Properties

Label 399.2.j.c.172.2
Level $399$
Weight $2$
Character 399.172
Analytic conductor $3.186$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(58,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.58"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 399.172
Dual form 399.2.j.c.58.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20711 + 2.09077i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-1.91421 + 3.31552i) q^{4} +(1.91421 + 3.31552i) q^{5} -2.41421 q^{6} +(-2.50000 - 0.866025i) q^{7} -4.41421 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-4.62132 + 8.00436i) q^{10} +(1.91421 - 3.31552i) q^{11} +(-1.91421 - 3.31552i) q^{12} +2.82843 q^{13} +(-1.20711 - 6.27231i) q^{14} -3.82843 q^{15} +(-1.50000 - 2.59808i) q^{16} +(1.82843 - 3.16693i) q^{17} +(1.20711 - 2.09077i) q^{18} +(0.500000 + 0.866025i) q^{19} -14.6569 q^{20} +(2.00000 - 1.73205i) q^{21} +9.24264 q^{22} +(0.914214 + 1.58346i) q^{23} +(2.20711 - 3.82282i) q^{24} +(-4.82843 + 8.36308i) q^{25} +(3.41421 + 5.91359i) q^{26} +1.00000 q^{27} +(7.65685 - 6.63103i) q^{28} -4.82843 q^{29} +(-4.62132 - 8.00436i) q^{30} +(1.58579 - 2.74666i) q^{31} +(-0.792893 + 1.37333i) q^{32} +(1.91421 + 3.31552i) q^{33} +8.82843 q^{34} +(-1.91421 - 9.94655i) q^{35} +3.82843 q^{36} +(-0.585786 - 1.01461i) q^{37} +(-1.20711 + 2.09077i) q^{38} +(-1.41421 + 2.44949i) q^{39} +(-8.44975 - 14.6354i) q^{40} +7.65685 q^{41} +(6.03553 + 2.09077i) q^{42} -12.6569 q^{43} +(7.32843 + 12.6932i) q^{44} +(1.91421 - 3.31552i) q^{45} +(-2.20711 + 3.82282i) q^{46} +(-3.08579 - 5.34474i) q^{47} +3.00000 q^{48} +(5.50000 + 4.33013i) q^{49} -23.3137 q^{50} +(1.82843 + 3.16693i) q^{51} +(-5.41421 + 9.37769i) q^{52} +(1.00000 - 1.73205i) q^{53} +(1.20711 + 2.09077i) q^{54} +14.6569 q^{55} +(11.0355 + 3.82282i) q^{56} -1.00000 q^{57} +(-5.82843 - 10.0951i) q^{58} +(-5.41421 + 9.37769i) q^{59} +(7.32843 - 12.6932i) q^{60} +(7.32843 + 12.6932i) q^{61} +7.65685 q^{62} +(0.500000 + 2.59808i) q^{63} -9.82843 q^{64} +(5.41421 + 9.37769i) q^{65} +(-4.62132 + 8.00436i) q^{66} +(6.00000 - 10.3923i) q^{67} +(7.00000 + 12.1244i) q^{68} -1.82843 q^{69} +(18.4853 - 16.0087i) q^{70} +4.34315 q^{71} +(2.20711 + 3.82282i) q^{72} +(5.15685 - 8.93193i) q^{73} +(1.41421 - 2.44949i) q^{74} +(-4.82843 - 8.36308i) q^{75} -3.82843 q^{76} +(-7.65685 + 6.63103i) q^{77} -6.82843 q^{78} +(-1.17157 - 2.02922i) q^{79} +(5.74264 - 9.94655i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(9.24264 + 16.0087i) q^{82} +4.17157 q^{83} +(1.91421 + 9.94655i) q^{84} +14.0000 q^{85} +(-15.2782 - 26.4626i) q^{86} +(2.41421 - 4.18154i) q^{87} +(-8.44975 + 14.6354i) q^{88} +(-5.41421 - 9.37769i) q^{89} +9.24264 q^{90} +(-7.07107 - 2.44949i) q^{91} -7.00000 q^{92} +(1.58579 + 2.74666i) q^{93} +(7.44975 - 12.9033i) q^{94} +(-1.91421 + 3.31552i) q^{95} +(-0.792893 - 1.37333i) q^{96} +16.8284 q^{97} +(-2.41421 + 16.7262i) q^{98} -3.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{5} - 4 q^{6} - 10 q^{7} - 12 q^{8} - 2 q^{9} - 10 q^{10} + 2 q^{11} - 2 q^{12} - 2 q^{14} - 4 q^{15} - 6 q^{16} - 4 q^{17} + 2 q^{18} + 2 q^{19} - 36 q^{20} + 8 q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20711 + 2.09077i 0.853553 + 1.47840i 0.877981 + 0.478696i \(0.158890\pi\)
−0.0244272 + 0.999702i \(0.507776\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −1.91421 + 3.31552i −0.957107 + 1.65776i
\(5\) 1.91421 + 3.31552i 0.856062 + 1.48274i 0.875656 + 0.482935i \(0.160429\pi\)
−0.0195936 + 0.999808i \(0.506237\pi\)
\(6\) −2.41421 −0.985599
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) −4.41421 −1.56066
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −4.62132 + 8.00436i −1.46139 + 2.53120i
\(11\) 1.91421 3.31552i 0.577157 0.999665i −0.418646 0.908149i \(-0.637495\pi\)
0.995804 0.0915161i \(-0.0291713\pi\)
\(12\) −1.91421 3.31552i −0.552586 0.957107i
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) −1.20711 6.27231i −0.322613 1.67635i
\(15\) −3.82843 −0.988496
\(16\) −1.50000 2.59808i −0.375000 0.649519i
\(17\) 1.82843 3.16693i 0.443459 0.768093i −0.554485 0.832194i \(-0.687085\pi\)
0.997943 + 0.0641009i \(0.0204179\pi\)
\(18\) 1.20711 2.09077i 0.284518 0.492799i
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i
\(20\) −14.6569 −3.27737
\(21\) 2.00000 1.73205i 0.436436 0.377964i
\(22\) 9.24264 1.97054
\(23\) 0.914214 + 1.58346i 0.190627 + 0.330175i 0.945458 0.325744i \(-0.105615\pi\)
−0.754831 + 0.655919i \(0.772281\pi\)
\(24\) 2.20711 3.82282i 0.450524 0.780330i
\(25\) −4.82843 + 8.36308i −0.965685 + 1.67262i
\(26\) 3.41421 + 5.91359i 0.669582 + 1.15975i
\(27\) 1.00000 0.192450
\(28\) 7.65685 6.63103i 1.44701 1.25315i
\(29\) −4.82843 −0.896616 −0.448308 0.893879i \(-0.647973\pi\)
−0.448308 + 0.893879i \(0.647973\pi\)
\(30\) −4.62132 8.00436i −0.843734 1.46139i
\(31\) 1.58579 2.74666i 0.284816 0.493315i −0.687749 0.725949i \(-0.741401\pi\)
0.972564 + 0.232634i \(0.0747343\pi\)
\(32\) −0.792893 + 1.37333i −0.140165 + 0.242773i
\(33\) 1.91421 + 3.31552i 0.333222 + 0.577157i
\(34\) 8.82843 1.51406
\(35\) −1.91421 9.94655i −0.323561 1.68127i
\(36\) 3.82843 0.638071
\(37\) −0.585786 1.01461i −0.0963027 0.166801i 0.813849 0.581077i \(-0.197368\pi\)
−0.910152 + 0.414275i \(0.864035\pi\)
\(38\) −1.20711 + 2.09077i −0.195819 + 0.339168i
\(39\) −1.41421 + 2.44949i −0.226455 + 0.392232i
\(40\) −8.44975 14.6354i −1.33602 2.31406i
\(41\) 7.65685 1.19580 0.597900 0.801571i \(-0.296002\pi\)
0.597900 + 0.801571i \(0.296002\pi\)
\(42\) 6.03553 + 2.09077i 0.931303 + 0.322613i
\(43\) −12.6569 −1.93015 −0.965076 0.261970i \(-0.915628\pi\)
−0.965076 + 0.261970i \(0.915628\pi\)
\(44\) 7.32843 + 12.6932i 1.10480 + 1.91357i
\(45\) 1.91421 3.31552i 0.285354 0.494248i
\(46\) −2.20711 + 3.82282i −0.325420 + 0.563644i
\(47\) −3.08579 5.34474i −0.450108 0.779610i 0.548284 0.836292i \(-0.315281\pi\)
−0.998392 + 0.0566819i \(0.981948\pi\)
\(48\) 3.00000 0.433013
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) −23.3137 −3.29706
\(51\) 1.82843 + 3.16693i 0.256031 + 0.443459i
\(52\) −5.41421 + 9.37769i −0.750816 + 1.30045i
\(53\) 1.00000 1.73205i 0.137361 0.237915i −0.789136 0.614218i \(-0.789471\pi\)
0.926497 + 0.376303i \(0.122805\pi\)
\(54\) 1.20711 + 2.09077i 0.164266 + 0.284518i
\(55\) 14.6569 1.97633
\(56\) 11.0355 + 3.82282i 1.47469 + 0.510846i
\(57\) −1.00000 −0.132453
\(58\) −5.82843 10.0951i −0.765310 1.32556i
\(59\) −5.41421 + 9.37769i −0.704871 + 1.22087i 0.261868 + 0.965104i \(0.415662\pi\)
−0.966738 + 0.255768i \(0.917672\pi\)
\(60\) 7.32843 12.6932i 0.946096 1.63869i
\(61\) 7.32843 + 12.6932i 0.938309 + 1.62520i 0.768624 + 0.639700i \(0.220942\pi\)
0.169685 + 0.985498i \(0.445725\pi\)
\(62\) 7.65685 0.972421
\(63\) 0.500000 + 2.59808i 0.0629941 + 0.327327i
\(64\) −9.82843 −1.22855
\(65\) 5.41421 + 9.37769i 0.671551 + 1.16316i
\(66\) −4.62132 + 8.00436i −0.568845 + 0.985269i
\(67\) 6.00000 10.3923i 0.733017 1.26962i −0.222571 0.974916i \(-0.571445\pi\)
0.955588 0.294706i \(-0.0952216\pi\)
\(68\) 7.00000 + 12.1244i 0.848875 + 1.47029i
\(69\) −1.82843 −0.220117
\(70\) 18.4853 16.0087i 2.20941 1.91341i
\(71\) 4.34315 0.515437 0.257718 0.966220i \(-0.417029\pi\)
0.257718 + 0.966220i \(0.417029\pi\)
\(72\) 2.20711 + 3.82282i 0.260110 + 0.450524i
\(73\) 5.15685 8.93193i 0.603564 1.04540i −0.388712 0.921359i \(-0.627080\pi\)
0.992277 0.124045i \(-0.0395866\pi\)
\(74\) 1.41421 2.44949i 0.164399 0.284747i
\(75\) −4.82843 8.36308i −0.557539 0.965685i
\(76\) −3.82843 −0.439151
\(77\) −7.65685 + 6.63103i −0.872580 + 0.755676i
\(78\) −6.82843 −0.773167
\(79\) −1.17157 2.02922i −0.131812 0.228306i 0.792563 0.609790i \(-0.208746\pi\)
−0.924375 + 0.381485i \(0.875413\pi\)
\(80\) 5.74264 9.94655i 0.642047 1.11206i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 9.24264 + 16.0087i 1.02068 + 1.76787i
\(83\) 4.17157 0.457890 0.228945 0.973439i \(-0.426472\pi\)
0.228945 + 0.973439i \(0.426472\pi\)
\(84\) 1.91421 + 9.94655i 0.208858 + 1.08526i
\(85\) 14.0000 1.51851
\(86\) −15.2782 26.4626i −1.64749 2.85353i
\(87\) 2.41421 4.18154i 0.258831 0.448308i
\(88\) −8.44975 + 14.6354i −0.900746 + 1.56014i
\(89\) −5.41421 9.37769i −0.573905 0.994033i −0.996160 0.0875560i \(-0.972094\pi\)
0.422254 0.906478i \(-0.361239\pi\)
\(90\) 9.24264 0.974260
\(91\) −7.07107 2.44949i −0.741249 0.256776i
\(92\) −7.00000 −0.729800
\(93\) 1.58579 + 2.74666i 0.164438 + 0.284816i
\(94\) 7.44975 12.9033i 0.768383 1.33088i
\(95\) −1.91421 + 3.31552i −0.196394 + 0.340165i
\(96\) −0.792893 1.37333i −0.0809243 0.140165i
\(97\) 16.8284 1.70867 0.854334 0.519724i \(-0.173965\pi\)
0.854334 + 0.519724i \(0.173965\pi\)
\(98\) −2.41421 + 16.7262i −0.243872 + 1.68960i
\(99\) −3.82843 −0.384771
\(100\) −18.4853 32.0174i −1.84853 3.20174i
\(101\) 1.74264 3.01834i 0.173399 0.300336i −0.766207 0.642594i \(-0.777858\pi\)
0.939606 + 0.342258i \(0.111192\pi\)
\(102\) −4.41421 + 7.64564i −0.437072 + 0.757031i
\(103\) −1.82843 3.16693i −0.180160 0.312047i 0.761775 0.647842i \(-0.224328\pi\)
−0.941935 + 0.335795i \(0.890995\pi\)
\(104\) −12.4853 −1.22428
\(105\) 9.57107 + 3.31552i 0.934041 + 0.323561i
\(106\) 4.82843 0.468978
\(107\) 1.41421 + 2.44949i 0.136717 + 0.236801i 0.926252 0.376905i \(-0.123012\pi\)
−0.789535 + 0.613706i \(0.789678\pi\)
\(108\) −1.91421 + 3.31552i −0.184195 + 0.319036i
\(109\) −9.07107 + 15.7116i −0.868851 + 1.50489i −0.00567856 + 0.999984i \(0.501808\pi\)
−0.863172 + 0.504910i \(0.831526\pi\)
\(110\) 17.6924 + 30.6441i 1.68690 + 2.92180i
\(111\) 1.17157 0.111201
\(112\) 1.50000 + 7.79423i 0.141737 + 0.736485i
\(113\) −12.8284 −1.20680 −0.603398 0.797440i \(-0.706187\pi\)
−0.603398 + 0.797440i \(0.706187\pi\)
\(114\) −1.20711 2.09077i −0.113056 0.195819i
\(115\) −3.50000 + 6.06218i −0.326377 + 0.565301i
\(116\) 9.24264 16.0087i 0.858158 1.48637i
\(117\) −1.41421 2.44949i −0.130744 0.226455i
\(118\) −26.1421 −2.40658
\(119\) −7.31371 + 6.33386i −0.670447 + 0.580624i
\(120\) 16.8995 1.54271
\(121\) −1.82843 3.16693i −0.166221 0.287903i
\(122\) −17.6924 + 30.6441i −1.60179 + 2.77439i
\(123\) −3.82843 + 6.63103i −0.345198 + 0.597900i
\(124\) 6.07107 + 10.5154i 0.545198 + 0.944311i
\(125\) −17.8284 −1.59462
\(126\) −4.82843 + 4.18154i −0.430150 + 0.372521i
\(127\) 16.9706 1.50589 0.752947 0.658081i \(-0.228632\pi\)
0.752947 + 0.658081i \(0.228632\pi\)
\(128\) −10.2782 17.8023i −0.908471 1.57352i
\(129\) 6.32843 10.9612i 0.557187 0.965076i
\(130\) −13.0711 + 22.6398i −1.14641 + 1.98564i
\(131\) −5.17157 8.95743i −0.451842 0.782614i 0.546658 0.837356i \(-0.315900\pi\)
−0.998501 + 0.0547419i \(0.982566\pi\)
\(132\) −14.6569 −1.27572
\(133\) −0.500000 2.59808i −0.0433555 0.225282i
\(134\) 28.9706 2.50268
\(135\) 1.91421 + 3.31552i 0.164749 + 0.285354i
\(136\) −8.07107 + 13.9795i −0.692088 + 1.19873i
\(137\) 6.91421 11.9758i 0.590721 1.02316i −0.403414 0.915017i \(-0.632177\pi\)
0.994136 0.108142i \(-0.0344900\pi\)
\(138\) −2.20711 3.82282i −0.187881 0.325420i
\(139\) −6.65685 −0.564627 −0.282314 0.959322i \(-0.591102\pi\)
−0.282314 + 0.959322i \(0.591102\pi\)
\(140\) 36.6421 + 12.6932i 3.09683 + 1.07277i
\(141\) 6.17157 0.519740
\(142\) 5.24264 + 9.08052i 0.439953 + 0.762020i
\(143\) 5.41421 9.37769i 0.452759 0.784202i
\(144\) −1.50000 + 2.59808i −0.125000 + 0.216506i
\(145\) −9.24264 16.0087i −0.767560 1.32945i
\(146\) 24.8995 2.06070
\(147\) −6.50000 + 2.59808i −0.536111 + 0.214286i
\(148\) 4.48528 0.368688
\(149\) −1.91421 3.31552i −0.156818 0.271618i 0.776901 0.629623i \(-0.216790\pi\)
−0.933720 + 0.358005i \(0.883457\pi\)
\(150\) 11.6569 20.1903i 0.951778 1.64853i
\(151\) 4.65685 8.06591i 0.378969 0.656394i −0.611943 0.790902i \(-0.709612\pi\)
0.990913 + 0.134507i \(0.0429452\pi\)
\(152\) −2.20711 3.82282i −0.179020 0.310072i
\(153\) −3.65685 −0.295639
\(154\) −23.1066 8.00436i −1.86198 0.645010i
\(155\) 12.1421 0.975280
\(156\) −5.41421 9.37769i −0.433484 0.750816i
\(157\) −5.32843 + 9.22911i −0.425255 + 0.736563i −0.996444 0.0842554i \(-0.973149\pi\)
0.571189 + 0.820818i \(0.306482\pi\)
\(158\) 2.82843 4.89898i 0.225018 0.389742i
\(159\) 1.00000 + 1.73205i 0.0793052 + 0.137361i
\(160\) −6.07107 −0.479960
\(161\) −0.914214 4.75039i −0.0720501 0.374383i
\(162\) −2.41421 −0.189679
\(163\) −10.9853 19.0271i −0.860434 1.49031i −0.871511 0.490376i \(-0.836859\pi\)
0.0110773 0.999939i \(-0.496474\pi\)
\(164\) −14.6569 + 25.3864i −1.14451 + 1.98235i
\(165\) −7.32843 + 12.6932i −0.570517 + 0.988165i
\(166\) 5.03553 + 8.72180i 0.390833 + 0.676943i
\(167\) 8.82843 0.683164 0.341582 0.939852i \(-0.389037\pi\)
0.341582 + 0.939852i \(0.389037\pi\)
\(168\) −8.82843 + 7.64564i −0.681128 + 0.589874i
\(169\) −5.00000 −0.384615
\(170\) 16.8995 + 29.2708i 1.29613 + 2.24497i
\(171\) 0.500000 0.866025i 0.0382360 0.0662266i
\(172\) 24.2279 41.9640i 1.84736 3.19972i
\(173\) −1.41421 2.44949i −0.107521 0.186231i 0.807245 0.590217i \(-0.200958\pi\)
−0.914765 + 0.403986i \(0.867625\pi\)
\(174\) 11.6569 0.883704
\(175\) 19.3137 16.7262i 1.45998 1.26438i
\(176\) −11.4853 −0.865736
\(177\) −5.41421 9.37769i −0.406957 0.704871i
\(178\) 13.0711 22.6398i 0.979718 1.69692i
\(179\) 5.24264 9.08052i 0.391853 0.678710i −0.600841 0.799369i \(-0.705167\pi\)
0.992694 + 0.120659i \(0.0385007\pi\)
\(180\) 7.32843 + 12.6932i 0.546229 + 0.946096i
\(181\) −11.6569 −0.866447 −0.433224 0.901286i \(-0.642624\pi\)
−0.433224 + 0.901286i \(0.642624\pi\)
\(182\) −3.41421 17.7408i −0.253078 1.31503i
\(183\) −14.6569 −1.08347
\(184\) −4.03553 6.98975i −0.297504 0.515291i
\(185\) 2.24264 3.88437i 0.164882 0.285584i
\(186\) −3.82843 + 6.63103i −0.280714 + 0.486211i
\(187\) −7.00000 12.1244i −0.511891 0.886621i
\(188\) 23.6274 1.72321
\(189\) −2.50000 0.866025i −0.181848 0.0629941i
\(190\) −9.24264 −0.670532
\(191\) −5.91421 10.2437i −0.427937 0.741209i 0.568752 0.822509i \(-0.307426\pi\)
−0.996690 + 0.0812994i \(0.974093\pi\)
\(192\) 4.91421 8.51167i 0.354653 0.614277i
\(193\) −2.00000 + 3.46410i −0.143963 + 0.249351i −0.928986 0.370116i \(-0.879318\pi\)
0.785022 + 0.619467i \(0.212651\pi\)
\(194\) 20.3137 + 35.1844i 1.45844 + 2.52609i
\(195\) −10.8284 −0.775440
\(196\) −24.8848 + 9.94655i −1.77748 + 0.710468i
\(197\) −17.4853 −1.24577 −0.622887 0.782312i \(-0.714041\pi\)
−0.622887 + 0.782312i \(0.714041\pi\)
\(198\) −4.62132 8.00436i −0.328423 0.568845i
\(199\) −1.67157 + 2.89525i −0.118495 + 0.205239i −0.919171 0.393858i \(-0.871140\pi\)
0.800677 + 0.599097i \(0.204474\pi\)
\(200\) 21.3137 36.9164i 1.50711 2.61039i
\(201\) 6.00000 + 10.3923i 0.423207 + 0.733017i
\(202\) 8.41421 0.592022
\(203\) 12.0711 + 4.18154i 0.847223 + 0.293487i
\(204\) −14.0000 −0.980196
\(205\) 14.6569 + 25.3864i 1.02368 + 1.77306i
\(206\) 4.41421 7.64564i 0.307553 0.532697i
\(207\) 0.914214 1.58346i 0.0635422 0.110058i
\(208\) −4.24264 7.34847i −0.294174 0.509525i
\(209\) 3.82843 0.264818
\(210\) 4.62132 + 24.0131i 0.318901 + 1.65706i
\(211\) 16.4853 1.13489 0.567447 0.823410i \(-0.307931\pi\)
0.567447 + 0.823410i \(0.307931\pi\)
\(212\) 3.82843 + 6.63103i 0.262937 + 0.455421i
\(213\) −2.17157 + 3.76127i −0.148794 + 0.257718i
\(214\) −3.41421 + 5.91359i −0.233391 + 0.404245i
\(215\) −24.2279 41.9640i −1.65233 2.86192i
\(216\) −4.41421 −0.300349
\(217\) −6.34315 + 5.49333i −0.430601 + 0.372911i
\(218\) −43.7990 −2.96644
\(219\) 5.15685 + 8.93193i 0.348468 + 0.603564i
\(220\) −28.0563 + 48.5950i −1.89156 + 3.27628i
\(221\) 5.17157 8.95743i 0.347878 0.602542i
\(222\) 1.41421 + 2.44949i 0.0949158 + 0.164399i
\(223\) 21.7990 1.45977 0.729884 0.683571i \(-0.239574\pi\)
0.729884 + 0.683571i \(0.239574\pi\)
\(224\) 3.17157 2.74666i 0.211910 0.183519i
\(225\) 9.65685 0.643790
\(226\) −15.4853 26.8213i −1.03007 1.78413i
\(227\) 3.17157 5.49333i 0.210505 0.364605i −0.741368 0.671099i \(-0.765823\pi\)
0.951873 + 0.306494i \(0.0991559\pi\)
\(228\) 1.91421 3.31552i 0.126772 0.219575i
\(229\) 7.82843 + 13.5592i 0.517317 + 0.896019i 0.999798 + 0.0201128i \(0.00640252\pi\)
−0.482481 + 0.875907i \(0.660264\pi\)
\(230\) −16.8995 −1.11432
\(231\) −1.91421 9.94655i −0.125946 0.654435i
\(232\) 21.3137 1.39931
\(233\) −3.00000 5.19615i −0.196537 0.340411i 0.750867 0.660454i \(-0.229636\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 3.41421 5.91359i 0.223194 0.386584i
\(235\) 11.8137 20.4619i 0.770641 1.33479i
\(236\) −20.7279 35.9018i −1.34927 2.33701i
\(237\) 2.34315 0.152204
\(238\) −22.0711 7.64564i −1.43065 0.495593i
\(239\) 2.34315 0.151565 0.0757827 0.997124i \(-0.475854\pi\)
0.0757827 + 0.997124i \(0.475854\pi\)
\(240\) 5.74264 + 9.94655i 0.370686 + 0.642047i
\(241\) −9.89949 + 17.1464i −0.637683 + 1.10450i 0.348257 + 0.937399i \(0.386773\pi\)
−0.985940 + 0.167100i \(0.946560\pi\)
\(242\) 4.41421 7.64564i 0.283756 0.491480i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −56.1127 −3.59225
\(245\) −3.82843 + 26.5241i −0.244589 + 1.69456i
\(246\) −18.4853 −1.17858
\(247\) 1.41421 + 2.44949i 0.0899843 + 0.155857i
\(248\) −7.00000 + 12.1244i −0.444500 + 0.769897i
\(249\) −2.08579 + 3.61269i −0.132181 + 0.228945i
\(250\) −21.5208 37.2751i −1.36110 2.35749i
\(251\) −13.4853 −0.851183 −0.425592 0.904915i \(-0.639934\pi\)
−0.425592 + 0.904915i \(0.639934\pi\)
\(252\) −9.57107 3.31552i −0.602921 0.208858i
\(253\) 7.00000 0.440086
\(254\) 20.4853 + 35.4815i 1.28536 + 2.22631i
\(255\) −7.00000 + 12.1244i −0.438357 + 0.759257i
\(256\) 14.9853 25.9553i 0.936580 1.62220i
\(257\) −13.0000 22.5167i −0.810918 1.40455i −0.912222 0.409695i \(-0.865635\pi\)
0.101305 0.994855i \(-0.467698\pi\)
\(258\) 30.5563 1.90236
\(259\) 0.585786 + 3.04384i 0.0363990 + 0.189135i
\(260\) −41.4558 −2.57098
\(261\) 2.41421 + 4.18154i 0.149436 + 0.258831i
\(262\) 12.4853 21.6251i 0.771343 1.33601i
\(263\) −5.65685 + 9.79796i −0.348817 + 0.604168i −0.986040 0.166511i \(-0.946750\pi\)
0.637223 + 0.770680i \(0.280083\pi\)
\(264\) −8.44975 14.6354i −0.520046 0.900746i
\(265\) 7.65685 0.470357
\(266\) 4.82843 4.18154i 0.296050 0.256387i
\(267\) 10.8284 0.662689
\(268\) 22.9706 + 39.7862i 1.40315 + 2.43033i
\(269\) 4.00000 6.92820i 0.243884 0.422420i −0.717933 0.696112i \(-0.754912\pi\)
0.961817 + 0.273692i \(0.0882449\pi\)
\(270\) −4.62132 + 8.00436i −0.281245 + 0.487130i
\(271\) 9.81371 + 16.9978i 0.596140 + 1.03255i 0.993385 + 0.114833i \(0.0366331\pi\)
−0.397245 + 0.917713i \(0.630034\pi\)
\(272\) −10.9706 −0.665188
\(273\) 5.65685 4.89898i 0.342368 0.296500i
\(274\) 33.3848 2.01685
\(275\) 18.4853 + 32.0174i 1.11470 + 1.93072i
\(276\) 3.50000 6.06218i 0.210675 0.364900i
\(277\) −6.50000 + 11.2583i −0.390547 + 0.676448i −0.992522 0.122068i \(-0.961047\pi\)
0.601975 + 0.798515i \(0.294381\pi\)
\(278\) −8.03553 13.9180i −0.481939 0.834743i
\(279\) −3.17157 −0.189877
\(280\) 8.44975 + 43.9062i 0.504969 + 2.62390i
\(281\) 6.97056 0.415829 0.207914 0.978147i \(-0.433332\pi\)
0.207914 + 0.978147i \(0.433332\pi\)
\(282\) 7.44975 + 12.9033i 0.443626 + 0.768383i
\(283\) −15.8137 + 27.3901i −0.940027 + 1.62818i −0.174613 + 0.984637i \(0.555868\pi\)
−0.765414 + 0.643538i \(0.777466\pi\)
\(284\) −8.31371 + 14.3998i −0.493328 + 0.854469i
\(285\) −1.91421 3.31552i −0.113388 0.196394i
\(286\) 26.1421 1.54582
\(287\) −19.1421 6.63103i −1.12992 0.391417i
\(288\) 1.58579 0.0934434
\(289\) 1.81371 + 3.14144i 0.106689 + 0.184790i
\(290\) 22.3137 38.6485i 1.31031 2.26952i
\(291\) −8.41421 + 14.5738i −0.493250 + 0.854334i
\(292\) 19.7426 + 34.1953i 1.15535 + 2.00113i
\(293\) −0.828427 −0.0483972 −0.0241986 0.999707i \(-0.507703\pi\)
−0.0241986 + 0.999707i \(0.507703\pi\)
\(294\) −13.2782 10.4539i −0.774399 0.609681i
\(295\) −41.4558 −2.41365
\(296\) 2.58579 + 4.47871i 0.150296 + 0.260320i
\(297\) 1.91421 3.31552i 0.111074 0.192386i
\(298\) 4.62132 8.00436i 0.267706 0.463680i
\(299\) 2.58579 + 4.47871i 0.149540 + 0.259011i
\(300\) 36.9706 2.13450
\(301\) 31.6421 + 10.9612i 1.82382 + 0.631791i
\(302\) 22.4853 1.29388
\(303\) 1.74264 + 3.01834i 0.100112 + 0.173399i
\(304\) 1.50000 2.59808i 0.0860309 0.149010i
\(305\) −28.0563 + 48.5950i −1.60650 + 2.78254i
\(306\) −4.41421 7.64564i −0.252344 0.437072i
\(307\) 2.48528 0.141843 0.0709213 0.997482i \(-0.477406\pi\)
0.0709213 + 0.997482i \(0.477406\pi\)
\(308\) −7.32843 38.0796i −0.417576 2.16979i
\(309\) 3.65685 0.208031
\(310\) 14.6569 + 25.3864i 0.832453 + 1.44185i
\(311\) −11.3137 + 19.5959i −0.641542 + 1.11118i 0.343547 + 0.939135i \(0.388371\pi\)
−0.985089 + 0.172047i \(0.944962\pi\)
\(312\) 6.24264 10.8126i 0.353420 0.612141i
\(313\) −15.6421 27.0930i −0.884146 1.53139i −0.846690 0.532087i \(-0.821408\pi\)
−0.0374562 0.999298i \(-0.511925\pi\)
\(314\) −25.7279 −1.45191
\(315\) −7.65685 + 6.63103i −0.431415 + 0.373616i
\(316\) 8.97056 0.504634
\(317\) −14.8995 25.8067i −0.836839 1.44945i −0.892524 0.450999i \(-0.851068\pi\)
0.0556853 0.998448i \(-0.482266\pi\)
\(318\) −2.41421 + 4.18154i −0.135382 + 0.234489i
\(319\) −9.24264 + 16.0087i −0.517489 + 0.896316i
\(320\) −18.8137 32.5863i −1.05172 1.82163i
\(321\) −2.82843 −0.157867
\(322\) 8.82843 7.64564i 0.491989 0.426075i
\(323\) 3.65685 0.203473
\(324\) −1.91421 3.31552i −0.106345 0.184195i
\(325\) −13.6569 + 23.6544i −0.757546 + 1.31211i
\(326\) 26.5208 45.9354i 1.46885 2.54413i
\(327\) −9.07107 15.7116i −0.501631 0.868851i
\(328\) −33.7990 −1.86624
\(329\) 3.08579 + 16.0342i 0.170125 + 0.883995i
\(330\) −35.3848 −1.94787
\(331\) 2.75736 + 4.77589i 0.151558 + 0.262506i 0.931800 0.362971i \(-0.118238\pi\)
−0.780242 + 0.625477i \(0.784904\pi\)
\(332\) −7.98528 + 13.8309i −0.438249 + 0.759070i
\(333\) −0.585786 + 1.01461i −0.0321009 + 0.0556004i
\(334\) 10.6569 + 18.4582i 0.583117 + 1.00999i
\(335\) 45.9411 2.51003
\(336\) −7.50000 2.59808i −0.409159 0.141737i
\(337\) −6.48528 −0.353276 −0.176638 0.984276i \(-0.556522\pi\)
−0.176638 + 0.984276i \(0.556522\pi\)
\(338\) −6.03553 10.4539i −0.328290 0.568615i
\(339\) 6.41421 11.1097i 0.348372 0.603398i
\(340\) −26.7990 + 46.4172i −1.45338 + 2.51733i
\(341\) −6.07107 10.5154i −0.328767 0.569441i
\(342\) 2.41421 0.130546
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 55.8701 3.01231
\(345\) −3.50000 6.06218i −0.188434 0.326377i
\(346\) 3.41421 5.91359i 0.183549 0.317917i
\(347\) −10.2279 + 17.7153i −0.549064 + 0.951006i 0.449275 + 0.893393i \(0.351682\pi\)
−0.998339 + 0.0576128i \(0.981651\pi\)
\(348\) 9.24264 + 16.0087i 0.495458 + 0.858158i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 58.2843 + 20.1903i 3.11543 + 1.07921i
\(351\) 2.82843 0.150970
\(352\) 3.03553 + 5.25770i 0.161795 + 0.280236i
\(353\) 0.656854 1.13770i 0.0349608 0.0605539i −0.848016 0.529971i \(-0.822203\pi\)
0.882976 + 0.469417i \(0.155536\pi\)
\(354\) 13.0711 22.6398i 0.694719 1.20329i
\(355\) 8.31371 + 14.3998i 0.441246 + 0.764260i
\(356\) 41.4558 2.19716
\(357\) −1.82843 9.50079i −0.0967706 0.502835i
\(358\) 25.3137 1.33787
\(359\) 3.08579 + 5.34474i 0.162862 + 0.282085i 0.935894 0.352282i \(-0.114594\pi\)
−0.773032 + 0.634367i \(0.781261\pi\)
\(360\) −8.44975 + 14.6354i −0.445341 + 0.771353i
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) −14.0711 24.3718i −0.739559 1.28095i
\(363\) 3.65685 0.191935
\(364\) 21.6569 18.7554i 1.13513 0.983049i
\(365\) 39.4853 2.06675
\(366\) −17.6924 30.6441i −0.924796 1.60179i
\(367\) −14.8284 + 25.6836i −0.774038 + 1.34067i 0.161296 + 0.986906i \(0.448433\pi\)
−0.935334 + 0.353766i \(0.884901\pi\)
\(368\) 2.74264 4.75039i 0.142970 0.247631i
\(369\) −3.82843 6.63103i −0.199300 0.345198i
\(370\) 10.8284 0.562943
\(371\) −4.00000 + 3.46410i −0.207670 + 0.179847i
\(372\) −12.1421 −0.629540
\(373\) −10.1421 17.5667i −0.525140 0.909569i −0.999571 0.0292765i \(-0.990680\pi\)
0.474431 0.880292i \(-0.342654\pi\)
\(374\) 16.8995 29.2708i 0.873852 1.51356i
\(375\) 8.91421 15.4399i 0.460328 0.797311i
\(376\) 13.6213 + 23.5928i 0.702466 + 1.21671i
\(377\) −13.6569 −0.703364
\(378\) −1.20711 6.27231i −0.0620869 0.322613i
\(379\) −16.4853 −0.846792 −0.423396 0.905945i \(-0.639162\pi\)
−0.423396 + 0.905945i \(0.639162\pi\)
\(380\) −7.32843 12.6932i −0.375940 0.651148i
\(381\) −8.48528 + 14.6969i −0.434714 + 0.752947i
\(382\) 14.2782 24.7305i 0.730535 1.26532i
\(383\) −8.00000 13.8564i −0.408781 0.708029i 0.585973 0.810331i \(-0.300713\pi\)
−0.994753 + 0.102302i \(0.967379\pi\)
\(384\) 20.5563 1.04901
\(385\) −36.6421 12.6932i −1.86746 0.646906i
\(386\) −9.65685 −0.491521
\(387\) 6.32843 + 10.9612i 0.321692 + 0.557187i
\(388\) −32.2132 + 55.7949i −1.63538 + 2.83256i
\(389\) −2.17157 + 3.76127i −0.110103 + 0.190704i −0.915812 0.401608i \(-0.868451\pi\)
0.805709 + 0.592312i \(0.201785\pi\)
\(390\) −13.0711 22.6398i −0.661879 1.14641i
\(391\) 6.68629 0.338140
\(392\) −24.2782 19.1141i −1.22623 0.965408i
\(393\) 10.3431 0.521743
\(394\) −21.1066 36.5577i −1.06334 1.84175i
\(395\) 4.48528 7.76874i 0.225679 0.390887i
\(396\) 7.32843 12.6932i 0.368267 0.637858i
\(397\) −2.65685 4.60181i −0.133344 0.230958i 0.791620 0.611014i \(-0.209238\pi\)
−0.924964 + 0.380056i \(0.875905\pi\)
\(398\) −8.07107 −0.404566
\(399\) 2.50000 + 0.866025i 0.125157 + 0.0433555i
\(400\) 28.9706 1.44853
\(401\) 0.343146 + 0.594346i 0.0171359 + 0.0296802i 0.874466 0.485086i \(-0.161212\pi\)
−0.857330 + 0.514767i \(0.827879\pi\)
\(402\) −14.4853 + 25.0892i −0.722460 + 1.25134i
\(403\) 4.48528 7.76874i 0.223428 0.386988i
\(404\) 6.67157 + 11.5555i 0.331923 + 0.574908i
\(405\) −3.82843 −0.190236
\(406\) 5.82843 + 30.2854i 0.289260 + 1.50304i
\(407\) −4.48528 −0.222327
\(408\) −8.07107 13.9795i −0.399577 0.692088i
\(409\) −2.65685 + 4.60181i −0.131373 + 0.227545i −0.924206 0.381894i \(-0.875272\pi\)
0.792833 + 0.609439i \(0.208605\pi\)
\(410\) −35.3848 + 61.2882i −1.74753 + 3.02681i
\(411\) 6.91421 + 11.9758i 0.341053 + 0.590721i
\(412\) 14.0000 0.689730
\(413\) 21.6569 18.7554i 1.06566 0.922892i
\(414\) 4.41421 0.216947
\(415\) 7.98528 + 13.8309i 0.391982 + 0.678933i
\(416\) −2.24264 + 3.88437i −0.109955 + 0.190447i
\(417\) 3.32843 5.76500i 0.162994 0.282314i
\(418\) 4.62132 + 8.00436i 0.226036 + 0.391506i
\(419\) −10.1716 −0.496914 −0.248457 0.968643i \(-0.579923\pi\)
−0.248457 + 0.968643i \(0.579923\pi\)
\(420\) −29.3137 + 25.3864i −1.43036 + 1.23873i
\(421\) 19.1716 0.934365 0.467183 0.884161i \(-0.345269\pi\)
0.467183 + 0.884161i \(0.345269\pi\)
\(422\) 19.8995 + 34.4669i 0.968692 + 1.67782i
\(423\) −3.08579 + 5.34474i −0.150036 + 0.259870i
\(424\) −4.41421 + 7.64564i −0.214373 + 0.371305i
\(425\) 17.6569 + 30.5826i 0.856483 + 1.48347i
\(426\) −10.4853 −0.508014
\(427\) −7.32843 38.0796i −0.354647 1.84280i
\(428\) −10.8284 −0.523412
\(429\) 5.41421 + 9.37769i 0.261401 + 0.452759i
\(430\) 58.4914 101.310i 2.82070 4.88560i
\(431\) 11.5858 20.0672i 0.558068 0.966602i −0.439590 0.898199i \(-0.644876\pi\)
0.997658 0.0684031i \(-0.0217904\pi\)
\(432\) −1.50000 2.59808i −0.0721688 0.125000i
\(433\) 8.48528 0.407777 0.203888 0.978994i \(-0.434642\pi\)
0.203888 + 0.978994i \(0.434642\pi\)
\(434\) −19.1421 6.63103i −0.918852 0.318300i
\(435\) 18.4853 0.886301
\(436\) −34.7279 60.1505i −1.66317 2.88069i
\(437\) −0.914214 + 1.58346i −0.0437328 + 0.0757474i
\(438\) −12.4497 + 21.5636i −0.594872 + 1.03035i
\(439\) 9.89949 + 17.1464i 0.472477 + 0.818354i 0.999504 0.0314943i \(-0.0100266\pi\)
−0.527027 + 0.849849i \(0.676693\pi\)
\(440\) −64.6985 −3.08438
\(441\) 1.00000 6.92820i 0.0476190 0.329914i
\(442\) 24.9706 1.18773
\(443\) 16.8284 + 29.1477i 0.799543 + 1.38485i 0.919914 + 0.392120i \(0.128258\pi\)
−0.120372 + 0.992729i \(0.538409\pi\)
\(444\) −2.24264 + 3.88437i −0.106431 + 0.184344i
\(445\) 20.7279 35.9018i 0.982598 1.70191i
\(446\) 26.3137 + 45.5767i 1.24599 + 2.15812i
\(447\) 3.82843 0.181078
\(448\) 24.5711 + 8.51167i 1.16087 + 0.402138i
\(449\) 26.1421 1.23372 0.616862 0.787071i \(-0.288404\pi\)
0.616862 + 0.787071i \(0.288404\pi\)
\(450\) 11.6569 + 20.1903i 0.549509 + 0.951778i
\(451\) 14.6569 25.3864i 0.690164 1.19540i
\(452\) 24.5563 42.5328i 1.15503 2.00058i
\(453\) 4.65685 + 8.06591i 0.218798 + 0.378969i
\(454\) 15.3137 0.718708
\(455\) −5.41421 28.1331i −0.253822 1.31890i
\(456\) 4.41421 0.206714
\(457\) 7.32843 + 12.6932i 0.342809 + 0.593763i 0.984953 0.172821i \(-0.0552882\pi\)
−0.642144 + 0.766584i \(0.721955\pi\)
\(458\) −18.8995 + 32.7349i −0.883115 + 1.52960i
\(459\) 1.82843 3.16693i 0.0853437 0.147820i
\(460\) −13.3995 23.2086i −0.624755 1.08211i
\(461\) 22.4558 1.04587 0.522936 0.852372i \(-0.324836\pi\)
0.522936 + 0.852372i \(0.324836\pi\)
\(462\) 18.4853 16.0087i 0.860013 0.744793i
\(463\) −20.6569 −0.960005 −0.480003 0.877267i \(-0.659364\pi\)
−0.480003 + 0.877267i \(0.659364\pi\)
\(464\) 7.24264 + 12.5446i 0.336231 + 0.582369i
\(465\) −6.07107 + 10.5154i −0.281539 + 0.487640i
\(466\) 7.24264 12.5446i 0.335509 0.581118i
\(467\) −12.7426 22.0709i −0.589659 1.02132i −0.994277 0.106834i \(-0.965929\pi\)
0.404618 0.914486i \(-0.367405\pi\)
\(468\) 10.8284 0.500544
\(469\) −24.0000 + 20.7846i −1.10822 + 0.959744i
\(470\) 57.0416 2.63113
\(471\) −5.32843 9.22911i −0.245521 0.425255i
\(472\) 23.8995 41.3951i 1.10006 1.90537i
\(473\) −24.2279 + 41.9640i −1.11400 + 1.92951i
\(474\) 2.82843 + 4.89898i 0.129914 + 0.225018i
\(475\) −9.65685 −0.443087
\(476\) −7.00000 36.3731i −0.320844 1.66716i
\(477\) −2.00000 −0.0915737
\(478\) 2.82843 + 4.89898i 0.129369 + 0.224074i
\(479\) −6.08579 + 10.5409i −0.278067 + 0.481626i −0.970904 0.239468i \(-0.923027\pi\)
0.692838 + 0.721094i \(0.256360\pi\)
\(480\) 3.03553 5.25770i 0.138553 0.239980i
\(481\) −1.65685 2.86976i −0.0755461 0.130850i
\(482\) −47.7990 −2.17718
\(483\) 4.57107 + 1.58346i 0.207991 + 0.0720501i
\(484\) 14.0000 0.636364
\(485\) 32.2132 + 55.7949i 1.46273 + 2.53352i
\(486\) 1.20711 2.09077i 0.0547555 0.0948393i
\(487\) 0.171573 0.297173i 0.00777471 0.0134662i −0.862112 0.506718i \(-0.830859\pi\)
0.869887 + 0.493252i \(0.164192\pi\)
\(488\) −32.3492 56.0305i −1.46438 2.53638i
\(489\) 21.9706 0.993543
\(490\) −60.0772 + 24.0131i −2.71401 + 1.08480i
\(491\) −8.51472 −0.384264 −0.192132 0.981369i \(-0.561540\pi\)
−0.192132 + 0.981369i \(0.561540\pi\)
\(492\) −14.6569 25.3864i −0.660782 1.14451i
\(493\) −8.82843 + 15.2913i −0.397612 + 0.688685i
\(494\) −3.41421 + 5.91359i −0.153613 + 0.266065i
\(495\) −7.32843 12.6932i −0.329388 0.570517i
\(496\) −9.51472 −0.427223
\(497\) −10.8579 3.76127i −0.487042 0.168716i
\(498\) −10.0711 −0.451295
\(499\) −9.98528 17.2950i −0.447003 0.774231i 0.551187 0.834382i \(-0.314175\pi\)
−0.998189 + 0.0601507i \(0.980842\pi\)
\(500\) 34.1274 59.1104i 1.52622 2.64350i
\(501\) −4.41421 + 7.64564i −0.197213 + 0.341582i
\(502\) −16.2782 28.1946i −0.726530 1.25839i
\(503\) 20.1127 0.896781 0.448390 0.893838i \(-0.351997\pi\)
0.448390 + 0.893838i \(0.351997\pi\)
\(504\) −2.20711 11.4685i −0.0983123 0.510846i
\(505\) 13.3431 0.593762
\(506\) 8.44975 + 14.6354i 0.375637 + 0.650623i
\(507\) 2.50000 4.33013i 0.111029 0.192308i
\(508\) −32.4853 + 56.2662i −1.44130 + 2.49641i
\(509\) 5.24264 + 9.08052i 0.232376 + 0.402487i 0.958507 0.285070i \(-0.0920167\pi\)
−0.726131 + 0.687557i \(0.758683\pi\)
\(510\) −33.7990 −1.49664
\(511\) −20.6274 + 17.8639i −0.912503 + 0.790251i
\(512\) 31.2426 1.38074
\(513\) 0.500000 + 0.866025i 0.0220755 + 0.0382360i
\(514\) 31.3848 54.3600i 1.38432 2.39772i
\(515\) 7.00000 12.1244i 0.308457 0.534263i
\(516\) 24.2279 + 41.9640i 1.06657 + 1.84736i
\(517\) −23.6274 −1.03913
\(518\) −5.65685 + 4.89898i −0.248548 + 0.215249i
\(519\) 2.82843 0.124154
\(520\) −23.8995 41.3951i −1.04806 1.81530i
\(521\) 20.4853 35.4815i 0.897476 1.55447i 0.0667670 0.997769i \(-0.478732\pi\)
0.830709 0.556706i \(-0.187935\pi\)
\(522\) −5.82843 + 10.0951i −0.255103 + 0.441852i
\(523\) 18.8995 + 32.7349i 0.826417 + 1.43140i 0.900831 + 0.434169i \(0.142958\pi\)
−0.0744141 + 0.997227i \(0.523709\pi\)
\(524\) 39.5980 1.72985
\(525\) 4.82843 + 25.0892i 0.210730 + 1.09498i
\(526\) −27.3137 −1.19093
\(527\) −5.79899 10.0441i −0.252608 0.437530i
\(528\) 5.74264 9.94655i 0.249916 0.432868i
\(529\) 9.82843 17.0233i 0.427323 0.740145i
\(530\) 9.24264 + 16.0087i 0.401475 + 0.695375i
\(531\) 10.8284 0.469914
\(532\) 9.57107 + 3.31552i 0.414958 + 0.143746i
\(533\) 21.6569 0.938062
\(534\) 13.0711 + 22.6398i 0.565640 + 0.979718i
\(535\) −5.41421 + 9.37769i −0.234077 + 0.405433i
\(536\) −26.4853 + 45.8739i −1.14399 + 1.98145i
\(537\) 5.24264 + 9.08052i 0.226237 + 0.391853i
\(538\) 19.3137 0.832673
\(539\) 24.8848 9.94655i 1.07186 0.428428i
\(540\) −14.6569 −0.630731
\(541\) −11.5000 19.9186i −0.494424 0.856367i 0.505556 0.862794i \(-0.331288\pi\)
−0.999979 + 0.00642713i \(0.997954\pi\)
\(542\) −23.6924 + 41.0364i −1.01768 + 1.76267i
\(543\) 5.82843 10.0951i 0.250122 0.433224i
\(544\) 2.89949 + 5.02207i 0.124315 + 0.215320i
\(545\) −69.4558 −2.97516
\(546\) 17.0711 + 5.91359i 0.730574 + 0.253078i
\(547\) −5.79899 −0.247947 −0.123973 0.992286i \(-0.539564\pi\)
−0.123973 + 0.992286i \(0.539564\pi\)
\(548\) 26.4706 + 45.8484i 1.13077 + 1.95854i
\(549\) 7.32843 12.6932i 0.312770 0.541733i
\(550\) −44.6274 + 77.2970i −1.90292 + 3.29595i
\(551\) −2.41421 4.18154i −0.102849 0.178140i
\(552\) 8.07107 0.343527
\(553\) 1.17157 + 6.08767i 0.0498203 + 0.258874i
\(554\) −31.3848 −1.33341
\(555\) 2.24264 + 3.88437i 0.0951948 + 0.164882i
\(556\) 12.7426 22.0709i 0.540408 0.936015i
\(557\) −7.22792 + 12.5191i −0.306257 + 0.530452i −0.977540 0.210748i \(-0.932410\pi\)
0.671283 + 0.741201i \(0.265743\pi\)
\(558\) −3.82843 6.63103i −0.162070 0.280714i
\(559\) −35.7990 −1.51414
\(560\) −22.9706 + 19.8931i −0.970683 + 0.840637i
\(561\) 14.0000 0.591080
\(562\) 8.41421 + 14.5738i 0.354932 + 0.614761i
\(563\) −0.242641 + 0.420266i −0.0102261 + 0.0177121i −0.871093 0.491118i \(-0.836588\pi\)
0.860867 + 0.508830i \(0.169922\pi\)
\(564\) −11.8137 + 20.4619i −0.497447 + 0.861603i
\(565\) −24.5563 42.5328i −1.03309 1.78937i
\(566\) −76.3553 −3.20945
\(567\) 2.00000 1.73205i 0.0839921 0.0727393i
\(568\) −19.1716 −0.804421
\(569\) 22.8995 + 39.6631i 0.959997 + 1.66276i 0.722495 + 0.691376i \(0.242995\pi\)
0.237502 + 0.971387i \(0.423671\pi\)
\(570\) 4.62132 8.00436i 0.193566 0.335266i
\(571\) −13.6421 + 23.6289i −0.570906 + 0.988838i 0.425568 + 0.904927i \(0.360074\pi\)
−0.996473 + 0.0839109i \(0.973259\pi\)
\(572\) 20.7279 + 35.9018i 0.866678 + 1.50113i
\(573\) 11.8284 0.494140
\(574\) −9.24264 48.0262i −0.385780 2.00457i
\(575\) −17.6569 −0.736342
\(576\) 4.91421 + 8.51167i 0.204759 + 0.354653i
\(577\) −9.15685 + 15.8601i −0.381205 + 0.660266i −0.991235 0.132112i \(-0.957824\pi\)
0.610030 + 0.792378i \(0.291157\pi\)
\(578\) −4.37868 + 7.58410i −0.182129 + 0.315457i
\(579\) −2.00000 3.46410i −0.0831172 0.143963i
\(580\) 70.7696 2.93855
\(581\) −10.4289 3.61269i −0.432665 0.149880i
\(582\) −40.6274 −1.68406
\(583\) −3.82843 6.63103i −0.158557 0.274629i
\(584\) −22.7635 + 39.4275i −0.941959 + 1.63152i
\(585\) 5.41421 9.37769i 0.223850 0.387720i
\(586\) −1.00000 1.73205i −0.0413096 0.0715504i
\(587\) −26.6274 −1.09903 −0.549516 0.835483i \(-0.685188\pi\)
−0.549516 + 0.835483i \(0.685188\pi\)
\(588\) 3.82843 26.5241i 0.157882 1.09384i
\(589\) 3.17157 0.130682
\(590\) −50.0416 86.6746i −2.06018 3.56834i
\(591\) 8.74264 15.1427i 0.359624 0.622887i
\(592\) −1.75736 + 3.04384i −0.0722270 + 0.125101i
\(593\) −13.7426 23.8030i −0.564343 0.977470i −0.997111 0.0759647i \(-0.975796\pi\)
0.432768 0.901505i \(-0.357537\pi\)
\(594\) 9.24264 0.379230
\(595\) −35.0000 12.1244i −1.43486 0.497050i
\(596\) 14.6569 0.600368
\(597\) −1.67157 2.89525i −0.0684129 0.118495i
\(598\) −6.24264 + 10.8126i −0.255281 + 0.442159i
\(599\) 14.5563 25.2123i 0.594756 1.03015i −0.398825 0.917027i \(-0.630582\pi\)
0.993581 0.113121i \(-0.0360848\pi\)
\(600\) 21.3137 + 36.9164i 0.870129 + 1.50711i
\(601\) −8.68629 −0.354321 −0.177161 0.984182i \(-0.556691\pi\)
−0.177161 + 0.984182i \(0.556691\pi\)
\(602\) 15.2782 + 79.3877i 0.622692 + 3.23560i
\(603\) −12.0000 −0.488678
\(604\) 17.8284 + 30.8797i 0.725428 + 1.25648i
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) −4.20711 + 7.28692i −0.170902 + 0.296011i
\(607\) −6.92893 12.0013i −0.281237 0.487116i 0.690453 0.723377i \(-0.257411\pi\)
−0.971690 + 0.236261i \(0.924078\pi\)
\(608\) −1.58579 −0.0643121
\(609\) −9.65685 + 8.36308i −0.391315 + 0.338889i
\(610\) −135.468 −5.48494
\(611\) −8.72792 15.1172i −0.353094 0.611577i
\(612\) 7.00000 12.1244i 0.282958 0.490098i
\(613\) 18.3137 31.7203i 0.739684 1.28117i −0.212954 0.977062i \(-0.568308\pi\)
0.952638 0.304108i \(-0.0983582\pi\)
\(614\) 3.00000 + 5.19615i 0.121070 + 0.209700i
\(615\) −29.3137 −1.18204
\(616\) 33.7990 29.2708i 1.36180 1.17935i
\(617\) −32.1716 −1.29518 −0.647589 0.761989i \(-0.724223\pi\)
−0.647589 + 0.761989i \(0.724223\pi\)
\(618\) 4.41421 + 7.64564i 0.177566 + 0.307553i
\(619\) −4.67157 + 8.09140i −0.187766 + 0.325221i −0.944505 0.328496i \(-0.893458\pi\)
0.756739 + 0.653717i \(0.226791\pi\)
\(620\) −23.2426 + 40.2574i −0.933447 + 1.61678i
\(621\) 0.914214 + 1.58346i 0.0366861 + 0.0635422i
\(622\) −54.6274 −2.19036
\(623\) 5.41421 + 28.1331i 0.216916 + 1.12713i
\(624\) 8.48528 0.339683
\(625\) −9.98528 17.2950i −0.399411 0.691801i
\(626\) 37.7635 65.4082i 1.50933 2.61424i
\(627\) −1.91421 + 3.31552i −0.0764463 + 0.132409i
\(628\) −20.3995 35.3330i −0.814028 1.40994i
\(629\) −4.28427 −0.170825
\(630\) −23.1066 8.00436i −0.920589 0.318901i
\(631\) −16.6569 −0.663099 −0.331549 0.943438i \(-0.607571\pi\)
−0.331549 + 0.943438i \(0.607571\pi\)
\(632\) 5.17157 + 8.95743i 0.205714 + 0.356307i
\(633\) −8.24264 + 14.2767i −0.327616 + 0.567447i
\(634\) 35.9706 62.3028i 1.42857 2.47436i
\(635\) 32.4853 + 56.2662i 1.28914 + 2.23285i
\(636\) −7.65685 −0.303614
\(637\) 15.5563 + 12.2474i 0.616365 + 0.485262i
\(638\) −44.6274 −1.76682
\(639\) −2.17157 3.76127i −0.0859061 0.148794i
\(640\) 39.3492 68.1549i 1.55542 2.69406i
\(641\) 2.58579 4.47871i 0.102132 0.176899i −0.810431 0.585835i \(-0.800767\pi\)
0.912563 + 0.408936i \(0.134100\pi\)
\(642\) −3.41421 5.91359i −0.134748 0.233391i
\(643\) 1.37258 0.0541294 0.0270647 0.999634i \(-0.491384\pi\)
0.0270647 + 0.999634i \(0.491384\pi\)
\(644\) 17.5000 + 6.06218i 0.689597 + 0.238883i
\(645\) 48.4558 1.90795
\(646\) 4.41421 + 7.64564i 0.173675 + 0.300814i
\(647\) −3.42893 + 5.93908i −0.134805 + 0.233490i −0.925523 0.378691i \(-0.876374\pi\)
0.790718 + 0.612181i \(0.209708\pi\)
\(648\) 2.20711 3.82282i 0.0867033 0.150175i
\(649\) 20.7279 + 35.9018i 0.813642 + 1.40927i
\(650\) −65.9411 −2.58642
\(651\) −1.58579 8.23999i −0.0621519 0.322951i
\(652\) 84.1127 3.29411
\(653\) −19.9706 34.5900i −0.781509 1.35361i −0.931063 0.364859i \(-0.881117\pi\)
0.149554 0.988754i \(-0.452216\pi\)
\(654\) 21.8995 37.9310i 0.856338 1.48322i
\(655\) 19.7990 34.2929i 0.773611 1.33993i
\(656\) −11.4853 19.8931i −0.448425 0.776695i
\(657\) −10.3137 −0.402376
\(658\) −29.7990 + 25.8067i −1.16169 + 1.00605i
\(659\) −21.5147 −0.838094 −0.419047 0.907964i \(-0.637636\pi\)
−0.419047 + 0.907964i \(0.637636\pi\)
\(660\) −28.0563 48.5950i −1.09209 1.89156i
\(661\) −6.14214 + 10.6385i −0.238901 + 0.413789i −0.960399 0.278627i \(-0.910121\pi\)
0.721498 + 0.692417i \(0.243454\pi\)
\(662\) −6.65685 + 11.5300i −0.258726 + 0.448127i
\(663\) 5.17157 + 8.95743i 0.200847 + 0.347878i
\(664\) −18.4142 −0.714610
\(665\) 7.65685 6.63103i 0.296920 0.257140i
\(666\) −2.82843 −0.109599
\(667\) −4.41421 7.64564i −0.170919 0.296040i
\(668\) −16.8995 + 29.2708i −0.653861 + 1.13252i
\(669\) −10.8995 + 18.8785i −0.421399 + 0.729884i
\(670\) 55.4558 + 96.0523i 2.14245 + 3.71083i
\(671\) 56.1127 2.16621
\(672\) 0.792893 + 4.11999i 0.0305865 + 0.158932i
\(673\) 2.82843 0.109028 0.0545139 0.998513i \(-0.482639\pi\)
0.0545139 + 0.998513i \(0.482639\pi\)
\(674\) −7.82843 13.5592i −0.301540 0.522282i
\(675\) −4.82843 + 8.36308i −0.185846 + 0.321895i
\(676\) 9.57107 16.5776i 0.368118 0.637599i
\(677\) 8.00000 + 13.8564i 0.307465 + 0.532545i 0.977807 0.209507i \(-0.0671860\pi\)
−0.670342 + 0.742052i \(0.733853\pi\)
\(678\) 30.9706 1.18942
\(679\) −42.0711 14.5738i −1.61454 0.559293i
\(680\) −61.7990 −2.36988
\(681\) 3.17157 + 5.49333i 0.121535 + 0.210505i
\(682\) 14.6569 25.3864i 0.561240 0.972096i
\(683\) −2.51472 + 4.35562i −0.0962230 + 0.166663i −0.910118 0.414348i \(-0.864010\pi\)
0.813895 + 0.581011i \(0.197343\pi\)
\(684\) 1.91421 + 3.31552i 0.0731918 + 0.126772i
\(685\) 52.9411 2.02278
\(686\) 20.5208 39.7246i 0.783488 1.51669i
\(687\) −15.6569 −0.597346
\(688\) 18.9853 + 32.8835i 0.723807 + 1.25367i
\(689\) 2.82843 4.89898i 0.107754 0.186636i
\(690\) 8.44975 14.6354i 0.321676 0.557160i
\(691\) −6.00000 10.3923i −0.228251 0.395342i 0.729039 0.684472i \(-0.239967\pi\)
−0.957290 + 0.289130i \(0.906634\pi\)
\(692\) 10.8284 0.411635
\(693\) 9.57107 + 3.31552i 0.363575 + 0.125946i
\(694\) −49.3848 −1.87462
\(695\) −12.7426 22.0709i −0.483356 0.837197i
\(696\) −10.6569 + 18.4582i −0.403947 + 0.699657i
\(697\) 14.0000 24.2487i 0.530288 0.918485i
\(698\) 16.8995 + 29.2708i 0.639655 + 1.10792i
\(699\) 6.00000 0.226941
\(700\) 18.4853 + 96.0523i 0.698678 + 3.63044i
\(701\) 2.45584 0.0927560 0.0463780 0.998924i \(-0.485232\pi\)
0.0463780 + 0.998924i \(0.485232\pi\)
\(702\) 3.41421 + 5.91359i 0.128861 + 0.223194i
\(703\) 0.585786 1.01461i 0.0220934 0.0382668i
\(704\) −18.8137 + 32.5863i −0.709068 + 1.22814i
\(705\) 11.8137 + 20.4619i 0.444930 + 0.770641i
\(706\) 3.17157 0.119364
\(707\) −6.97056 + 6.03668i −0.262155 + 0.227033i
\(708\) 41.4558 1.55801
\(709\) 7.98528 + 13.8309i 0.299894 + 0.519431i 0.976111 0.217271i \(-0.0697155\pi\)
−0.676218 + 0.736702i \(0.736382\pi\)
\(710\) −20.0711 + 34.7641i −0.753254 + 1.30467i
\(711\) −1.17157 + 2.02922i −0.0439374 + 0.0761018i
\(712\) 23.8995 + 41.3951i 0.895671 + 1.55135i
\(713\) 5.79899 0.217174
\(714\) 17.6569 15.2913i 0.660791 0.572262i
\(715\) 41.4558 1.55036
\(716\) 20.0711 + 34.7641i 0.750091 + 1.29920i
\(717\) −1.17157 + 2.02922i −0.0437532 + 0.0757827i
\(718\) −7.44975 + 12.9033i −0.278022 + 0.481548i
\(719\) 0.485281 + 0.840532i 0.0180979 + 0.0313466i 0.874933 0.484245i \(-0.160906\pi\)
−0.856835 + 0.515591i \(0.827572\pi\)
\(720\) −11.4853 −0.428031
\(721\) 1.82843 + 9.50079i 0.0680942 + 0.353828i
\(722\) −2.41421 −0.0898477
\(723\) −9.89949 17.1464i −0.368166 0.637683i
\(724\) 22.3137 38.6485i 0.829282 1.43636i
\(725\) 23.3137 40.3805i 0.865849 1.49970i
\(726\) 4.41421 + 7.64564i 0.163827 + 0.283756i
\(727\) −13.0000 −0.482143 −0.241072 0.970507i \(-0.577499\pi\)
−0.241072 + 0.970507i \(0.577499\pi\)
\(728\) 31.2132 + 10.8126i 1.15684 + 0.400741i
\(729\) 1.00000 0.0370370
\(730\) 47.6630 + 82.5547i 1.76408 + 3.05548i
\(731\) −23.1421 + 40.0834i −0.855943 + 1.48254i
\(732\) 28.0563 48.5950i 1.03699 1.79612i
\(733\) 11.0000 + 19.0526i 0.406294 + 0.703722i 0.994471 0.105010i \(-0.0334875\pi\)
−0.588177 + 0.808732i \(0.700154\pi\)
\(734\) −71.5980 −2.64273
\(735\) −21.0563 16.5776i −0.776675 0.611473i
\(736\) −2.89949 −0.106877
\(737\) −22.9706 39.7862i −0.846132 1.46554i
\(738\) 9.24264 16.0087i 0.340226 0.589289i
\(739\) 4.00000 6.92820i 0.147142 0.254858i −0.783028 0.621987i \(-0.786326\pi\)
0.930170 + 0.367129i \(0.119659\pi\)
\(740\) 8.58579 + 14.8710i 0.315620 + 0.546670i
\(741\) −2.82843 −0.103905
\(742\) −12.0711 4.18154i −0.443143 0.153509i
\(743\) 33.1716 1.21695 0.608473 0.793574i \(-0.291782\pi\)
0.608473 + 0.793574i \(0.291782\pi\)
\(744\) −7.00000 12.1244i −0.256632 0.444500i
\(745\) 7.32843 12.6932i 0.268493 0.465043i
\(746\) 24.4853 42.4098i 0.896470 1.55273i
\(747\) −2.08579 3.61269i −0.0763149 0.132181i
\(748\) 53.5980 1.95974
\(749\) −1.41421 7.34847i −0.0516742 0.268507i
\(750\) 43.0416 1.57166
\(751\) −17.3137 29.9882i −0.631786 1.09429i −0.987186 0.159572i \(-0.948989\pi\)
0.355400 0.934714i \(-0.384345\pi\)
\(752\) −9.25736 + 16.0342i −0.337581 + 0.584708i
\(753\) 6.74264 11.6786i 0.245715 0.425592i
\(754\) −16.4853 28.5533i −0.600359 1.03985i
\(755\) 35.6569 1.29769
\(756\) 7.65685 6.63103i 0.278477 0.241168i
\(757\) 9.34315 0.339582 0.169791 0.985480i \(-0.445691\pi\)
0.169791 + 0.985480i \(0.445691\pi\)
\(758\) −19.8995 34.4669i −0.722782 1.25190i
\(759\) −3.50000 + 6.06218i −0.127042 + 0.220043i
\(760\) 8.44975 14.6354i 0.306505 0.530881i
\(761\) 9.39949 + 16.2804i 0.340731 + 0.590164i 0.984569 0.174998i \(-0.0559920\pi\)
−0.643837 + 0.765162i \(0.722659\pi\)
\(762\) −40.9706 −1.48421
\(763\) 36.2843 31.4231i 1.31358 1.13759i
\(764\) 45.2843 1.63833
\(765\) −7.00000 12.1244i −0.253086 0.438357i
\(766\) 19.3137 33.4523i 0.697833 1.20868i
\(767\) −15.3137 + 26.5241i −0.552946 + 0.957731i
\(768\) 14.9853 + 25.9553i 0.540735 + 0.936580i
\(769\) 14.3137 0.516166 0.258083 0.966123i \(-0.416909\pi\)
0.258083 + 0.966123i \(0.416909\pi\)
\(770\) −17.6924 91.9323i −0.637589 3.31301i
\(771\) 26.0000 0.936367
\(772\) −7.65685 13.2621i −0.275576 0.477312i
\(773\) −1.41421 + 2.44949i −0.0508657 + 0.0881020i −0.890337 0.455302i \(-0.849531\pi\)
0.839471 + 0.543404i \(0.182865\pi\)
\(774\) −15.2782 + 26.4626i −0.549163 + 0.951178i
\(775\) 15.3137 + 26.5241i 0.550085 + 0.952775i
\(776\) −74.2843 −2.66665
\(777\) −2.92893 1.01461i −0.105075 0.0363990i
\(778\) −10.4853 −0.375916
\(779\) 3.82843 + 6.63103i 0.137168 + 0.237581i
\(780\) 20.7279 35.9018i 0.742179 1.28549i
\(781\) 8.31371 14.3998i 0.297488 0.515264i
\(782\) 8.07107 + 13.9795i 0.288621 + 0.499906i
\(783\) −4.82843 −0.172554
\(784\) 3.00000 20.7846i 0.107143 0.742307i
\(785\) −40.7990 −1.45618
\(786\) 12.4853 + 21.6251i 0.445335 + 0.771343i
\(787\) −8.14214 + 14.1026i −0.290236 + 0.502703i −0.973865 0.227126i \(-0.927067\pi\)
0.683630 + 0.729829i \(0.260400\pi\)
\(788\) 33.4706 57.9727i 1.19234 2.06519i
\(789\) −5.65685 9.79796i −0.201389 0.348817i
\(790\) 21.6569 0.770516
\(791\) 32.0711 + 11.1097i 1.14032 + 0.395017i
\(792\) 16.8995 0.600497
\(793\) 20.7279 + 35.9018i 0.736070 + 1.27491i
\(794\) 6.41421 11.1097i 0.227632 0.394270i
\(795\) −3.82843 + 6.63103i −0.135780 + 0.235178i
\(796\) −6.39949 11.0843i −0.226824 0.392871i
\(797\) 7.51472 0.266185 0.133092 0.991104i \(-0.457509\pi\)
0.133092 + 0.991104i \(0.457509\pi\)
\(798\) 1.20711 + 6.27231i 0.0427311 + 0.222037i
\(799\) −22.5685 −0.798418
\(800\) −7.65685 13.2621i −0.270711 0.468885i
\(801\) −5.41421 + 9.37769i −0.191302 + 0.331344i
\(802\) −0.828427 + 1.43488i −0.0292528 + 0.0506673i
\(803\) −19.7426 34.1953i −0.696703 1.20672i
\(804\) −45.9411 −1.62022
\(805\) 14.0000 12.1244i 0.493435 0.427327i
\(806\) 21.6569 0.762830
\(807\) 4.00000 + 6.92820i 0.140807 + 0.243884i
\(808\) −7.69239 + 13.3236i −0.270617 + 0.468723i
\(809\) 12.3995 21.4766i 0.435943 0.755075i −0.561429 0.827525i \(-0.689748\pi\)
0.997372 + 0.0724494i \(0.0230816\pi\)
\(810\) −4.62132 8.00436i −0.162377 0.281245i
\(811\) −12.1421 −0.426368 −0.213184 0.977012i \(-0.568383\pi\)
−0.213184 + 0.977012i \(0.568383\pi\)
\(812\) −36.9706 + 32.0174i −1.29741 + 1.12359i
\(813\) −19.6274 −0.688364
\(814\) −5.41421 9.37769i −0.189768 0.328688i
\(815\) 42.0563 72.8437i 1.47317 2.55160i
\(816\) 5.48528 9.50079i 0.192023 0.332594i
\(817\) −6.32843 10.9612i −0.221404 0.383482i
\(818\) −12.8284 −0.448535
\(819\) 1.41421 + 7.34847i 0.0494166 + 0.256776i
\(820\) −112.225 −3.91908
\(821\) −3.42893 5.93908i −0.119671 0.207275i 0.799967 0.600045i \(-0.204850\pi\)
−0.919637 + 0.392769i \(0.871517\pi\)
\(822\) −16.6924 + 28.9121i −0.582214 + 1.00842i
\(823\) −15.9853 + 27.6873i −0.557212 + 0.965119i 0.440516 + 0.897745i \(0.354796\pi\)
−0.997728 + 0.0673745i \(0.978538\pi\)
\(824\) 8.07107 + 13.9795i 0.281169 + 0.486999i
\(825\) −36.9706 −1.28715
\(826\) 65.3553 + 22.6398i 2.27400 + 0.787738i
\(827\) −15.1127 −0.525520 −0.262760 0.964861i \(-0.584633\pi\)
−0.262760 + 0.964861i \(0.584633\pi\)
\(828\) 3.50000 + 6.06218i 0.121633 + 0.210675i
\(829\) 19.0711 33.0321i 0.662366 1.14725i −0.317627 0.948216i \(-0.602886\pi\)
0.979992 0.199035i \(-0.0637807\pi\)
\(830\) −19.2782 + 33.3908i −0.669155 + 1.15901i
\(831\) −6.50000 11.2583i −0.225483 0.390547i
\(832\) −27.7990 −0.963757
\(833\) 23.7696 9.50079i 0.823566 0.329183i
\(834\) 16.0711 0.556496
\(835\) 16.8995 + 29.2708i 0.584831 + 1.01296i
\(836\) −7.32843 + 12.6932i −0.253459 + 0.439004i
\(837\) 1.58579 2.74666i 0.0548128 0.0949386i
\(838\) −12.2782 21.2664i −0.424143 0.734636i
\(839\) −45.2548 −1.56237 −0.781185 0.624299i \(-0.785385\pi\)
−0.781185 + 0.624299i \(0.785385\pi\)
\(840\) −42.2487 14.6354i −1.45772 0.504969i
\(841\) −5.68629 −0.196079
\(842\) 23.1421 + 40.0834i 0.797531 + 1.38136i
\(843\) −3.48528 + 6.03668i −0.120039 + 0.207914i
\(844\) −31.5563 + 54.6572i −1.08621 + 1.88138i
\(845\) −9.57107 16.5776i −0.329255 0.570286i
\(846\) −14.8995 −0.512255
\(847\) 1.82843 + 9.50079i 0.0628255 + 0.326451i
\(848\) −6.00000 −0.206041
\(849\) −15.8137 27.3901i −0.542725 0.940027i
\(850\) −42.6274 + 73.8329i −1.46211 + 2.53245i
\(851\) 1.07107 1.85514i 0.0367157 0.0635935i
\(852\) −8.31371 14.3998i −0.284823 0.493328i
\(853\) −6.37258 −0.218193 −0.109097 0.994031i \(-0.534796\pi\)
−0.109097 + 0.994031i \(0.534796\pi\)
\(854\) 70.7696 61.2882i 2.42168 2.09724i
\(855\) 3.82843 0.130929
\(856\) −6.24264 10.8126i −0.213369 0.369566i
\(857\) 13.4142 23.2341i 0.458221 0.793662i −0.540646 0.841250i \(-0.681820\pi\)
0.998867 + 0.0475883i \(0.0151536\pi\)
\(858\) −13.0711 + 22.6398i −0.446239 + 0.772908i
\(859\) −15.4706 26.7958i −0.527849 0.914261i −0.999473 0.0324613i \(-0.989665\pi\)
0.471624 0.881800i \(-0.343668\pi\)
\(860\) 185.510 6.32583
\(861\) 15.3137 13.2621i 0.521890 0.451970i
\(862\) 55.9411 1.90536
\(863\) −3.58579 6.21076i −0.122062 0.211417i 0.798519 0.601970i \(-0.205617\pi\)
−0.920581 + 0.390553i \(0.872284\pi\)
\(864\) −0.792893 + 1.37333i −0.0269748 + 0.0467217i
\(865\) 5.41421 9.37769i 0.184089 0.318851i
\(866\) 10.2426 + 17.7408i 0.348059 + 0.602856i
\(867\) −3.62742 −0.123194
\(868\) −6.07107 31.5462i −0.206065 1.07075i
\(869\) −8.97056 −0.304305
\(870\) 22.3137 + 38.6485i 0.756506 + 1.31031i
\(871\) 16.9706 29.3939i 0.575026 0.995974i
\(872\) 40.0416 69.3541i 1.35598 2.34863i
\(873\) −8.41421 14.5738i −0.284778 0.493250i
\(874\) −4.41421 −0.149313
\(875\) 44.5711 + 15.4399i 1.50678 + 0.521963i
\(876\) −39.4853 −1.33408
\(877\) −10.8284 18.7554i −0.365650 0.633324i 0.623230 0.782038i \(-0.285820\pi\)
−0.988880 + 0.148714i \(0.952487\pi\)
\(878\) −23.8995 + 41.3951i −0.806569 + 1.39702i
\(879\) 0.414214 0.717439i 0.0139711 0.0241986i
\(880\) −21.9853 38.0796i −0.741124 1.28366i
\(881\) −4.62742 −0.155902 −0.0779508 0.996957i \(-0.524838\pi\)
−0.0779508 + 0.996957i \(0.524838\pi\)
\(882\) 15.6924 6.27231i 0.528390 0.211200i
\(883\) −44.9706 −1.51338 −0.756690 0.653774i \(-0.773185\pi\)
−0.756690 + 0.653774i \(0.773185\pi\)
\(884\) 19.7990 + 34.2929i 0.665912 + 1.15339i
\(885\) 20.7279 35.9018i 0.696761 1.20683i
\(886\) −40.6274 + 70.3688i −1.36490 + 2.36408i
\(887\) 7.72792 + 13.3852i 0.259478 + 0.449429i 0.966102 0.258160i \(-0.0831161\pi\)
−0.706624 + 0.707589i \(0.749783\pi\)
\(888\) −5.17157 −0.173547
\(889\) −42.4264 14.6969i −1.42294 0.492919i
\(890\) 100.083 3.35480
\(891\) 1.91421 + 3.31552i 0.0641286 + 0.111074i
\(892\) −41.7279 + 72.2749i −1.39715 + 2.41994i
\(893\) 3.08579 5.34474i 0.103262 0.178855i
\(894\) 4.62132 + 8.00436i 0.154560 + 0.267706i
\(895\) 40.1421 1.34180
\(896\) 10.2782 + 53.4070i 0.343370 + 1.78420i
\(897\) −5.17157 −0.172674
\(898\) 31.5563 + 54.6572i 1.05305 + 1.82393i
\(899\) −7.65685 + 13.2621i −0.255370 + 0.442314i
\(900\) −18.4853 + 32.0174i −0.616176 + 1.06725i
\(901\) −3.65685 6.33386i −0.121827 0.211011i
\(902\) 70.7696 2.35637
\(903\) −25.3137 + 21.9223i −0.842387 + 0.729529i
\(904\) 56.6274 1.88340
\(905\) −22.3137 38.6485i −0.741733 1.28472i
\(906\) −11.2426 + 19.4728i −0.373512 + 0.646941i
\(907\) 9.82843 17.0233i 0.326348 0.565251i −0.655437 0.755250i \(-0.727515\pi\)
0.981784 + 0.190000i \(0.0608487\pi\)
\(908\) 12.1421 + 21.0308i 0.402951 + 0.697931i
\(909\) −3.48528 −0.115599
\(910\) 52.2843 45.2795i 1.73321 1.50100i
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 1.50000 + 2.59808i 0.0496700 + 0.0860309i
\(913\) 7.98528 13.8309i 0.264274 0.457736i
\(914\) −17.6924 + 30.6441i −0.585212 + 1.01362i
\(915\) −28.0563 48.5950i −0.927514 1.60650i
\(916\) −59.9411 −1.98051
\(917\) 5.17157 + 26.8723i 0.170780 + 0.887401i
\(918\) 8.82843 0.291382
\(919\) 21.6716 + 37.5363i 0.714879 + 1.23821i 0.963006 + 0.269480i \(0.0868517\pi\)
−0.248127 + 0.968728i \(0.579815\pi\)
\(920\) 15.4497 26.7597i 0.509363 0.882243i
\(921\) −1.24264 + 2.15232i −0.0409464 + 0.0709213i
\(922\) 27.1066 + 46.9500i 0.892708 + 1.54622i
\(923\) 12.2843 0.404342
\(924\) 36.6421 + 12.6932i 1.20544 + 0.417576i
\(925\) 11.3137 0.371992
\(926\) −24.9350 43.1887i −0.819416 1.41927i
\(927\) −1.82843 + 3.16693i −0.0600534 + 0.104016i
\(928\) 3.82843 6.63103i 0.125674 0.217674i
\(929\) −8.22792 14.2512i −0.269949 0.467566i 0.698899 0.715220i \(-0.253674\pi\)
−0.968848 + 0.247654i \(0.920340\pi\)
\(930\) −29.3137 −0.961234
\(931\) −1.00000 + 6.92820i −0.0327737 + 0.227063i
\(932\) 22.9706 0.752426
\(933\) −11.3137 19.5959i −0.370394 0.641542i
\(934\) 30.7635 53.2839i 1.00661 1.74350i
\(935\) 26.7990 46.4172i 0.876421 1.51801i
\(936\) 6.24264 + 10.8126i 0.204047 + 0.353420i
\(937\) −27.0000 −0.882052 −0.441026 0.897494i \(-0.645385\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(938\) −72.4264 25.0892i −2.36481 0.819193i
\(939\) 31.2843 1.02092
\(940\) 45.2279 + 78.3371i 1.47517 + 2.55507i
\(941\) −29.9706 + 51.9105i −0.977012 + 1.69224i −0.303885 + 0.952709i \(0.598284\pi\)
−0.673128 + 0.739526i \(0.735050\pi\)
\(942\) 12.8640 22.2810i 0.419130 0.725955i
\(943\) 7.00000 + 12.1244i 0.227951 + 0.394823i
\(944\) 32.4853 1.05731
\(945\) −1.91421 9.94655i −0.0622694 0.323561i
\(946\) −116.983 −3.80344
\(947\) 8.34315 + 14.4508i 0.271116 + 0.469586i 0.969148 0.246480i \(-0.0792740\pi\)
−0.698032 + 0.716067i \(0.745941\pi\)
\(948\) −4.48528 + 7.76874i −0.145675 + 0.252317i
\(949\) 14.5858 25.2633i 0.473475 0.820082i
\(950\) −11.6569 20.1903i −0.378198 0.655059i
\(951\) 29.7990 0.966298
\(952\) 32.2843 27.9590i 1.04634 0.906156i
\(953\) −26.6274 −0.862547 −0.431273 0.902221i \(-0.641936\pi\)
−0.431273 + 0.902221i \(0.641936\pi\)
\(954\) −2.41421 4.18154i −0.0781631 0.135382i
\(955\) 22.6421 39.2173i 0.732682 1.26904i
\(956\) −4.48528 + 7.76874i −0.145064 + 0.251259i
\(957\) −9.24264 16.0087i −0.298772 0.517489i
\(958\) −29.3848 −0.949379
\(959\) −27.6569 + 23.9515i −0.893086 + 0.773436i
\(960\) 37.6274 1.21442
\(961\) 10.4706 + 18.1355i 0.337760 + 0.585018i
\(962\) 4.00000 6.92820i 0.128965 0.223374i
\(963\) 1.41421 2.44949i 0.0455724 0.0789337i
\(964\) −37.8995 65.6439i −1.22066 2.11425i
\(965\) −15.3137 −0.492966
\(966\) 2.20711 + 11.4685i 0.0710125 + 0.368992i
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) 8.07107 + 13.9795i 0.259414 + 0.449318i
\(969\) −1.82843 + 3.16693i −0.0587375 + 0.101736i
\(970\) −77.7696 + 134.701i −2.49703 + 4.32498i
\(971\) 19.8995 + 34.4669i 0.638605 + 1.10610i 0.985739 + 0.168281i \(0.0538216\pi\)
−0.347134 + 0.937816i \(0.612845\pi\)
\(972\) 3.82843 0.122797
\(973\) 16.6421 + 5.76500i 0.533522 + 0.184818i
\(974\) 0.828427 0.0265445
\(975\) −13.6569 23.6544i −0.437369 0.757546i
\(976\) 21.9853 38.0796i 0.703732 1.21890i
\(977\) −11.5563 + 20.0162i −0.369720 + 0.640374i −0.989522 0.144384i \(-0.953880\pi\)
0.619801 + 0.784759i \(0.287213\pi\)
\(978\) 26.5208 + 45.9354i 0.848042 + 1.46885i
\(979\) −41.4558 −1.32493
\(980\) −80.6127 63.4660i −2.57508 2.02735i
\(981\) 18.1421 0.579234
\(982\) −10.2782 17.8023i −0.327990 0.568095i
\(983\) −1.72792 + 2.99285i −0.0551122 + 0.0954571i −0.892265 0.451512i \(-0.850885\pi\)
0.837153 + 0.546969i \(0.184218\pi\)
\(984\) 16.8995 29.2708i 0.538736 0.933119i
\(985\) −33.4706 57.9727i −1.06646 1.84716i
\(986\) −42.6274 −1.35753
\(987\) −15.4289 5.34474i −0.491108 0.170125i
\(988\) −10.8284 −0.344498
\(989\) −11.5711 20.0417i −0.367939 0.637288i
\(990\) 17.6924 30.6441i 0.562301 0.973934i
\(991\) −26.6274 + 46.1200i −0.845848 + 1.46505i 0.0390352 + 0.999238i \(0.487572\pi\)
−0.884883 + 0.465813i \(0.845762\pi\)
\(992\) 2.51472 + 4.35562i 0.0798424 + 0.138291i
\(993\) −5.51472 −0.175004
\(994\) −5.24264 27.2416i −0.166286 0.864050i
\(995\) −12.7990 −0.405755
\(996\) −7.98528 13.8309i −0.253023 0.438249i
\(997\) 15.0000 25.9808i 0.475055 0.822819i −0.524537 0.851388i \(-0.675762\pi\)
0.999592 + 0.0285686i \(0.00909491\pi\)
\(998\) 24.1066 41.7539i 0.763081 1.32170i
\(999\) −0.585786 1.01461i −0.0185335 0.0321009i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.j.c.172.2 yes 4
3.2 odd 2 1197.2.j.d.172.1 4
7.2 even 3 inner 399.2.j.c.58.2 4
7.3 odd 6 2793.2.a.n.1.1 2
7.4 even 3 2793.2.a.o.1.1 2
21.2 odd 6 1197.2.j.d.856.1 4
21.11 odd 6 8379.2.a.bm.1.2 2
21.17 even 6 8379.2.a.bh.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.c.58.2 4 7.2 even 3 inner
399.2.j.c.172.2 yes 4 1.1 even 1 trivial
1197.2.j.d.172.1 4 3.2 odd 2
1197.2.j.d.856.1 4 21.2 odd 6
2793.2.a.n.1.1 2 7.3 odd 6
2793.2.a.o.1.1 2 7.4 even 3
8379.2.a.bh.1.2 2 21.17 even 6
8379.2.a.bm.1.2 2 21.11 odd 6