + 0.0584433i \(0.0186137\pi\)
\(444\) 1.99287 + 3.45175i 0.0945774 + 0.163813i
\(445\) 3.52879 + 6.11204i 0.167281 + 0.289738i
\(446\) 3.11636 5.39769i 0.147564 0.255588i
\(447\) −12.7320 −0.602204
\(448\) −8.05028 + 8.67399i −0.380340 + 0.409808i
\(449\) 19.9572 0.941839 0.470920 0.882176i \(-0.343922\pi\)
0.470920 + 0.882176i \(0.343922\pi\)
\(450\) −0.850046 + 1.47232i −0.0400715 + 0.0694059i
\(451\) 0.00235310 + 0.00407569i 0.000110803 + 0.000191917i
\(452\) −14.0784 24.3846i −0.662194 1.14695i
\(453\) −5.91342 + 10.2424i −0.277837 + 0.481228i
\(454\) 2.57763 0.120974
\(455\) −1.29053 4.18562i −0.0605009 0.196225i
\(456\) −1.52310 −0.0713255
\(457\) 10.7787 18.6693i 0.504208 0.873314i −0.495780 0.868448i \(-0.665118\pi\)
0.999988 0.00486577i \(-0.00154883\pi\)
\(458\) 1.56011 + 2.70219i 0.0728991 + 0.126265i
\(459\) 1.62676 + 2.81763i 0.0759305 + 0.131516i
\(460\) −0.997174 + 1.72716i −0.0464935 + 0.0805291i
\(461\) −27.9766 −1.30300 −0.651500 0.758649i \(-0.725860\pi\)
−0.651500 + 0.758649i \(0.725860\pi\)
\(462\) 0.0367810 + 0.00839979i 0.00171121 + 0.000390794i
\(463\) 38.8491 1.80547 0.902736 0.430195i \(-0.141555\pi\)
0.902736 + 0.430195i \(0.141555\pi\)
\(464\) 10.8808 18.8460i 0.505126 0.874905i
\(465\) 1.52548 + 2.64220i 0.0707423 + 0.122529i
\(466\) 4.41500 + 7.64701i 0.204521 + 0.354241i
\(467\) 4.31966 7.48187i 0.199890 0.346219i −0.748603 0.663019i \(-0.769275\pi\)
0.948493 + 0.316799i \(0.102608\pi\)
\(468\) −3.61953 −0.167313
\(469\) −11.6562 2.66196i −0.538232 0.122918i
\(470\) −2.66781 −0.123057
\(471\) 3.68843 6.38855i 0.169954 0.294369i
\(472\) −9.88480 17.1210i −0.454985 0.788057i
\(473\) −0.0811114 0.140489i −0.00372951 0.00645970i
\(474\) −2.05557 + 3.56036i −0.0944156 + 0.163533i
\(475\) −4.28949 −0.196815
\(476\) −4.67407 15.1596i −0.214236 0.694839i
\(477\) 2.98169 0.136522
\(478\) 5.25586 9.10341i 0.240397 0.416380i
\(479\) −7.42013 12.8521i −0.339035 0.587225i 0.645217 0.764000i \(-0.276767\pi\)
−0.984251 + 0.176774i \(0.943434\pi\)
\(480\) 1.79869 + 3.11542i 0.0820985 + 0.142199i
\(481\) 2.12383 3.67858i 0.0968383 0.167729i
\(482\) −4.39166 −0.200034
\(483\) −2.31067 + 2.48969i −0.105139 + 0.113285i
\(484\) 20.2697 0.921349
\(485\) −1.07540 + 1.86264i −0.0488313 + 0.0845783i
\(486\) −0.198169 0.343239i −0.00898914 0.0155696i
\(487\) −8.95213 15.5055i −0.405660 0.702623i 0.588738 0.808324i \(-0.299625\pi\)
−0.994398 + 0.105701i \(0.966291\pi\)
\(488\) −1.97058 + 3.41314i −0.0892038 + 0.154506i
\(489\) 18.0494 0.816222
\(490\) −1.93253 + 1.31688i −0.0873030 + 0.0594906i
\(491\) 19.1867 0.865883 0.432942 0.901422i \(-0.357476\pi\)
0.432942 + 0.901422i \(0.357476\pi\)
\(492\) −0.120531 + 0.208766i −0.00543395 + 0.00941188i
\(493\) 11.4856 + 19.8937i 0.517287 + 0.895968i
\(494\) 0.389209 + 0.674129i 0.0175113 + 0.0303305i
\(495\) −0.0151636 + 0.0262641i −0.000681552 + 0.00118048i
\(496\) −11.1560 −0.500919
\(497\) −4.76922 + 5.13873i −0.213929 + 0.230504i
\(498\) 4.07247 0.182492
\(499\) −12.2922 + 21.2906i −0.550272 + 0.953100i 0.447982 + 0.894043i \(0.352143\pi\)
−0.998255 + 0.0590574i \(0.981191\pi\)
\(500\) 7.21525 + 12.4972i 0.322676 + 0.558891i
\(501\) 11.3177 + 19.6028i 0.505637 + 0.875790i
\(502\) 0.658245 1.14011i 0.0293789 0.0508857i
\(503\) 16.7355 0.746199 0.373099 0.927791i \(-0.378295\pi\)
0.373099 + 0.927791i \(0.378295\pi\)
\(504\) 1.18731 + 3.85085i 0.0528870 + 0.171530i
\(505\) −6.01013 −0.267447
\(506\) −0.00915367 + 0.0158546i −0.000406930 + 0.000704824i
\(507\) −4.57131 7.91774i −0.203019 0.351639i
\(508\) 0.942057 + 1.63169i 0.0417970 + 0.0723946i
\(509\) 11.7592 20.3675i 0.521217 0.902775i −0.478478 0.878099i \(-0.658811\pi\)
0.999696 0.0246752i \(-0.00785517\pi\)
\(510\) −1.08693 −0.0481302
\(511\) −16.0254 3.65977i −0.708922 0.161899i
\(512\) −22.5429 −0.996264
\(513\) 0.500000 0.866025i 0.0220755 0.0382360i
\(514\) 5.96864 + 10.3380i 0.263266 + 0.455989i
\(515\) 1.22611 + 2.12369i 0.0540291 + 0.0935811i
\(516\) 4.15470 7.19616i 0.182901 0.316793i
\(517\) 0.287311 0.0126359
\(518\) −2.21095 0.504922i −0.0971436 0.0221850i
\(519\) −6.88282 −0.302122
\(520\) 1.26075 2.18368i 0.0552874 0.0957605i
\(521\) −3.02740 5.24361i −0.132633 0.229727i 0.792058 0.610446i \(-0.209010\pi\)
−0.924691 + 0.380719i \(0.875676\pi\)
\(522\) −1.39916 2.42342i −0.0612398 0.106070i
\(523\) −18.6378 + 32.2816i −0.814973 + 1.41157i 0.0943746 + 0.995537i \(0.469915\pi\)
−0.909347 + 0.416038i \(0.863418\pi\)
\(524\) 31.2966 1.36720
\(525\) 3.34382 + 10.8451i 0.145936 + 0.473321i
\(526\) 10.1330 0.441822
\(527\) 5.88809 10.1985i 0.256489 0.444252i
\(528\) −0.0554465 0.0960362i −0.00241300 0.00417944i
\(529\) 10.6759 + 18.4912i 0.464169 + 0.803963i
\(530\) −0.498062 + 0.862669i −0.0216344 + 0.0374719i
\(531\) 12.9799 0.563279
\(532\) −3.31689 + 3.57388i −0.143806 + 0.154947i
\(533\) 0.256903 0.0111277
\(534\) −1.65923 + 2.87388i −0.0718021 + 0.124365i
\(535\) 3.62846 + 6.28468i 0.156872 + 0.271711i
\(536\) −3.44147 5.96080i −0.148649 0.257467i
\(537\) 0.310439 0.537696i 0.0133964 0.0232033i
\(538\) 2.51726 0.108527
\(539\) 0.208125 0.141822i 0.00896458 0.00610871i
\(540\) −1.55342 −0.0668487
\(541\) 2.26300 3.91963i 0.0972938 0.168518i −0.813270 0.581887i \(-0.802315\pi\)
0.910564 + 0.413369i \(0.135648\pi\)
\(542\) 1.55795 + 2.69846i 0.0669199 + 0.115909i
\(543\) −4.65529 8.06320i −0.199778 0.346025i
\(544\) 6.94263 12.0250i 0.297663 0.515567i
\(545\) −0.484625 −0.0207590
\(546\) 1.40100 1.50955i 0.0599573 0.0646026i
\(547\) 11.7047 0.500456 0.250228 0.968187i \(-0.419494\pi\)
0.250228 + 0.968187i \(0.419494\pi\)
\(548\) −2.06610 + 3.57859i −0.0882595 + 0.152870i
\(549\) −1.29380 2.24092i −0.0552179 0.0956402i
\(550\) 0.0305837 + 0.0529725i 0.00130409 + 0.00225876i
\(551\) 3.53023 6.11453i 0.150393 0.260488i
\(552\) −1.95541 −0.0832279
\(553\) 8.08599 + 26.2256i 0.343851 + 1.11523i
\(554\) 2.32876 0.0989396
\(555\) 0.911502 1.57877i 0.0386911 0.0670150i
\(556\) 15.5082 + 26.8610i 0.657694 + 1.13916i
\(557\) −7.63463 13.2236i −0.323490 0.560300i 0.657716 0.753266i \(-0.271523\pi\)
−0.981206 + 0.192966i \(0.938189\pi\)
\(558\) −0.717279 + 1.24236i −0.0303648 + 0.0525934i
\(559\) −8.85545 −0.374546
\(560\) 6.70116 + 1.53037i 0.283176 + 0.0646697i
\(561\) 0.117058 0.00494218
\(562\) 3.31556 5.74271i 0.139858 0.242242i
\(563\) 15.2869 + 26.4777i 0.644267 + 1.11590i 0.984470 + 0.175551i \(0.0561708\pi\)
−0.340203 + 0.940352i \(0.610496\pi\)
\(564\) 7.35834 + 12.7450i 0.309842 + 0.536662i
\(565\) −6.43922 + 11.1531i −0.270900 + 0.469213i
\(566\) 8.28177 0.348109
\(567\) −2.57934 0.589053i −0.108322 0.0247379i
\(568\) −4.03598 −0.169346
\(569\) 4.32265 7.48704i 0.181215 0.313873i −0.761080 0.648658i \(-0.775330\pi\)
0.942294 + 0.334785i \(0.108664\pi\)
\(570\) 0.167040 + 0.289322i 0.00699654 + 0.0121184i
\(571\) −0.587899 1.01827i −0.0246028 0.0426133i 0.853462 0.521155i \(-0.174499\pi\)
−0.878065 + 0.478542i \(0.841165\pi\)
\(572\) −0.0651132 + 0.112779i −0.00272252 + 0.00471555i
\(573\) −18.3384 −0.766097
\(574\) −0.0404135 0.131075i −0.00168683 0.00547095i
\(575\) −5.50703 −0.229659
\(576\) 2.23643 3.87361i 0.0931845 0.161400i
\(577\) 6.17057 + 10.6877i 0.256884 + 0.444936i 0.965406 0.260753i \(-0.0839708\pi\)
−0.708522 + 0.705689i \(0.750637\pi\)
\(578\) −1.27119 2.20176i −0.0528744 0.0915811i
\(579\) −7.60019 + 13.1639i −0.315853 + 0.547074i
\(580\) −10.9679 −0.455416
\(581\) 18.4934 19.9263i 0.767237 0.826680i
\(582\) −1.01130 −0.0419199
\(583\) 0.0536390 0.0929055i 0.00222150 0.00384775i
\(584\) −4.73148 8.19516i −0.195790 0.339118i
\(585\) 0.827752 + 1.43371i 0.0342233 + 0.0592766i
\(586\) −2.41432 + 4.18172i −0.0997345 + 0.172745i
\(587\) 19.9966 0.825350 0.412675 0.910878i \(-0.364595\pi\)
0.412675 + 0.910878i \(0.364595\pi\)
\(588\) 11.6215 + 5.60014i 0.479262 + 0.230946i
\(589\) −3.61953 −0.149140
\(590\) −2.16816 + 3.75536i −0.0892617 + 0.154606i
\(591\) 3.88602 + 6.73079i 0.159850 + 0.276868i
\(592\) 3.33296 + 5.77286i 0.136984 + 0.237263i
\(593\) −5.58702 + 9.67700i −0.229431 + 0.397387i −0.957640 0.287969i \(-0.907020\pi\)
0.728208 + 0.685356i \(0.240353\pi\)
\(594\) −0.0142598 −0.000585087
\(595\) −4.93586 + 5.31828i −0.202351 + 0.218028i
\(596\) −23.4640 −0.961125
\(597\) 12.8631 22.2795i 0.526451 0.911840i
\(598\) 0.499682 + 0.865475i 0.0204335 + 0.0353919i
\(599\) 12.0269 + 20.8313i 0.491407 + 0.851143i 0.999951 0.00989358i \(-0.00314928\pi\)
−0.508544 + 0.861036i \(0.669816\pi\)
\(600\) −3.26665 + 5.65801i −0.133361 + 0.230987i
\(601\) 32.2158 1.31411 0.657054 0.753843i \(-0.271802\pi\)
0.657054 + 0.753843i \(0.271802\pi\)
\(602\) 1.39305 + 4.51814i 0.0567766 + 0.184146i
\(603\) 4.51905 0.184030
\(604\) −10.8979 + 18.8758i −0.443431 + 0.768045i
\(605\) −4.63549 8.02891i −0.188460 0.326421i
\(606\) −1.41298 2.44735i −0.0573984 0.0994169i
\(607\) 1.12862 1.95482i 0.0458092 0.0793438i −0.842212 0.539147i \(-0.818747\pi\)
0.888021 + 0.459803i \(0.152080\pi\)
\(608\) −4.26777 −0.173081
\(609\) −18.2113 4.15898i −0.737960 0.168530i
\(610\) 0.864463 0.0350011
\(611\) 7.84188 13.5825i 0.317249 0.549491i
\(612\) 2.99798 + 5.19265i 0.121186 + 0.209900i
\(613\) −6.44356 11.1606i −0.260253 0.450771i 0.706056 0.708156i \(-0.250473\pi\)
−0.966309 + 0.257385i \(0.917139\pi\)
\(614\) −5.01310 + 8.68294i −0.202312 + 0.350415i
\(615\) 0.110257 0.00444600
\(616\) 0.141346 + 0.0322797i 0.00569500 + 0.00130059i
\(617\) 25.0627 1.00899 0.504493 0.863416i \(-0.331679\pi\)
0.504493 + 0.863416i \(0.331679\pi\)
\(618\) −0.576518 + 0.998559i −0.0231910 + 0.0401679i
\(619\) 8.41827 + 14.5809i 0.338359 + 0.586055i 0.984124 0.177481i \(-0.0567949\pi\)
−0.645765 + 0.763536i \(0.723462\pi\)
\(620\) 2.81133 + 4.86936i 0.112906 + 0.195558i
\(621\) 0.641921 1.11184i 0.0257594 0.0446166i
\(622\) −3.91872 −0.157126
\(623\) 6.52692 + 21.1690i 0.261495 + 0.848119i
\(624\) −6.05345 −0.242332
\(625\) −7.42361 + 12.8581i −0.296944 + 0.514323i
\(626\) −0.272432 0.471865i −0.0108886 0.0188595i
\(627\) −0.0179894 0.0311586i −0.000718429 0.00124436i
\(628\) 6.79747 11.7736i 0.271248 0.469816i
\(629\) −7.03649 −0.280563
\(630\) 0.601280 0.647865i 0.0239555 0.0258116i
\(631\) −25.8497 −1.02906 −0.514530 0.857472i \(-0.672034\pi\)
−0.514530 + 0.857472i \(0.672034\pi\)
\(632\) −7.89939 + 13.6821i −0.314221 + 0.544247i
\(633\) 8.62351 + 14.9364i 0.342754 + 0.593667i
\(634\) 5.28918 + 9.16112i 0.210060 + 0.363835i
\(635\) 0.430880 0.746305i 0.0170989 0.0296162i
\(636\) 5.49501 0.217891
\(637\) −1.02402 13.7100i −0.0405732 0.543208i
\(638\) −0.100681 −0.00398599
\(639\) 1.32493 2.29484i 0.0524133 0.0907825i
\(640\) 4.34452 + 7.52493i 0.171732 + 0.297449i
\(641\) −24.6670 42.7244i −0.974286 1.68751i −0.682270 0.731100i \(-0.739007\pi\)
−0.292016 0.956413i \(-0.594326\pi\)
\(642\) −1.70610 + 2.95505i −0.0673344 + 0.116627i
\(643\) −2.55951 −0.100937 −0.0504686 0.998726i \(-0.516071\pi\)
−0.0504686 + 0.998726i \(0.516071\pi\)
\(644\) −4.25836 + 4.58829i −0.167803 + 0.180804i
\(645\) −3.80057 −0.149647
\(646\) 0.644747 1.11673i 0.0253672 0.0439373i
\(647\) 17.5916 + 30.4696i 0.691597 + 1.19788i 0.971314 + 0.237799i \(0.0764260\pi\)
−0.279717 + 0.960082i \(0.590241\pi\)
\(648\) −0.761548 1.31904i −0.0299164 0.0518168i
\(649\) 0.233501 0.404435i 0.00916571 0.0158755i
\(650\) 3.33902 0.130967
\(651\) 2.82155 + 9.15126i 0.110585 + 0.358666i
\(652\) 33.2635 1.30270
\(653\) 14.0120 24.2695i 0.548332 0.949739i −0.450057 0.893000i \(-0.648596\pi\)
0.998389 0.0567392i \(-0.0180703\pi\)
\(654\) −0.113935 0.197341i −0.00445522 0.00771666i
\(655\) −7.15725 12.3967i −0.279657 0.484380i
\(656\) −0.201581 + 0.349149i −0.00787042 + 0.0136320i
\(657\) 6.21297 0.242391
\(658\) −8.16356 1.86434i −0.318249 0.0726795i
\(659\) 30.0543 1.17075 0.585374 0.810763i \(-0.300948\pi\)
0.585374 + 0.810763i \(0.300948\pi\)
\(660\) −0.0279452 + 0.0484025i −0.00108777 + 0.00188407i
\(661\) −4.19955 7.27383i −0.163343 0.282919i 0.772722 0.634744i \(-0.218895\pi\)
−0.936066 + 0.351825i \(0.885561\pi\)
\(662\) −7.20811 12.4848i −0.280151 0.485236i
\(663\) 3.19499 5.53388i 0.124083 0.214918i
\(664\) 15.6502 0.607344
\(665\) 2.17417 + 0.496522i 0.0843107 + 0.0192543i
\(666\) 0.857176 0.0332149
\(667\) 4.53225 7.85009i 0.175489 0.303957i
\(668\) 20.8576 + 36.1264i 0.807003 + 1.39777i
\(669\) 7.86287 + 13.6189i 0.303996 + 0.526537i
\(670\) −0.754862 + 1.30746i −0.0291629 + 0.0505115i
\(671\) −0.0930988 −0.00359404
\(672\) 3.32689 + 10.7902i 0.128338 + 0.416242i
\(673\) 12.5476 0.483673 0.241837 0.970317i \(-0.422250\pi\)
0.241837 + 0.970317i \(0.422250\pi\)
\(674\) 5.94886 10.3037i 0.229141 0.396885i
\(675\) −2.14475 3.71481i −0.0825513 0.142983i
\(676\) −8.42454 14.5917i −0.324021 0.561220i
\(677\) 7.58276 13.1337i 0.291429 0.504770i −0.682719 0.730681i \(-0.739203\pi\)
0.974148 + 0.225911i \(0.0725360\pi\)
\(678\) −6.05544 −0.232558
\(679\) −4.59241 + 4.94822i −0.176241 + 0.189895i
\(680\) −4.17700 −0.160180
\(681\) −3.25181 + 5.63230i −0.124610 + 0.215830i
\(682\) 0.0258069 + 0.0446988i 0.000988197 + 0.00171161i
\(683\) −14.8908 25.7916i −0.569781 0.986890i −0.996587 0.0825467i \(-0.973695\pi\)
0.426806 0.904343i \(-0.359639\pi\)
\(684\) 0.921458 1.59601i 0.0352328 0.0610250i
\(685\) 1.88999 0.0722130
\(686\) −6.83388 + 2.67918i −0.260919 + 0.102292i
\(687\) −7.87261 −0.300359
\(688\) 6.94850 12.0352i 0.264909 0.458836i
\(689\) −2.92805 5.07154i −0.111550 0.193210i
\(690\) 0.214453 + 0.371443i 0.00816408 + 0.0141406i
\(691\) 13.9759 24.2070i 0.531668 0.920876i −0.467648 0.883915i \(-0.654899\pi\)
0.999317 0.0369619i \(-0.0117680\pi\)
\(692\) −12.6845 −0.482191
\(693\) −0.0647551 + 0.0697721i −0.00245984 + 0.00265042i
\(694\) −11.1802 −0.424395
\(695\) 7.09316 12.2857i 0.269059 0.466024i
\(696\) −5.37687 9.31301i −0.203810 0.353009i
\(697\) −0.212787 0.368558i −0.00805989 0.0139601i
\(698\) −0.857216 + 1.48474i −0.0324461 + 0.0561983i
\(699\) −22.2790 −0.842667
\(700\) 6.16238 + 19.9867i 0.232916 + 0.755426i
\(701\) −3.66534 −0.138438 −0.0692190 0.997601i \(-0.522051\pi\)
−0.0692190 + 0.997601i \(0.522051\pi\)
\(702\) −0.389209 + 0.674129i −0.0146897 + 0.0254434i
\(703\) 1.08137 + 1.87298i 0.0407846 + 0.0706409i
\(704\) −0.0804642 0.139368i −0.00303261 0.00525263i
\(705\) 3.36557 5.82933i 0.126755 0.219545i
\(706\) 8.02402 0.301988
\(707\) −18.3912 4.20005i −0.691671 0.157959i
\(708\) 23.9208 0.899000
\(709\) 8.48085 14.6893i 0.318505 0.551667i −0.661671 0.749794i \(-0.730153\pi\)
0.980176 + 0.198127i \(0.0634859\pi\)
\(710\) 0.442631 + 0.766660i 0.0166117 + 0.0287722i
\(711\) −5.18641 8.98312i −0.194505 0.336893i
\(712\) −6.37630 + 11.0441i −0.238962 + 0.413894i
\(713\) −4.64690 −0.174028
\(714\) −3.32605 0.759580i −0.124474 0.0284266i
\(715\) 0.0595632 0.00222754
\(716\) 0.572113 0.990928i 0.0213809 0.0370327i
\(717\) 13.2610 + 22.9688i 0.495242 + 0.857784i
\(718\) 2.60786 + 4.51695i 0.0973246 + 0.168571i
\(719\) 18.9783 32.8715i 0.707773 1.22590i −0.257909 0.966169i \(-0.583033\pi\)
0.965681 0.259729i \(-0.0836333\pi\)
\(720\) −2.59801 −0.0968221
\(721\) 2.26785 + 7.35540i 0.0844590 + 0.273929i
\(722\) −0.396339 −0.0147502
\(723\) 5.54028 9.59605i 0.206045 0.356881i
\(724\) −8.57930 14.8598i −0.318847 0.552260i
\(725\) −15.1429 26.2282i −0.562392 0.974092i
\(726\) 2.17961 3.77519i 0.0808927 0.140110i
\(727\) 32.1265 1.19150 0.595752 0.803168i \(-0.296854\pi\)
0.595752 + 0.803168i \(0.296854\pi\)
\(728\) 5.38393 5.80106i 0.199542 0.215002i
\(729\) 1.00000 0.0370370
\(730\) −1.03782 + 1.79755i −0.0384113 + 0.0665303i
\(731\) 7.33478 + 12.7042i 0.271287 + 0.469882i
\(732\) −2.38436 4.12983i −0.0881284 0.152643i
\(733\) −7.31092 + 12.6629i −0.270035 + 0.467715i −0.968871 0.247568i \(-0.920369\pi\)
0.698835 + 0.715282i \(0.253702\pi\)
\(734\) −9.67086 −0.356958
\(735\) −0.439488 5.88402i −0.0162107 0.217035i
\(736\) −5.47914 −0.201964
\(737\) 0.0812952 0.140807i 0.00299455 0.00518671i
\(738\) 0.0259214 + 0.0448973i 0.000954182 + 0.00165269i
\(739\) −14.4596 25.0447i −0.531904 0.921286i −0.999306 0.0372406i \(-0.988143\pi\)
0.467402 0.884045i \(-0.345190\pi\)
\(740\) 1.67982 2.90954i 0.0617515 0.106957i
\(741\) −1.96402 −0.0721501
\(742\) −2.12694 + 2.29173i −0.0780824 + 0.0841320i
\(743\) 20.8522 0.764992 0.382496 0.923957i \(-0.375065\pi\)
0.382496 + 0.923957i \(0.375065\pi\)
\(744\) −2.75644 + 4.77430i −0.101056 + 0.175034i
\(745\) 5.36601 + 9.29420i 0.196595 + 0.340513i
\(746\) 0.489231 + 0.847372i 0.0179120 + 0.0310245i
\(747\) −5.13762 + 8.89861i −0.187976 + 0.325583i
\(748\) 0.215728 0.00788779
\(749\) 6.71128 + 21.7670i 0.245225 + 0.795347i
\(750\) 3.10343 0.113321
\(751\) 16.4962 28.5722i 0.601954 1.04261i −0.390571 0.920573i \(-0.627722\pi\)
0.992525 0.122042i \(-0.0389442\pi\)
\(752\) 12.3064 + 21.3153i 0.448768 + 0.777289i
\(753\) 1.66081 + 2.87661i 0.0605234 + 0.104830i
\(754\) −2.74799 + 4.75966i −0.100076 + 0.173336i
\(755\) 9.96904 0.362810
\(756\) −4.75351 1.08558i −0.172884 0.0394820i
\(757\) 14.8974 0.541455 0.270728 0.962656i \(-0.412736\pi\)
0.270728 + 0.962656i \(0.412736\pi\)
\(758\) −3.72162 + 6.44604i −0.135175 + 0.234131i
\(759\) −0.0230956 0.0400027i −0.000838317 0.00145201i
\(760\) 0.641921 + 1.11184i 0.0232849 + 0.0403306i
\(761\) 5.78718 10.0237i 0.209785 0.363358i −0.741862 0.670553i \(-0.766057\pi\)
0.951647 + 0.307195i \(0.0993902\pi\)
\(762\) 0.405199 0.0146788
\(763\) −1.48296 0.338669i −0.0536869 0.0122606i
\(764\) −33.7961 −1.22270
\(765\) 1.37122 2.37502i 0.0495765 0.0858691i
\(766\) 6.26788 + 10.8563i 0.226468 + 0.392253i
\(767\) −12.7464 22.0774i −0.460245 0.797168i
\(768\) 2.43007 4.20900i 0.0876875 0.151879i
\(769\) −52.4315 −1.89073 −0.945365 0.326015i \(-0.894294\pi\)
−0.945365 + 0.326015i \(0.894294\pi\)
\(770\) −0.00936990 0.0303898i −0.000337668 0.00109517i
\(771\) −30.1189 −1.08471
\(772\) −14.0065 + 24.2600i −0.504105 + 0.873136i
\(773\) −21.6869 37.5628i −0.780023 1.35104i −0.931927 0.362645i \(-0.881874\pi\)
0.151904 0.988395i \(-0.451459\pi\)
\(774\) −0.893513 1.54761i −0.0321166 0.0556277i
\(775\) −7.76296 + 13.4458i −0.278854 + 0.482989i
\(776\) −3.88635 −0.139512
\(777\) 3.89251 4.19409i 0.139643 0.150462i
\(778\) 1.71911 0.0616329
\(779\) −0.0654023 + 0.113280i −0.00234328 + 0.00405868i
\(780\) 1.52548 + 2.64220i 0.0546209 + 0.0946061i
\(781\) −0.0476694 0.0825658i −0.00170574 0.00295444i
\(782\) 0.827752 1.43371i 0.0296004 0.0512693i
\(783\) 7.06045 0.252320
\(784\) 19.4363 + 9.36592i 0.694152 + 0.334497i
\(785\) −6.21807 −0.221932
\(786\) 3.36534 5.82893i 0.120038 0.207911i
\(787\) −10.6928 18.5204i −0.381156 0.660182i 0.610072 0.792346i \(-0.291141\pi\)
−0.991228 + 0.132165i \(0.957807\pi\)
\(788\) 7.16162 + 12.4043i 0.255122 + 0.441884i
\(789\) −12.7833 + 22.1414i −0.455098 + 0.788253i
\(790\) 3.46535 0.123292
\(791\) −27.4982 + 29.6287i −0.977725 + 1.05348i
\(792\) −0.0547993 −0.00194721
\(793\) −2.54104 + 4.40122i −0.0902351 + 0.156292i
\(794\) 0.270611 + 0.468712i 0.00960363 + 0.0166340i
\(795\) −1.25666 2.17660i −0.0445691 0.0771959i
\(796\) 23.7056 41.0593i 0.840222 1.45531i
\(797\) −44.1477 −1.56379 −0.781897 0.623408i \(-0.785748\pi\)
−0.781897 + 0.623408i \(0.785748\pi\)
\(798\) 0.308961 + 1.00206i 0.0109371 + 0.0354727i
\(799\) −25.9811 −0.919144
\(800\) −9.15329 + 15.8540i −0.323618 + 0.560522i
\(801\) −4.18641 7.25107i −0.147919 0.256204i
\(802\) 4.49061 + 7.77797i 0.158569 + 0.274650i
\(803\) 0.111768 0.193588i 0.00394421 0.00683156i
\(804\) 8.32822 0.293714
\(805\) 2.79129 + 0.637456i 0.0983800 + 0.0224674i
\(806\) 2.81750 0.0992422
\(807\) −3.17565 + 5.50038i −0.111788 + 0.193623i
\(808\) −5.42996 9.40497i −0.191025 0.330866i
\(809\) 11.9496 + 20.6974i 0.420127 + 0.727681i 0.995951 0.0898924i \(-0.0286523\pi\)
−0.575825 + 0.817573i \(0.695319\pi\)
\(810\) −0.167040 + 0.289322i −0.00586919 + 0.0101657i
\(811\) −45.1710 −1.58617 −0.793083 0.609113i \(-0.791526\pi\)
−0.793083 + 0.609113i \(0.791526\pi\)
\(812\) −33.5620 7.66465i −1.17779 0.268976i
\(813\) −7.86174 −0.275723
\(814\) 0.0154201 0.0267084i 0.000540475 0.000936130i
\(815\) −7.60706 13.1758i −0.266464 0.461529i
\(816\) 5.01394 + 8.68440i 0.175523 + 0.304015i
\(817\) 2.25442 3.90477i 0.0788721 0.136610i
\(818\) 10.6152 0.371153
\(819\) 1.53103 + 4.96564i 0.0534984 + 0.173514i
\(820\) 0.203195 0.00709587
\(821\) 10.8031 18.7115i 0.377030 0.653035i −0.613599 0.789618i \(-0.710279\pi\)
0.990629 + 0.136583i \(0.0436120\pi\)
\(822\) 0.444337 + 0.769615i 0.0154980 + 0.0268434i
\(823\) 3.65882 + 6.33726i 0.127538 + 0.220903i 0.922722 0.385465i \(-0.125959\pi\)
−0.795184 + 0.606368i \(0.792626\pi\)
\(824\) −2.21551 + 3.83738i −0.0771810 + 0.133681i
\(825\) −0.154331 −0.00537312
\(826\) −9.25898 + 9.97634i −0.322161 + 0.347121i
\(827\) 46.0507 1.60134 0.800669 0.599106i \(-0.204477\pi\)
0.800669 + 0.599106i \(0.204477\pi\)
\(828\) 1.18301 2.04903i 0.0411123 0.0712086i
\(829\) −16.0223 27.7515i −0.556478 0.963848i −0.997787 0.0664930i \(-0.978819\pi\)
0.441309 0.897355i \(-0.354514\pi\)
\(830\) −1.71637 2.97285i −0.0595762 0.103189i
\(831\) −2.93784 + 5.08849i −0.101913 + 0.176518i
\(832\) −8.78479 −0.304558
\(833\) −18.8204 + 12.8247i −0.652089 + 0.444351i
\(834\) 6.67040 0.230977
\(835\) 9.53986 16.5235i 0.330141 0.571820i
\(836\) −0.0331530 0.0574227i −0.00114662 0.00198601i
\(837\) −1.80976 3.13460i −0.0625546 0.108348i
\(838\) 5.93926 10.2871i 0.205168 0.355362i
\(839\) 12.5994 0.434980 0.217490 0.976063i \(-0.430213\pi\)
0.217490 + 0.976063i \(0.430213\pi\)
\(840\) 2.31067 2.48969i 0.0797256 0.0859025i
\(841\) 20.8500 0.718964
\(842\) −5.73929 + 9.94075i −0.197789 + 0.342581i
\(843\) 8.36547 + 14.4894i 0.288122 + 0.499042i
\(844\) 15.8924 + 27.5265i 0.547039 + 0.947500i
\(845\) −3.85323 + 6.67399i −0.132555 + 0.229592i
\(846\) 3.16498 0.108814
\(847\) −8.57390 27.8081i −0.294603 0.955497i
\(848\) 9.19008 0.315589
\(849\) −10.4479 + 18.0962i −0.358569 + 0.621060i
\(850\) −2.76564 4.79022i −0.0948605 0.164303i
\(851\) 1.38830 + 2.40461i 0.0475905 + 0.0824291i
\(852\) 2.44173 4.22920i 0.0836522 0.144890i
\(853\) −37.1154 −1.27081 −0.635403 0.772181i \(-0.719166\pi\)
−0.635403 + 0.772181i \(0.719166\pi\)
\(854\) 2.64528 + 0.604111i 0.0905196 + 0.0206723i
\(855\) −0.842916 −0.0288271
\(856\) −6.55640 + 11.3560i −0.224093 + 0.388141i
\(857\) −25.2112 43.6670i −0.861197 1.49164i −0.870774 0.491683i \(-0.836382\pi\)
0.00957724 0.999954i \(-0.496951\pi\)
\(858\) 0.0140033 + 0.0242544i 0.000478065 + 0.000828032i
\(859\) −4.92248 + 8.52598i −0.167953 + 0.290903i −0.937700 0.347446i \(-0.887049\pi\)
0.769747 + 0.638349i \(0.220382\pi\)
\(860\) −7.00413 −0.238839
\(861\) 0.337390 + 0.0770508i 0.0114982 + 0.00262589i
\(862\) −8.27386 −0.281809
\(863\) −16.3611 + 28.3382i −0.556937 + 0.964643i 0.440813 + 0.897599i \(0.354690\pi\)
−0.997750 + 0.0670442i \(0.978643\pi\)
\(864\) −2.13389 3.69600i −0.0725963 0.125740i
\(865\) 2.90082 + 5.02437i 0.0986308 + 0.170834i
\(866\) −1.38969 + 2.40702i −0.0472237 + 0.0817938i
\(867\) 6.41465 0.217853
\(868\) 5.19989 + 16.8650i 0.176496 + 0.572436i
\(869\) −0.373202 −0.0126600
\(870\) −1.17938 + 2.04274i −0.0399846 + 0.0692554i
\(871\) −4.43775 7.68641i −0.150368 0.260444i
\(872\) −0.437843 0.758367i −0.0148272 0.0256815i
\(873\) 1.27581 2.20976i 0.0431795 0.0747892i
\(874\) −0.508836 −0.0172116
\(875\) 14.0930 15.1848i 0.476429 0.513341i
\(876\) 11.4500 0.386859
\(877\) −3.43836 + 5.95541i −0.116105 + 0.201100i −0.918221 0.396069i \(-0.870374\pi\)
0.802116 + 0.597168i \(0.203708\pi\)
\(878\) −0.346413 0.600005i −0.0116909 0.0202492i
\(879\) −6.09155 10.5509i −0.205463 0.355872i
\(880\) −0.0467368 + 0.0809504i −0.00157550 + 0.00272884i
\(881\) −40.9688 −1.38027 −0.690137 0.723679i \(-0.742450\pi\)
−0.690137 + 0.723679i \(0.742450\pi\)
\(882\) 2.29268 1.56229i 0.0771985 0.0526051i
\(883\) 3.64432 0.122641 0.0613206 0.998118i \(-0.480469\pi\)
0.0613206 + 0.998118i \(0.480469\pi\)
\(884\) 5.88809 10.1985i 0.198038 0.343012i
\(885\) −5.47047 9.47514i −0.183888 0.318503i
\(886\) −3.74164 6.48070i −0.125703 0.217724i
\(887\) −3.14427 + 5.44604i −0.105574 + 0.182860i −0.913973 0.405776i \(-0.867001\pi\)
0.808398 + 0.588636i \(0.200335\pi\)
\(888\) 3.29405 0.110541
\(889\) 1.84004 1.98260i 0.0617130 0.0664944i
\(890\) 2.79719 0.0937620
\(891\) 0.0179894 0.0311586i 0.000602669 0.00104385i
\(892\) 14.4906 + 25.0985i 0.485181 + 0.840359i
\(893\) 3.99277 + 6.91568i 0.133613 + 0.231424i
\(894\) −2.52310 + 4.37013i −0.0843849 + 0.146159i
\(895\) −0.523348 −0.0174936
\(896\) 8.03571 + 26.0626i 0.268454 + 0.870689i
\(897\) −2.52149 −0.0841901
\(898\) 3.95491 6.85010i 0.131977 0.228591i
\(899\) −12.7777 22.1317i −0.426162 0.738133i
\(900\) −3.95259 6.84608i −0.131753 0.228203i
\(901\) −4.85049 + 8.40129i −0.161593 + 0.279888i
\(902\) 0.00186525 6.21060e−5
\(903\) −11.6298 2.65594i −0.387017 0.0883843i
\(904\) −23.2705 −0.773966
\(905\) −3.92402 + 6.79659i −0.130439 + 0.225926i
\(906\) 2.34372 + 4.05944i 0.0778648 + 0.134866i
\(907\) 25.8334 + 44.7447i 0.857782 + 1.48572i 0.874039 + 0.485855i \(0.161492\pi\)
−0.0162569 + 0.999868i \(0.505175\pi\)
\(908\) −5.99281 + 10.3798i −0.198878 + 0.344467i
\(909\) 7.13017 0.236493
\(910\) −1.69241 0.386501i −0.0561029 0.0128124i
\(911\) −48.0342 −1.59144 −0.795722 0.605662i \(-0.792909\pi\)
−0.795722 + 0.605662i \(0.792909\pi\)
\(912\) 1.54109 2.66924i 0.0510304 0.0883873i
\(913\) 0.184846 + 0.320162i 0.00611750 + 0.0105958i
\(914\) −4.27203 7.39937i −0.141306 0.244749i
\(915\) −1.09056 + 1.88891i −0.0360529 + 0.0624454i
\(916\) −14.5086 −0.479376
\(917\) −13.2382 42.9360i −0.437164 1.41787i
\(918\) 1.28949 0.0425596
\(919\) −11.8773 + 20.5720i −0.391794 + 0.678608i −0.992686 0.120722i \(-0.961479\pi\)
0.600892 + 0.799330i \(0.294812\pi\)
\(920\) 0.824124 + 1.42743i 0.0271706 + 0.0470608i
\(921\) −12.6485 21.9079i −0.416783 0.721890i
\(922\) −5.54410 + 9.60267i −0.182585 + 0.316247i
\(923\) −5.20437 −0.171304
\(924\) −0.119338 + 0.128584i −0.00392594 + 0.00423011i
\(925\) 9.27704 0.305027
\(926\) 7.69870 13.3345i 0.252995 0.438200i
\(927\) −1.45461 2.51946i −0.0477757 0.0827499i
\(928\) −15.0662 26.0954i −0.494572 0.856625i
\(929\) 2.86320 4.95920i 0.0939384 0.162706i −0.815227 0.579142i \(-0.803388\pi\)
0.909165 + 0.416436i \(0.136721\pi\)
\(930\) 1.20921 0.0396516
\(931\) 6.30603 + 3.03874i 0.206672 + 0.0995907i
\(932\) −41.0582 −1.34491
\(933\) 4.94365 8.56265i 0.161848 0.280329i
\(934\) −1.71205 2.96535i −0.0560199 0.0970293i
\(935\) −0.0493349 0.0854506i −0.00161343 0.00279453i
\(936\) −1.49570 + 2.59062i −0.0488884 + 0.0846771i
\(937\) −24.1920 −0.790319 −0.395159 0.918613i \(-0.629311\pi\)
−0.395159 + 0.918613i \(0.629311\pi\)
\(938\) −3.22359 + 3.47334i −0.105254 + 0.113409i
\(939\) 1.37474 0.0448630
\(940\) 6.20246 10.7430i 0.202302 0.350397i
\(941\) −3.07866 5.33239i −0.100361 0.173831i 0.811472 0.584391i \(-0.198667\pi\)
−0.911834 + 0.410560i \(0.865333\pi\)
\(942\) −1.46187 2.53203i −0.0476302 0.0824979i
\(943\) −0.0839662 + 0.145434i −0.00273431 + 0.00473597i
\(944\) 40.0062 1.30209
\(945\) 0.657084 + 2.13115i 0.0213750 + 0.0693262i
\(946\) −0.0642952 −0.00209042
\(947\) 12.7265 22.0430i 0.413557 0.716301i −0.581719 0.813390i \(-0.697620\pi\)
0.995276 + 0.0970888i \(0.0309531\pi\)
\(948\) −9.55811 16.5551i −0.310433 0.537686i
\(949\) −6.10121 10.5676i −0.198054 0.343039i
\(950\) −0.850046 + 1.47232i −0.0275791 + 0.0477684i
\(951\) −26.6902 −0.865489
\(952\) −12.7817 2.91900i −0.414258 0.0946054i
\(953\) 11.3961 0.369157 0.184579 0.982818i \(-0.440908\pi\)
0.184579 + 0.982818i \(0.440908\pi\)
\(954\) 0.590880 1.02343i 0.0191304 0.0331349i
\(955\) 7.72885 + 13.3868i 0.250100 + 0.433186i
\(956\) 24.4390 + 42.3295i 0.790412 + 1.36903i
\(957\) 0.127014 0.219994i 0.00410577 0.00711140i
\(958\) −5.88177 −0.190031
\(959\) 5.78343 + 1.32078i 0.186757 + 0.0426502i
\(960\) −3.77024 −0.121684
\(961\) 8.94952 15.5010i 0.288694 0.500033i
\(962\) −0.841755 1.45796i −0.0271393 0.0470066i
\(963\) −4.30466 7.45588i −0.138716 0.240263i
\(964\) 10.2103 17.6847i 0.328851 0.569586i
\(965\) 12.8126 0.412453
\(966\) 0.396656 + 1.28649i 0.0127622 + 0.0413922i
\(967\) 45.9401 1.47733 0.738667 0.674071i \(-0.235456\pi\)
0.738667 + 0.674071i \(0.235456\pi\)
\(968\) 8.37604 14.5077i 0.269216 0.466296i
\(969\) 1.62676 + 2.81763i 0.0522590 + 0.0905152i
\(970\) 0.426222 + 0.738238i 0.0136852 + 0.0237034i
\(971\) 0.347191 0.601352i 0.0111419 0.0192983i −0.860401 0.509618i \(-0.829787\pi\)
0.871543 + 0.490320i \(0.163120\pi\)
\(972\) 1.84292 0.0591116
\(973\) 30.2909 32.6377i 0.971080 1.04632i
\(974\) −7.09615 −0.227375
\(975\) −4.21233 + 7.29597i −0.134902 + 0.233658i
\(976\) −3.98770 6.90690i −0.127643 0.221085i
\(977\) 18.3718 + 31.8208i 0.587765 + 1.01804i 0.994525 + 0.104503i \(0.0333252\pi\)
−0.406760 + 0.913535i \(0.633341\pi\)
\(978\) 3.57684 6.19526i 0.114375 0.198103i
\(979\) −0.301244 −0.00962781
\(980\) −0.809939 10.8438i −0.0258725 0.346391i
\(981\) 0.574938 0.0183564
\(982\) 3.80221 6.58563i 0.121334 0.210156i
\(983\) 6.67886 + 11.5681i 0.213022 + 0.368966i 0.952659 0.304041i \(-0.0983359\pi\)
−0.739637 + 0.673006i \(0.765003\pi\)
\(984\) 0.0996139 + 0.172536i 0.00317558 + 0.00550026i
\(985\) 3.27559 5.67349i 0.104369 0.180772i
\(986\) 9.10440 0.289943
\(987\) 14.3724 15.4860i 0.457479 0.492924i
\(988\) −3.61953 −0.115152
\(989\) 2.89431 5.01310i 0.0920339 0.159407i
\(990\) 0.00600991 + 0.0104095i 0.000191008 + 0.000330835i
\(991\) −20.1635 34.9241i −0.640514 1.10940i −0.985318 0.170728i \(-0.945388\pi\)
0.344805 0.938674i \(-0.387945\pi\)
\(992\) −7.72366 + 13.3778i −0.245226 + 0.424745i
\(993\) 36.3735 1.15428
\(994\) 0.818700 + 2.65532i 0.0259676 + 0.0842217i
\(995\) −21.6850 −0.687460
\(996\) −9.46819 + 16.3994i −0.300011 + 0.519635i
\(997\) 3.94737 + 6.83704i 0.125014 + 0.216531i 0.921739 0.387812i \(-0.126769\pi\)
−0.796724 + 0.604343i \(0.793436\pi\)
\(998\) 4.87185 + 8.43830i 0.154216 + 0.267110i
\(999\) −1.08137 + 1.87298i −0.0342130 + 0.0592586i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.j.d.58.3 8
3.2 odd 2 1197.2.j.k.856.2 8
7.2 even 3 2793.2.a.bc.1.2 4
7.4 even 3 inner 399.2.j.d.172.3 yes 8
7.5 odd 6 2793.2.a.bd.1.2 4
21.2 odd 6 8379.2.a.br.1.3 4
21.5 even 6 8379.2.a.bt.1.3 4
21.11 odd 6 1197.2.j.k.172.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.d.58.3 8 1.1 even 1 trivial
399.2.j.d.172.3 yes 8 7.4 even 3 inner
1197.2.j.k.172.2 8 21.11 odd 6
1197.2.j.k.856.2 8 3.2 odd 2
2793.2.a.bc.1.2 4 7.2 even 3
2793.2.a.bd.1.2 4 7.5 odd 6
8379.2.a.br.1.3 4 21.2 odd 6
8379.2.a.bt.1.3 4 21.5 even 6