Properties

Label 399.2.j.b.172.1
Level $399$
Weight $2$
Character 399.172
Analytic conductor $3.186$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(58,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.58"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 399.172
Dual form 399.2.j.b.58.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-1.00000 - 1.73205i) q^{5} +(0.500000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(1.50000 - 2.59808i) q^{11} +(1.00000 + 1.73205i) q^{12} +2.00000 q^{13} +2.00000 q^{15} +(-2.00000 - 3.46410i) q^{16} +(3.50000 - 6.06218i) q^{17} +(0.500000 + 0.866025i) q^{19} -4.00000 q^{20} +(-2.50000 - 0.866025i) q^{21} +(-2.50000 - 4.33013i) q^{23} +(0.500000 - 0.866025i) q^{25} +1.00000 q^{27} +(5.00000 + 1.73205i) q^{28} +2.00000 q^{29} +(-5.00000 + 8.66025i) q^{31} +(1.50000 + 2.59808i) q^{33} +(4.00000 - 3.46410i) q^{35} -2.00000 q^{36} +(-4.00000 - 6.92820i) q^{37} +(-1.00000 + 1.73205i) q^{39} +6.00000 q^{41} +12.0000 q^{43} +(-3.00000 - 5.19615i) q^{44} +(-1.00000 + 1.73205i) q^{45} +(2.50000 + 4.33013i) q^{47} +4.00000 q^{48} +(-6.50000 + 2.59808i) q^{49} +(3.50000 + 6.06218i) q^{51} +(2.00000 - 3.46410i) q^{52} +(-2.00000 + 3.46410i) q^{53} -6.00000 q^{55} -1.00000 q^{57} +(-7.00000 + 12.1244i) q^{59} +(2.00000 - 3.46410i) q^{60} +(6.50000 + 11.2583i) q^{61} +(2.00000 - 1.73205i) q^{63} -8.00000 q^{64} +(-2.00000 - 3.46410i) q^{65} +(1.00000 - 1.73205i) q^{67} +(-7.00000 - 12.1244i) q^{68} +5.00000 q^{69} -10.0000 q^{71} +(-0.500000 + 0.866025i) q^{73} +(0.500000 + 0.866025i) q^{75} +2.00000 q^{76} +(7.50000 + 2.59808i) q^{77} +(2.00000 + 3.46410i) q^{79} +(-4.00000 + 6.92820i) q^{80} +(-0.500000 + 0.866025i) q^{81} -9.00000 q^{83} +(-4.00000 + 3.46410i) q^{84} -14.0000 q^{85} +(-1.00000 + 1.73205i) q^{87} +(-9.00000 - 15.5885i) q^{89} +(1.00000 + 5.19615i) q^{91} -10.0000 q^{92} +(-5.00000 - 8.66025i) q^{93} +(1.00000 - 1.73205i) q^{95} +6.00000 q^{97} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 2 q^{4} - 2 q^{5} + q^{7} - q^{9} + 3 q^{11} + 2 q^{12} + 4 q^{13} + 4 q^{15} - 4 q^{16} + 7 q^{17} + q^{19} - 8 q^{20} - 5 q^{21} - 5 q^{23} + q^{25} + 2 q^{27} + 10 q^{28} + 4 q^{29}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i \(-0.314250\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 1.00000 + 1.73205i 0.288675 + 0.500000i
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 3.50000 6.06218i 0.848875 1.47029i −0.0333386 0.999444i \(-0.510614\pi\)
0.882213 0.470850i \(-0.156053\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i
\(20\) −4.00000 −0.894427
\(21\) −2.50000 0.866025i −0.545545 0.188982i
\(22\) 0 0
\(23\) −2.50000 4.33013i −0.521286 0.902894i −0.999694 0.0247559i \(-0.992119\pi\)
0.478407 0.878138i \(-0.341214\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 5.00000 + 1.73205i 0.944911 + 0.327327i
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −5.00000 + 8.66025i −0.898027 + 1.55543i −0.0680129 + 0.997684i \(0.521666\pi\)
−0.830014 + 0.557743i \(0.811667\pi\)
\(32\) 0 0
\(33\) 1.50000 + 2.59808i 0.261116 + 0.452267i
\(34\) 0 0
\(35\) 4.00000 3.46410i 0.676123 0.585540i
\(36\) −2.00000 −0.333333
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) 0 0
\(39\) −1.00000 + 1.73205i −0.160128 + 0.277350i
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) −3.00000 5.19615i −0.452267 0.783349i
\(45\) −1.00000 + 1.73205i −0.149071 + 0.258199i
\(46\) 0 0
\(47\) 2.50000 + 4.33013i 0.364662 + 0.631614i 0.988722 0.149763i \(-0.0478510\pi\)
−0.624059 + 0.781377i \(0.714518\pi\)
\(48\) 4.00000 0.577350
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) 3.50000 + 6.06218i 0.490098 + 0.848875i
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) −2.00000 + 3.46410i −0.274721 + 0.475831i −0.970065 0.242846i \(-0.921919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −7.00000 + 12.1244i −0.911322 + 1.57846i −0.0991242 + 0.995075i \(0.531604\pi\)
−0.812198 + 0.583382i \(0.801729\pi\)
\(60\) 2.00000 3.46410i 0.258199 0.447214i
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 2.00000 1.73205i 0.251976 0.218218i
\(64\) −8.00000 −1.00000
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) 0 0
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) −7.00000 12.1244i −0.848875 1.47029i
\(69\) 5.00000 0.601929
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) −0.500000 + 0.866025i −0.0585206 + 0.101361i −0.893801 0.448463i \(-0.851972\pi\)
0.835281 + 0.549823i \(0.185305\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 2.00000 0.229416
\(77\) 7.50000 + 2.59808i 0.854704 + 0.296078i
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −4.00000 + 6.92820i −0.447214 + 0.774597i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) −4.00000 + 3.46410i −0.436436 + 0.377964i
\(85\) −14.0000 −1.51851
\(86\) 0 0
\(87\) −1.00000 + 1.73205i −0.107211 + 0.185695i
\(88\) 0 0
\(89\) −9.00000 15.5885i −0.953998 1.65237i −0.736644 0.676280i \(-0.763591\pi\)
−0.217354 0.976093i \(-0.569742\pi\)
\(90\) 0 0
\(91\) 1.00000 + 5.19615i 0.104828 + 0.544705i
\(92\) −10.0000 −1.04257
\(93\) −5.00000 8.66025i −0.518476 0.898027i
\(94\) 0 0
\(95\) 1.00000 1.73205i 0.102598 0.177705i
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) −1.00000 1.73205i −0.100000 0.173205i
\(101\) −6.50000 + 11.2583i −0.646774 + 1.12025i 0.337115 + 0.941464i \(0.390549\pi\)
−0.983889 + 0.178782i \(0.942784\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 0 0
\(105\) 1.00000 + 5.19615i 0.0975900 + 0.507093i
\(106\) 0 0
\(107\) 9.00000 + 15.5885i 0.870063 + 1.50699i 0.861931 + 0.507026i \(0.169255\pi\)
0.00813215 + 0.999967i \(0.497411\pi\)
\(108\) 1.00000 1.73205i 0.0962250 0.166667i
\(109\) −3.00000 + 5.19615i −0.287348 + 0.497701i −0.973176 0.230063i \(-0.926107\pi\)
0.685828 + 0.727764i \(0.259440\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 8.00000 6.92820i 0.755929 0.654654i
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) −5.00000 + 8.66025i −0.466252 + 0.807573i
\(116\) 2.00000 3.46410i 0.185695 0.321634i
\(117\) −1.00000 1.73205i −0.0924500 0.160128i
\(118\) 0 0
\(119\) 17.5000 + 6.06218i 1.60422 + 0.555719i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) −3.00000 + 5.19615i −0.270501 + 0.468521i
\(124\) 10.0000 + 17.3205i 0.898027 + 1.55543i
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) −6.00000 + 10.3923i −0.528271 + 0.914991i
\(130\) 0 0
\(131\) −0.500000 0.866025i −0.0436852 0.0756650i 0.843356 0.537355i \(-0.180577\pi\)
−0.887041 + 0.461690i \(0.847243\pi\)
\(132\) 6.00000 0.522233
\(133\) −2.00000 + 1.73205i −0.173422 + 0.150188i
\(134\) 0 0
\(135\) −1.00000 1.73205i −0.0860663 0.149071i
\(136\) 0 0
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) −2.00000 10.3923i −0.169031 0.878310i
\(141\) −5.00000 −0.421076
\(142\) 0 0
\(143\) 3.00000 5.19615i 0.250873 0.434524i
\(144\) −2.00000 + 3.46410i −0.166667 + 0.288675i
\(145\) −2.00000 3.46410i −0.166091 0.287678i
\(146\) 0 0
\(147\) 1.00000 6.92820i 0.0824786 0.571429i
\(148\) −16.0000 −1.31519
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 4.00000 6.92820i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 0 0
\(153\) −7.00000 −0.565916
\(154\) 0 0
\(155\) 20.0000 1.60644
\(156\) 2.00000 + 3.46410i 0.160128 + 0.277350i
\(157\) −2.50000 + 4.33013i −0.199522 + 0.345582i −0.948373 0.317156i \(-0.897272\pi\)
0.748852 + 0.662738i \(0.230606\pi\)
\(158\) 0 0
\(159\) −2.00000 3.46410i −0.158610 0.274721i
\(160\) 0 0
\(161\) 10.0000 8.66025i 0.788110 0.682524i
\(162\) 0 0
\(163\) −4.50000 7.79423i −0.352467 0.610491i 0.634214 0.773158i \(-0.281324\pi\)
−0.986681 + 0.162667i \(0.947991\pi\)
\(164\) 6.00000 10.3923i 0.468521 0.811503i
\(165\) 3.00000 5.19615i 0.233550 0.404520i
\(166\) 0 0
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0.500000 0.866025i 0.0382360 0.0662266i
\(172\) 12.0000 20.7846i 0.914991 1.58481i
\(173\) −2.00000 3.46410i −0.152057 0.263371i 0.779926 0.625871i \(-0.215256\pi\)
−0.931984 + 0.362500i \(0.881923\pi\)
\(174\) 0 0
\(175\) 2.50000 + 0.866025i 0.188982 + 0.0654654i
\(176\) −12.0000 −0.904534
\(177\) −7.00000 12.1244i −0.526152 0.911322i
\(178\) 0 0
\(179\) −5.00000 + 8.66025i −0.373718 + 0.647298i −0.990134 0.140122i \(-0.955250\pi\)
0.616417 + 0.787420i \(0.288584\pi\)
\(180\) 2.00000 + 3.46410i 0.149071 + 0.258199i
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) −13.0000 −0.960988
\(184\) 0 0
\(185\) −8.00000 + 13.8564i −0.588172 + 1.01874i
\(186\) 0 0
\(187\) −10.5000 18.1865i −0.767836 1.32993i
\(188\) 10.0000 0.729325
\(189\) 0.500000 + 2.59808i 0.0363696 + 0.188982i
\(190\) 0 0
\(191\) 4.00000 + 6.92820i 0.289430 + 0.501307i 0.973674 0.227946i \(-0.0732010\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(192\) 4.00000 6.92820i 0.288675 0.500000i
\(193\) −4.00000 + 6.92820i −0.287926 + 0.498703i −0.973315 0.229475i \(-0.926299\pi\)
0.685388 + 0.728178i \(0.259632\pi\)
\(194\) 0 0
\(195\) 4.00000 0.286446
\(196\) −2.00000 + 13.8564i −0.142857 + 0.989743i
\(197\) −5.00000 −0.356235 −0.178118 0.984009i \(-0.557001\pi\)
−0.178118 + 0.984009i \(0.557001\pi\)
\(198\) 0 0
\(199\) 8.00000 13.8564i 0.567105 0.982255i −0.429745 0.902950i \(-0.641397\pi\)
0.996850 0.0793045i \(-0.0252700\pi\)
\(200\) 0 0
\(201\) 1.00000 + 1.73205i 0.0705346 + 0.122169i
\(202\) 0 0
\(203\) 1.00000 + 5.19615i 0.0701862 + 0.364698i
\(204\) 14.0000 0.980196
\(205\) −6.00000 10.3923i −0.419058 0.725830i
\(206\) 0 0
\(207\) −2.50000 + 4.33013i −0.173762 + 0.300965i
\(208\) −4.00000 6.92820i −0.277350 0.480384i
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 4.00000 + 6.92820i 0.274721 + 0.475831i
\(213\) 5.00000 8.66025i 0.342594 0.593391i
\(214\) 0 0
\(215\) −12.0000 20.7846i −0.818393 1.41750i
\(216\) 0 0
\(217\) −25.0000 8.66025i −1.69711 0.587896i
\(218\) 0 0
\(219\) −0.500000 0.866025i −0.0337869 0.0585206i
\(220\) −6.00000 + 10.3923i −0.404520 + 0.700649i
\(221\) 7.00000 12.1244i 0.470871 0.815572i
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −5.00000 + 8.66025i −0.331862 + 0.574801i −0.982877 0.184263i \(-0.941010\pi\)
0.651015 + 0.759065i \(0.274343\pi\)
\(228\) −1.00000 + 1.73205i −0.0662266 + 0.114708i
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) −6.00000 + 5.19615i −0.394771 + 0.341882i
\(232\) 0 0
\(233\) 10.5000 + 18.1865i 0.687878 + 1.19144i 0.972523 + 0.232806i \(0.0747909\pi\)
−0.284645 + 0.958633i \(0.591876\pi\)
\(234\) 0 0
\(235\) 5.00000 8.66025i 0.326164 0.564933i
\(236\) 14.0000 + 24.2487i 0.911322 + 1.57846i
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) −1.00000 −0.0646846 −0.0323423 0.999477i \(-0.510297\pi\)
−0.0323423 + 0.999477i \(0.510297\pi\)
\(240\) −4.00000 6.92820i −0.258199 0.447214i
\(241\) 4.00000 6.92820i 0.257663 0.446285i −0.707953 0.706260i \(-0.750381\pi\)
0.965615 + 0.259975i \(0.0837143\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 26.0000 1.66448
\(245\) 11.0000 + 8.66025i 0.702764 + 0.553283i
\(246\) 0 0
\(247\) 1.00000 + 1.73205i 0.0636285 + 0.110208i
\(248\) 0 0
\(249\) 4.50000 7.79423i 0.285176 0.493939i
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) −1.00000 5.19615i −0.0629941 0.327327i
\(253\) −15.0000 −0.943042
\(254\) 0 0
\(255\) 7.00000 12.1244i 0.438357 0.759257i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 6.00000 + 10.3923i 0.374270 + 0.648254i 0.990217 0.139533i \(-0.0445601\pi\)
−0.615948 + 0.787787i \(0.711227\pi\)
\(258\) 0 0
\(259\) 16.0000 13.8564i 0.994192 0.860995i
\(260\) −8.00000 −0.496139
\(261\) −1.00000 1.73205i −0.0618984 0.107211i
\(262\) 0 0
\(263\) 5.50000 9.52628i 0.339145 0.587416i −0.645128 0.764075i \(-0.723196\pi\)
0.984272 + 0.176659i \(0.0565291\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 18.0000 1.10158
\(268\) −2.00000 3.46410i −0.122169 0.211604i
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) 0.500000 + 0.866025i 0.0303728 + 0.0526073i 0.880812 0.473466i \(-0.156997\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) −28.0000 −1.69775
\(273\) −5.00000 1.73205i −0.302614 0.104828i
\(274\) 0 0
\(275\) −1.50000 2.59808i −0.0904534 0.156670i
\(276\) 5.00000 8.66025i 0.300965 0.521286i
\(277\) −8.50000 + 14.7224i −0.510716 + 0.884585i 0.489207 + 0.872167i \(0.337286\pi\)
−0.999923 + 0.0124177i \(0.996047\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) −20.0000 −1.19310 −0.596550 0.802576i \(-0.703462\pi\)
−0.596550 + 0.802576i \(0.703462\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) −10.0000 + 17.3205i −0.593391 + 1.02778i
\(285\) 1.00000 + 1.73205i 0.0592349 + 0.102598i
\(286\) 0 0
\(287\) 3.00000 + 15.5885i 0.177084 + 0.920158i
\(288\) 0 0
\(289\) −16.0000 27.7128i −0.941176 1.63017i
\(290\) 0 0
\(291\) −3.00000 + 5.19615i −0.175863 + 0.304604i
\(292\) 1.00000 + 1.73205i 0.0585206 + 0.101361i
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 28.0000 1.63022
\(296\) 0 0
\(297\) 1.50000 2.59808i 0.0870388 0.150756i
\(298\) 0 0
\(299\) −5.00000 8.66025i −0.289157 0.500835i
\(300\) 2.00000 0.115470
\(301\) 6.00000 + 31.1769i 0.345834 + 1.79701i
\(302\) 0 0
\(303\) −6.50000 11.2583i −0.373415 0.646774i
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) 13.0000 22.5167i 0.744378 1.28930i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 12.0000 10.3923i 0.683763 0.592157i
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −2.50000 + 4.33013i −0.141762 + 0.245539i −0.928160 0.372181i \(-0.878610\pi\)
0.786398 + 0.617720i \(0.211943\pi\)
\(312\) 0 0
\(313\) −9.50000 16.4545i −0.536972 0.930062i −0.999065 0.0432311i \(-0.986235\pi\)
0.462093 0.886831i \(-0.347098\pi\)
\(314\) 0 0
\(315\) −5.00000 1.73205i −0.281718 0.0975900i
\(316\) 8.00000 0.450035
\(317\) 15.0000 + 25.9808i 0.842484 + 1.45922i 0.887788 + 0.460252i \(0.152241\pi\)
−0.0453045 + 0.998973i \(0.514426\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 8.00000 + 13.8564i 0.447214 + 0.774597i
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) 7.00000 0.389490
\(324\) 1.00000 + 1.73205i 0.0555556 + 0.0962250i
\(325\) 1.00000 1.73205i 0.0554700 0.0960769i
\(326\) 0 0
\(327\) −3.00000 5.19615i −0.165900 0.287348i
\(328\) 0 0
\(329\) −10.0000 + 8.66025i −0.551318 + 0.477455i
\(330\) 0 0
\(331\) −13.0000 22.5167i −0.714545 1.23763i −0.963135 0.269019i \(-0.913301\pi\)
0.248590 0.968609i \(-0.420033\pi\)
\(332\) −9.00000 + 15.5885i −0.493939 + 0.855528i
\(333\) −4.00000 + 6.92820i −0.219199 + 0.379663i
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 2.00000 + 10.3923i 0.109109 + 0.566947i
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 0 0
\(339\) −6.00000 + 10.3923i −0.325875 + 0.564433i
\(340\) −14.0000 + 24.2487i −0.759257 + 1.31507i
\(341\) 15.0000 + 25.9808i 0.812296 + 1.40694i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) −5.00000 8.66025i −0.269191 0.466252i
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 2.00000 + 3.46410i 0.107211 + 0.185695i
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 7.00000 12.1244i 0.372572 0.645314i −0.617388 0.786659i \(-0.711809\pi\)
0.989960 + 0.141344i \(0.0451425\pi\)
\(354\) 0 0
\(355\) 10.0000 + 17.3205i 0.530745 + 0.919277i
\(356\) −36.0000 −1.90800
\(357\) −14.0000 + 12.1244i −0.740959 + 0.641689i
\(358\) 0 0
\(359\) 15.5000 + 26.8468i 0.818059 + 1.41692i 0.907111 + 0.420892i \(0.138283\pi\)
−0.0890519 + 0.996027i \(0.528384\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 10.0000 + 3.46410i 0.524142 + 0.181568i
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) −10.0000 + 17.3205i −0.521286 + 0.902894i
\(369\) −3.00000 5.19615i −0.156174 0.270501i
\(370\) 0 0
\(371\) −10.0000 3.46410i −0.519174 0.179847i
\(372\) −20.0000 −1.03695
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) 0 0
\(375\) 6.00000 10.3923i 0.309839 0.536656i
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) −2.00000 3.46410i −0.102598 0.177705i
\(381\) −8.00000 + 13.8564i −0.409852 + 0.709885i
\(382\) 0 0
\(383\) −3.00000 5.19615i −0.153293 0.265511i 0.779143 0.626846i \(-0.215654\pi\)
−0.932436 + 0.361335i \(0.882321\pi\)
\(384\) 0 0
\(385\) −3.00000 15.5885i −0.152894 0.794461i
\(386\) 0 0
\(387\) −6.00000 10.3923i −0.304997 0.528271i
\(388\) 6.00000 10.3923i 0.304604 0.527589i
\(389\) 14.5000 25.1147i 0.735179 1.27337i −0.219465 0.975620i \(-0.570431\pi\)
0.954645 0.297747i \(-0.0962353\pi\)
\(390\) 0 0
\(391\) −35.0000 −1.77003
\(392\) 0 0
\(393\) 1.00000 0.0504433
\(394\) 0 0
\(395\) 4.00000 6.92820i 0.201262 0.348596i
\(396\) −3.00000 + 5.19615i −0.150756 + 0.261116i
\(397\) 11.5000 + 19.9186i 0.577168 + 0.999685i 0.995802 + 0.0915300i \(0.0291757\pi\)
−0.418634 + 0.908155i \(0.637491\pi\)
\(398\) 0 0
\(399\) −0.500000 2.59808i −0.0250313 0.130066i
\(400\) −4.00000 −0.200000
\(401\) 3.00000 + 5.19615i 0.149813 + 0.259483i 0.931158 0.364615i \(-0.118800\pi\)
−0.781345 + 0.624099i \(0.785466\pi\)
\(402\) 0 0
\(403\) −10.0000 + 17.3205i −0.498135 + 0.862796i
\(404\) 13.0000 + 22.5167i 0.646774 + 1.12025i
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(410\) 0 0
\(411\) 1.50000 + 2.59808i 0.0739895 + 0.128154i
\(412\) −16.0000 −0.788263
\(413\) −35.0000 12.1244i −1.72224 0.596601i
\(414\) 0 0
\(415\) 9.00000 + 15.5885i 0.441793 + 0.765207i
\(416\) 0 0
\(417\) −2.50000 + 4.33013i −0.122426 + 0.212047i
\(418\) 0 0
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) 10.0000 + 3.46410i 0.487950 + 0.169031i
\(421\) 4.00000 0.194948 0.0974740 0.995238i \(-0.468924\pi\)
0.0974740 + 0.995238i \(0.468924\pi\)
\(422\) 0 0
\(423\) 2.50000 4.33013i 0.121554 0.210538i
\(424\) 0 0
\(425\) −3.50000 6.06218i −0.169775 0.294059i
\(426\) 0 0
\(427\) −26.0000 + 22.5167i −1.25823 + 1.08966i
\(428\) 36.0000 1.74013
\(429\) 3.00000 + 5.19615i 0.144841 + 0.250873i
\(430\) 0 0
\(431\) 3.00000 5.19615i 0.144505 0.250290i −0.784683 0.619897i \(-0.787174\pi\)
0.929188 + 0.369607i \(0.120508\pi\)
\(432\) −2.00000 3.46410i −0.0962250 0.166667i
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 4.00000 0.191785
\(436\) 6.00000 + 10.3923i 0.287348 + 0.497701i
\(437\) 2.50000 4.33013i 0.119591 0.207138i
\(438\) 0 0
\(439\) −7.00000 12.1244i −0.334092 0.578664i 0.649218 0.760602i \(-0.275096\pi\)
−0.983310 + 0.181938i \(0.941763\pi\)
\(440\) 0 0
\(441\) 5.50000 + 4.33013i 0.261905 + 0.206197i
\(442\) 0 0
\(443\) −10.5000 18.1865i −0.498870 0.864068i 0.501129 0.865373i \(-0.332918\pi\)
−0.999999 + 0.00130426i \(0.999585\pi\)
\(444\) 8.00000 13.8564i 0.379663 0.657596i
\(445\) −18.0000 + 31.1769i −0.853282 + 1.47793i
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) −4.00000 20.7846i −0.188982 0.981981i
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 9.00000 15.5885i 0.423793 0.734032i
\(452\) 12.0000 20.7846i 0.564433 0.977626i
\(453\) 4.00000 + 6.92820i 0.187936 + 0.325515i
\(454\) 0 0
\(455\) 8.00000 6.92820i 0.375046 0.324799i
\(456\) 0 0
\(457\) 12.5000 + 21.6506i 0.584725 + 1.01277i 0.994910 + 0.100771i \(0.0321310\pi\)
−0.410184 + 0.912003i \(0.634536\pi\)
\(458\) 0 0
\(459\) 3.50000 6.06218i 0.163366 0.282958i
\(460\) 10.0000 + 17.3205i 0.466252 + 0.807573i
\(461\) −15.0000 −0.698620 −0.349310 0.937007i \(-0.613584\pi\)
−0.349310 + 0.937007i \(0.613584\pi\)
\(462\) 0 0
\(463\) −9.00000 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(464\) −4.00000 6.92820i −0.185695 0.321634i
\(465\) −10.0000 + 17.3205i −0.463739 + 0.803219i
\(466\) 0 0
\(467\) 2.50000 + 4.33013i 0.115686 + 0.200374i 0.918054 0.396456i \(-0.129760\pi\)
−0.802368 + 0.596830i \(0.796427\pi\)
\(468\) −4.00000 −0.184900
\(469\) 5.00000 + 1.73205i 0.230879 + 0.0799787i
\(470\) 0 0
\(471\) −2.50000 4.33013i −0.115194 0.199522i
\(472\) 0 0
\(473\) 18.0000 31.1769i 0.827641 1.43352i
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 28.0000 24.2487i 1.28338 1.11144i
\(477\) 4.00000 0.183147
\(478\) 0 0
\(479\) −15.5000 + 26.8468i −0.708213 + 1.22666i 0.257306 + 0.966330i \(0.417165\pi\)
−0.965519 + 0.260331i \(0.916168\pi\)
\(480\) 0 0
\(481\) −8.00000 13.8564i −0.364769 0.631798i
\(482\) 0 0
\(483\) 2.50000 + 12.9904i 0.113754 + 0.591083i
\(484\) 4.00000 0.181818
\(485\) −6.00000 10.3923i −0.272446 0.471890i
\(486\) 0 0
\(487\) −1.00000 + 1.73205i −0.0453143 + 0.0784867i −0.887793 0.460243i \(-0.847762\pi\)
0.842479 + 0.538730i \(0.181096\pi\)
\(488\) 0 0
\(489\) 9.00000 0.406994
\(490\) 0 0
\(491\) 27.0000 1.21849 0.609246 0.792981i \(-0.291472\pi\)
0.609246 + 0.792981i \(0.291472\pi\)
\(492\) 6.00000 + 10.3923i 0.270501 + 0.468521i
\(493\) 7.00000 12.1244i 0.315264 0.546054i
\(494\) 0 0
\(495\) 3.00000 + 5.19615i 0.134840 + 0.233550i
\(496\) 40.0000 1.79605
\(497\) −5.00000 25.9808i −0.224281 1.16540i
\(498\) 0 0
\(499\) 6.00000 + 10.3923i 0.268597 + 0.465223i 0.968500 0.249015i \(-0.0801067\pi\)
−0.699903 + 0.714238i \(0.746773\pi\)
\(500\) −12.0000 + 20.7846i −0.536656 + 0.929516i
\(501\) −7.00000 + 12.1244i −0.312737 + 0.541676i
\(502\) 0 0
\(503\) −11.0000 −0.490466 −0.245233 0.969464i \(-0.578864\pi\)
−0.245233 + 0.969464i \(0.578864\pi\)
\(504\) 0 0
\(505\) 26.0000 1.15698
\(506\) 0 0
\(507\) 4.50000 7.79423i 0.199852 0.346154i
\(508\) 16.0000 27.7128i 0.709885 1.22956i
\(509\) −15.0000 25.9808i −0.664863 1.15158i −0.979322 0.202306i \(-0.935156\pi\)
0.314459 0.949271i \(-0.398177\pi\)
\(510\) 0 0
\(511\) −2.50000 0.866025i −0.110593 0.0383107i
\(512\) 0 0
\(513\) 0.500000 + 0.866025i 0.0220755 + 0.0382360i
\(514\) 0 0
\(515\) −8.00000 + 13.8564i −0.352522 + 0.610586i
\(516\) 12.0000 + 20.7846i 0.528271 + 0.914991i
\(517\) 15.0000 0.659699
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) 14.0000 24.2487i 0.613351 1.06236i −0.377320 0.926083i \(-0.623154\pi\)
0.990671 0.136272i \(-0.0435123\pi\)
\(522\) 0 0
\(523\) −17.0000 29.4449i −0.743358 1.28753i −0.950958 0.309320i \(-0.899899\pi\)
0.207600 0.978214i \(-0.433435\pi\)
\(524\) −2.00000 −0.0873704
\(525\) −2.00000 + 1.73205i −0.0872872 + 0.0755929i
\(526\) 0 0
\(527\) 35.0000 + 60.6218i 1.52462 + 2.64073i
\(528\) 6.00000 10.3923i 0.261116 0.452267i
\(529\) −1.00000 + 1.73205i −0.0434783 + 0.0753066i
\(530\) 0 0
\(531\) 14.0000 0.607548
\(532\) 1.00000 + 5.19615i 0.0433555 + 0.225282i
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 18.0000 31.1769i 0.778208 1.34790i
\(536\) 0 0
\(537\) −5.00000 8.66025i −0.215766 0.373718i
\(538\) 0 0
\(539\) −3.00000 + 20.7846i −0.129219 + 0.895257i
\(540\) −4.00000 −0.172133
\(541\) 7.00000 + 12.1244i 0.300954 + 0.521267i 0.976352 0.216186i \(-0.0693618\pi\)
−0.675399 + 0.737453i \(0.736028\pi\)
\(542\) 0 0
\(543\) −8.00000 + 13.8564i −0.343313 + 0.594635i
\(544\) 0 0
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) −14.0000 −0.598597 −0.299298 0.954160i \(-0.596753\pi\)
−0.299298 + 0.954160i \(0.596753\pi\)
\(548\) −3.00000 5.19615i −0.128154 0.221969i
\(549\) 6.50000 11.2583i 0.277413 0.480494i
\(550\) 0 0
\(551\) 1.00000 + 1.73205i 0.0426014 + 0.0737878i
\(552\) 0 0
\(553\) −8.00000 + 6.92820i −0.340195 + 0.294617i
\(554\) 0 0
\(555\) −8.00000 13.8564i −0.339581 0.588172i
\(556\) 5.00000 8.66025i 0.212047 0.367277i
\(557\) 5.00000 8.66025i 0.211857 0.366947i −0.740439 0.672124i \(-0.765382\pi\)
0.952296 + 0.305177i \(0.0987156\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) −20.0000 6.92820i −0.845154 0.292770i
\(561\) 21.0000 0.886621
\(562\) 0 0
\(563\) 5.00000 8.66025i 0.210725 0.364986i −0.741217 0.671266i \(-0.765751\pi\)
0.951942 + 0.306280i \(0.0990842\pi\)
\(564\) −5.00000 + 8.66025i −0.210538 + 0.364662i
\(565\) −12.0000 20.7846i −0.504844 0.874415i
\(566\) 0 0
\(567\) −2.50000 0.866025i −0.104990 0.0363696i
\(568\) 0 0
\(569\) −10.0000 17.3205i −0.419222 0.726113i 0.576640 0.816999i \(-0.304364\pi\)
−0.995861 + 0.0908852i \(0.971030\pi\)
\(570\) 0 0
\(571\) −23.5000 + 40.7032i −0.983444 + 1.70338i −0.334790 + 0.942293i \(0.608665\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) −6.00000 10.3923i −0.250873 0.434524i
\(573\) −8.00000 −0.334205
\(574\) 0 0
\(575\) −5.00000 −0.208514
\(576\) 4.00000 + 6.92820i 0.166667 + 0.288675i
\(577\) 14.5000 25.1147i 0.603643 1.04554i −0.388621 0.921397i \(-0.627049\pi\)
0.992264 0.124143i \(-0.0396180\pi\)
\(578\) 0 0
\(579\) −4.00000 6.92820i −0.166234 0.287926i
\(580\) −8.00000 −0.332182
\(581\) −4.50000 23.3827i −0.186691 0.970077i
\(582\) 0 0
\(583\) 6.00000 + 10.3923i 0.248495 + 0.430405i
\(584\) 0 0
\(585\) −2.00000 + 3.46410i −0.0826898 + 0.143223i
\(586\) 0 0
\(587\) −15.0000 −0.619116 −0.309558 0.950881i \(-0.600181\pi\)
−0.309558 + 0.950881i \(0.600181\pi\)
\(588\) −11.0000 8.66025i −0.453632 0.357143i
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 2.50000 4.33013i 0.102836 0.178118i
\(592\) −16.0000 + 27.7128i −0.657596 + 1.13899i
\(593\) −3.50000 6.06218i −0.143728 0.248944i 0.785170 0.619281i \(-0.212576\pi\)
−0.928898 + 0.370337i \(0.879242\pi\)
\(594\) 0 0
\(595\) −7.00000 36.3731i −0.286972 1.49115i
\(596\) −12.0000 −0.491539
\(597\) 8.00000 + 13.8564i 0.327418 + 0.567105i
\(598\) 0 0
\(599\) 8.00000 13.8564i 0.326871 0.566157i −0.655018 0.755613i \(-0.727339\pi\)
0.981889 + 0.189456i \(0.0606724\pi\)
\(600\) 0 0
\(601\) −20.0000 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) −8.00000 13.8564i −0.325515 0.563809i
\(605\) 2.00000 3.46410i 0.0813116 0.140836i
\(606\) 0 0
\(607\) 9.00000 + 15.5885i 0.365299 + 0.632716i 0.988824 0.149087i \(-0.0476335\pi\)
−0.623525 + 0.781803i \(0.714300\pi\)
\(608\) 0 0
\(609\) −5.00000 1.73205i −0.202610 0.0701862i
\(610\) 0 0
\(611\) 5.00000 + 8.66025i 0.202278 + 0.350356i
\(612\) −7.00000 + 12.1244i −0.282958 + 0.490098i
\(613\) 21.5000 37.2391i 0.868377 1.50407i 0.00472215 0.999989i \(-0.498497\pi\)
0.863655 0.504084i \(-0.168170\pi\)
\(614\) 0 0
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) 10.0000 0.402585 0.201292 0.979531i \(-0.435486\pi\)
0.201292 + 0.979531i \(0.435486\pi\)
\(618\) 0 0
\(619\) −19.5000 + 33.7750i −0.783771 + 1.35753i 0.145959 + 0.989291i \(0.453373\pi\)
−0.929730 + 0.368241i \(0.879960\pi\)
\(620\) 20.0000 34.6410i 0.803219 1.39122i
\(621\) −2.50000 4.33013i −0.100322 0.173762i
\(622\) 0 0
\(623\) 36.0000 31.1769i 1.44231 1.24908i
\(624\) 8.00000 0.320256
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) −1.50000 + 2.59808i −0.0599042 + 0.103757i
\(628\) 5.00000 + 8.66025i 0.199522 + 0.345582i
\(629\) −56.0000 −2.23287
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) 4.00000 6.92820i 0.158986 0.275371i
\(634\) 0 0
\(635\) −16.0000 27.7128i −0.634941 1.09975i
\(636\) −8.00000 −0.317221
\(637\) −13.0000 + 5.19615i −0.515079 + 0.205879i
\(638\) 0 0
\(639\) 5.00000 + 8.66025i 0.197797 + 0.342594i
\(640\) 0 0
\(641\) −13.0000 + 22.5167i −0.513469 + 0.889355i 0.486409 + 0.873731i \(0.338307\pi\)
−0.999878 + 0.0156233i \(0.995027\pi\)
\(642\) 0 0
\(643\) −9.00000 −0.354925 −0.177463 0.984128i \(-0.556789\pi\)
−0.177463 + 0.984128i \(0.556789\pi\)
\(644\) −5.00000 25.9808i −0.197028 1.02379i
\(645\) 24.0000 0.944999
\(646\) 0 0
\(647\) −12.0000 + 20.7846i −0.471769 + 0.817127i −0.999478 0.0322975i \(-0.989718\pi\)
0.527710 + 0.849425i \(0.323051\pi\)
\(648\) 0 0
\(649\) 21.0000 + 36.3731i 0.824322 + 1.42777i
\(650\) 0 0
\(651\) 20.0000 17.3205i 0.783862 0.678844i
\(652\) −18.0000 −0.704934
\(653\) 11.5000 + 19.9186i 0.450030 + 0.779474i 0.998387 0.0567696i \(-0.0180800\pi\)
−0.548358 + 0.836244i \(0.684747\pi\)
\(654\) 0 0
\(655\) −1.00000 + 1.73205i −0.0390732 + 0.0676768i
\(656\) −12.0000 20.7846i −0.468521 0.811503i
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) −18.0000 −0.701180 −0.350590 0.936529i \(-0.614019\pi\)
−0.350590 + 0.936529i \(0.614019\pi\)
\(660\) −6.00000 10.3923i −0.233550 0.404520i
\(661\) −6.00000 + 10.3923i −0.233373 + 0.404214i −0.958799 0.284087i \(-0.908310\pi\)
0.725426 + 0.688301i \(0.241643\pi\)
\(662\) 0 0
\(663\) 7.00000 + 12.1244i 0.271857 + 0.470871i
\(664\) 0 0
\(665\) 5.00000 + 1.73205i 0.193892 + 0.0671660i
\(666\) 0 0
\(667\) −5.00000 8.66025i −0.193601 0.335326i
\(668\) 14.0000 24.2487i 0.541676 0.938211i
\(669\) −1.00000 + 1.73205i −0.0386622 + 0.0669650i
\(670\) 0 0
\(671\) 39.0000 1.50558
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) −9.00000 + 15.5885i −0.346154 + 0.599556i
\(677\) 6.00000 + 10.3923i 0.230599 + 0.399409i 0.957984 0.286820i \(-0.0925982\pi\)
−0.727386 + 0.686229i \(0.759265\pi\)
\(678\) 0 0
\(679\) 3.00000 + 15.5885i 0.115129 + 0.598230i
\(680\) 0 0
\(681\) −5.00000 8.66025i −0.191600 0.331862i
\(682\) 0 0
\(683\) −22.0000 + 38.1051i −0.841807 + 1.45805i 0.0465592 + 0.998916i \(0.485174\pi\)
−0.888366 + 0.459136i \(0.848159\pi\)
\(684\) −1.00000 1.73205i −0.0382360 0.0662266i
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 1.00000 0.0381524
\(688\) −24.0000 41.5692i −0.914991 1.58481i
\(689\) −4.00000 + 6.92820i −0.152388 + 0.263944i
\(690\) 0 0
\(691\) 9.50000 + 16.4545i 0.361397 + 0.625958i 0.988191 0.153227i \(-0.0489666\pi\)
−0.626794 + 0.779185i \(0.715633\pi\)
\(692\) −8.00000 −0.304114
\(693\) −1.50000 7.79423i −0.0569803 0.296078i
\(694\) 0 0
\(695\) −5.00000 8.66025i −0.189661 0.328502i
\(696\) 0 0
\(697\) 21.0000 36.3731i 0.795432 1.37773i
\(698\) 0 0
\(699\) −21.0000 −0.794293
\(700\) 4.00000 3.46410i 0.151186 0.130931i
\(701\) −15.0000 −0.566542 −0.283271 0.959040i \(-0.591420\pi\)
−0.283271 + 0.959040i \(0.591420\pi\)
\(702\) 0 0
\(703\) 4.00000 6.92820i 0.150863 0.261302i
\(704\) −12.0000 + 20.7846i −0.452267 + 0.783349i
\(705\) 5.00000 + 8.66025i 0.188311 + 0.326164i
\(706\) 0 0
\(707\) −32.5000 11.2583i −1.22229 0.423413i
\(708\) −28.0000 −1.05230
\(709\) −0.500000 0.866025i −0.0187779 0.0325243i 0.856484 0.516174i \(-0.172644\pi\)
−0.875262 + 0.483650i \(0.839311\pi\)
\(710\) 0 0
\(711\) 2.00000 3.46410i 0.0750059 0.129914i
\(712\) 0 0
\(713\) 50.0000 1.87251
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 10.0000 + 17.3205i 0.373718 + 0.647298i
\(717\) 0.500000 0.866025i 0.0186728 0.0323423i
\(718\) 0 0
\(719\) −13.5000 23.3827i −0.503465 0.872027i −0.999992 0.00400572i \(-0.998725\pi\)
0.496527 0.868021i \(-0.334608\pi\)
\(720\) 8.00000 0.298142
\(721\) 16.0000 13.8564i 0.595871 0.516040i
\(722\) 0 0
\(723\) 4.00000 + 6.92820i 0.148762 + 0.257663i
\(724\) 16.0000 27.7128i 0.594635 1.02994i
\(725\) 1.00000 1.73205i 0.0371391 0.0643268i
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 42.0000 72.7461i 1.55343 2.69061i
\(732\) −13.0000 + 22.5167i −0.480494 + 0.832240i
\(733\) 9.00000 + 15.5885i 0.332423 + 0.575773i 0.982986 0.183679i \(-0.0588007\pi\)
−0.650564 + 0.759452i \(0.725467\pi\)
\(734\) 0 0
\(735\) −13.0000 + 5.19615i −0.479512 + 0.191663i
\(736\) 0 0
\(737\) −3.00000 5.19615i −0.110506 0.191403i
\(738\) 0 0
\(739\) 20.5000 35.5070i 0.754105 1.30615i −0.191714 0.981451i \(-0.561404\pi\)
0.945818 0.324697i \(-0.105262\pi\)
\(740\) 16.0000 + 27.7128i 0.588172 + 1.01874i
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) 0 0
\(745\) −6.00000 + 10.3923i −0.219823 + 0.380745i
\(746\) 0 0
\(747\) 4.50000 + 7.79423i 0.164646 + 0.285176i
\(748\) −42.0000 −1.53567
\(749\) −36.0000 + 31.1769i −1.31541 + 1.13918i
\(750\) 0 0
\(751\) 19.0000 + 32.9090i 0.693320 + 1.20087i 0.970744 + 0.240118i \(0.0771860\pi\)
−0.277424 + 0.960748i \(0.589481\pi\)
\(752\) 10.0000 17.3205i 0.364662 0.631614i
\(753\) −8.00000 + 13.8564i −0.291536 + 0.504956i
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 5.00000 + 1.73205i 0.181848 + 0.0629941i
\(757\) −17.0000 −0.617876 −0.308938 0.951082i \(-0.599973\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(758\) 0 0
\(759\) 7.50000 12.9904i 0.272233 0.471521i
\(760\) 0 0
\(761\) −5.00000 8.66025i −0.181250 0.313934i 0.761057 0.648686i \(-0.224681\pi\)
−0.942306 + 0.334752i \(0.891348\pi\)
\(762\) 0 0
\(763\) −15.0000 5.19615i −0.543036 0.188113i
\(764\) 16.0000 0.578860
\(765\) 7.00000 + 12.1244i 0.253086 + 0.438357i
\(766\) 0 0
\(767\) −14.0000 + 24.2487i −0.505511 + 0.875570i
\(768\) −8.00000 13.8564i −0.288675 0.500000i
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 8.00000 + 13.8564i 0.287926 + 0.498703i
\(773\) 18.0000 31.1769i 0.647415 1.12136i −0.336323 0.941747i \(-0.609183\pi\)
0.983738 0.179609i \(-0.0574833\pi\)
\(774\) 0 0
\(775\) 5.00000 + 8.66025i 0.179605 + 0.311086i
\(776\) 0 0
\(777\) 4.00000 + 20.7846i 0.143499 + 0.745644i
\(778\) 0 0
\(779\) 3.00000 + 5.19615i 0.107486 + 0.186171i
\(780\) 4.00000 6.92820i 0.143223 0.248069i
\(781\) −15.0000 + 25.9808i −0.536742 + 0.929665i
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 22.0000 + 17.3205i 0.785714 + 0.618590i
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) −10.0000 + 17.3205i −0.356462 + 0.617409i −0.987367 0.158450i \(-0.949350\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(788\) −5.00000 + 8.66025i −0.178118 + 0.308509i
\(789\) 5.50000 + 9.52628i 0.195805 + 0.339145i
\(790\) 0 0
\(791\) 6.00000 + 31.1769i 0.213335 + 1.10852i
\(792\) 0 0
\(793\) 13.0000 + 22.5167i 0.461644 + 0.799590i
\(794\) 0 0
\(795\) −4.00000 + 6.92820i −0.141865 + 0.245718i
\(796\) −16.0000 27.7128i −0.567105 0.982255i
\(797\) −22.0000 −0.779280 −0.389640 0.920967i \(-0.627401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 35.0000 1.23821
\(800\) 0 0
\(801\) −9.00000 + 15.5885i −0.317999 + 0.550791i
\(802\) 0 0
\(803\) 1.50000 + 2.59808i 0.0529339 + 0.0916841i
\(804\) 4.00000 0.141069
\(805\) −25.0000 8.66025i −0.881134 0.305234i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.0000 43.3013i 0.878953 1.52239i 0.0264621 0.999650i \(-0.491576\pi\)
0.852491 0.522742i \(-0.175091\pi\)
\(810\) 0 0
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) 10.0000 + 3.46410i 0.350931 + 0.121566i
\(813\) −1.00000 −0.0350715
\(814\) 0 0
\(815\) −9.00000 + 15.5885i −0.315256 + 0.546040i
\(816\) 14.0000 24.2487i 0.490098 0.848875i
\(817\) 6.00000 + 10.3923i 0.209913 + 0.363581i
\(818\) 0 0
\(819\) 4.00000 3.46410i 0.139771 0.121046i
\(820\) −24.0000 −0.838116
\(821\) 25.5000 + 44.1673i 0.889956 + 1.54145i 0.839926 + 0.542702i \(0.182599\pi\)
0.0500305 + 0.998748i \(0.484068\pi\)
\(822\) 0 0
\(823\) 7.50000 12.9904i 0.261434 0.452816i −0.705190 0.709019i \(-0.749138\pi\)
0.966623 + 0.256203i \(0.0824714\pi\)
\(824\) 0 0
\(825\) 3.00000 0.104447
\(826\) 0 0
\(827\) 2.00000 0.0695468 0.0347734 0.999395i \(-0.488929\pi\)
0.0347734 + 0.999395i \(0.488929\pi\)
\(828\) 5.00000 + 8.66025i 0.173762 + 0.300965i
\(829\) −17.0000 + 29.4449i −0.590434 + 1.02266i 0.403739 + 0.914874i \(0.367710\pi\)
−0.994174 + 0.107788i \(0.965623\pi\)
\(830\) 0 0
\(831\) −8.50000 14.7224i −0.294862 0.510716i
\(832\) −16.0000 −0.554700
\(833\) −7.00000 + 48.4974i −0.242536 + 1.68034i
\(834\) 0 0
\(835\) −14.0000 24.2487i −0.484490 0.839161i
\(836\) 3.00000 5.19615i 0.103757 0.179713i
\(837\) −5.00000 + 8.66025i −0.172825 + 0.299342i
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 10.0000 17.3205i 0.344418 0.596550i
\(844\) −8.00000 + 13.8564i −0.275371 + 0.476957i
\(845\) 9.00000 + 15.5885i 0.309609 + 0.536259i
\(846\) 0 0
\(847\) −4.00000 + 3.46410i −0.137442 + 0.119028i
\(848\) 16.0000 0.549442
\(849\) 2.00000 + 3.46410i 0.0686398 + 0.118888i
\(850\) 0 0
\(851\) −20.0000 + 34.6410i −0.685591 + 1.18748i
\(852\) −10.0000 17.3205i −0.342594 0.593391i
\(853\) −5.00000 −0.171197 −0.0855984 0.996330i \(-0.527280\pi\)
−0.0855984 + 0.996330i \(0.527280\pi\)
\(854\) 0 0
\(855\) −2.00000 −0.0683986
\(856\) 0 0
\(857\) 3.00000 5.19615i 0.102478 0.177497i −0.810227 0.586116i \(-0.800656\pi\)
0.912705 + 0.408619i \(0.133990\pi\)
\(858\) 0 0
\(859\) −2.00000 3.46410i −0.0682391 0.118194i 0.829887 0.557931i \(-0.188405\pi\)
−0.898126 + 0.439738i \(0.855071\pi\)
\(860\) −48.0000 −1.63679
\(861\) −15.0000 5.19615i −0.511199 0.177084i
\(862\) 0 0
\(863\) 6.00000 + 10.3923i 0.204242 + 0.353758i 0.949891 0.312581i \(-0.101194\pi\)
−0.745649 + 0.666339i \(0.767860\pi\)
\(864\) 0 0
\(865\) −4.00000 + 6.92820i −0.136004 + 0.235566i
\(866\) 0 0
\(867\) 32.0000 1.08678
\(868\) −40.0000 + 34.6410i −1.35769 + 1.17579i
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 2.00000 3.46410i 0.0677674 0.117377i
\(872\) 0 0
\(873\) −3.00000 5.19615i −0.101535 0.175863i
\(874\) 0 0
\(875\) −6.00000 31.1769i −0.202837 1.05397i
\(876\) −2.00000 −0.0675737
\(877\) −18.0000 31.1769i −0.607817 1.05277i −0.991600 0.129346i \(-0.958712\pi\)
0.383783 0.923423i \(-0.374621\pi\)
\(878\) 0 0
\(879\) 9.00000 15.5885i 0.303562 0.525786i
\(880\) 12.0000 + 20.7846i 0.404520 + 0.700649i
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 0 0
\(883\) −9.00000 −0.302874 −0.151437 0.988467i \(-0.548390\pi\)
−0.151437 + 0.988467i \(0.548390\pi\)
\(884\) −14.0000 24.2487i −0.470871 0.815572i
\(885\) −14.0000 + 24.2487i −0.470605 + 0.815112i
\(886\) 0 0
\(887\) −21.0000 36.3731i −0.705111 1.22129i −0.966651 0.256096i \(-0.917564\pi\)
0.261540 0.965193i \(-0.415770\pi\)
\(888\) 0 0
\(889\) 8.00000 + 41.5692i 0.268311 + 1.39419i
\(890\) 0 0
\(891\) 1.50000 + 2.59808i 0.0502519 + 0.0870388i
\(892\) 2.00000 3.46410i 0.0669650 0.115987i
\(893\) −2.50000 + 4.33013i −0.0836593 + 0.144902i
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 0 0
\(897\) 10.0000 0.333890
\(898\) 0 0
\(899\) −10.0000 + 17.3205i −0.333519 + 0.577671i
\(900\) −1.00000 + 1.73205i −0.0333333 + 0.0577350i
\(901\) 14.0000 + 24.2487i 0.466408 + 0.807842i
\(902\) 0 0
\(903\) −30.0000 10.3923i −0.998337 0.345834i
\(904\) 0 0
\(905\) −16.0000 27.7128i −0.531858 0.921205i
\(906\) 0 0
\(907\) 1.00000 1.73205i 0.0332045 0.0575118i −0.848946 0.528480i \(-0.822762\pi\)
0.882150 + 0.470968i \(0.156095\pi\)
\(908\) 10.0000 + 17.3205i 0.331862 + 0.574801i
\(909\) 13.0000 0.431183
\(910\) 0 0
\(911\) −50.0000 −1.65657 −0.828287 0.560304i \(-0.810684\pi\)
−0.828287 + 0.560304i \(0.810684\pi\)
\(912\) 2.00000 + 3.46410i 0.0662266 + 0.114708i
\(913\) −13.5000 + 23.3827i −0.446785 + 0.773854i
\(914\) 0 0
\(915\) 13.0000 + 22.5167i 0.429767 + 0.744378i
\(916\) −2.00000 −0.0660819
\(917\) 2.00000 1.73205i 0.0660458 0.0571974i
\(918\) 0 0
\(919\) −1.50000 2.59808i −0.0494804 0.0857026i 0.840224 0.542239i \(-0.182423\pi\)
−0.889705 + 0.456536i \(0.849090\pi\)
\(920\) 0 0
\(921\) −8.00000 + 13.8564i −0.263609 + 0.456584i
\(922\) 0 0
\(923\) −20.0000 −0.658308
\(924\) 3.00000 + 15.5885i 0.0986928 + 0.512823i
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) 0 0
\(929\) −17.5000 30.3109i −0.574156 0.994468i −0.996133 0.0878612i \(-0.971997\pi\)
0.421976 0.906607i \(-0.361337\pi\)
\(930\) 0 0
\(931\) −5.50000 4.33013i −0.180255 0.141914i
\(932\) 42.0000 1.37576
\(933\) −2.50000 4.33013i −0.0818463 0.141762i
\(934\) 0 0
\(935\) −21.0000 + 36.3731i −0.686773 + 1.18953i
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 19.0000 0.620042
\(940\) −10.0000 17.3205i −0.326164 0.564933i
\(941\) −19.0000 + 32.9090i −0.619382 + 1.07280i 0.370216 + 0.928946i \(0.379284\pi\)
−0.989599 + 0.143856i \(0.954050\pi\)
\(942\) 0 0
\(943\) −15.0000 25.9808i −0.488467 0.846050i
\(944\) 56.0000 1.82264
\(945\) 4.00000 3.46410i 0.130120 0.112687i
\(946\) 0 0
\(947\) 12.0000 + 20.7846i 0.389948 + 0.675409i 0.992442 0.122714i \(-0.0391598\pi\)
−0.602494 + 0.798123i \(0.705826\pi\)
\(948\) −4.00000 + 6.92820i −0.129914 + 0.225018i
\(949\) −1.00000 + 1.73205i −0.0324614 + 0.0562247i
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 0 0
\(955\) 8.00000 13.8564i 0.258874 0.448383i
\(956\) −1.00000 + 1.73205i −0.0323423 + 0.0560185i
\(957\) 3.00000 + 5.19615i 0.0969762 + 0.167968i
\(958\) 0 0
\(959\) 7.50000 + 2.59808i 0.242188 + 0.0838963i
\(960\) −16.0000 −0.516398
\(961\) −34.5000 59.7558i −1.11290 1.92760i
\(962\) 0 0
\(963\) 9.00000 15.5885i 0.290021 0.502331i
\(964\) −8.00000 13.8564i −0.257663 0.446285i
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) −3.50000 + 6.06218i −0.112436 + 0.194745i
\(970\) 0 0
\(971\) 9.00000 + 15.5885i 0.288824 + 0.500257i 0.973529 0.228562i \(-0.0734025\pi\)
−0.684706 + 0.728820i \(0.740069\pi\)
\(972\) −2.00000 −0.0641500
\(973\) 2.50000 + 12.9904i 0.0801463 + 0.416452i
\(974\) 0 0
\(975\) 1.00000 + 1.73205i 0.0320256 + 0.0554700i
\(976\) 26.0000 45.0333i 0.832240 1.44148i
\(977\) 12.0000 20.7846i 0.383914 0.664959i −0.607704 0.794164i \(-0.707909\pi\)
0.991618 + 0.129205i \(0.0412426\pi\)
\(978\) 0 0
\(979\) −54.0000 −1.72585
\(980\) 26.0000 10.3923i 0.830540 0.331970i
\(981\) 6.00000 0.191565
\(982\) 0 0
\(983\) −20.0000 + 34.6410i −0.637901 + 1.10488i 0.347992 + 0.937498i \(0.386864\pi\)
−0.985893 + 0.167379i \(0.946470\pi\)
\(984\) 0 0
\(985\) 5.00000 + 8.66025i 0.159313 + 0.275939i
\(986\) 0 0
\(987\) −2.50000 12.9904i −0.0795759 0.413488i
\(988\) 4.00000 0.127257
\(989\) −30.0000 51.9615i −0.953945 1.65228i
\(990\) 0 0
\(991\) 21.0000 36.3731i 0.667087 1.15543i −0.311628 0.950204i \(-0.600874\pi\)
0.978715 0.205224i \(-0.0657924\pi\)
\(992\) 0 0
\(993\) 26.0000 0.825085
\(994\) 0 0
\(995\) −32.0000 −1.01447
\(996\) −9.00000 15.5885i −0.285176 0.493939i
\(997\) −0.500000 + 0.866025i −0.0158352 + 0.0274273i −0.873834 0.486224i \(-0.838374\pi\)
0.857999 + 0.513651i \(0.171707\pi\)
\(998\) 0 0
\(999\) −4.00000 6.92820i −0.126554 0.219199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.j.b.172.1 yes 2
3.2 odd 2 1197.2.j.a.172.1 2
7.2 even 3 inner 399.2.j.b.58.1 2
7.3 odd 6 2793.2.a.g.1.1 1
7.4 even 3 2793.2.a.h.1.1 1
21.2 odd 6 1197.2.j.a.856.1 2
21.11 odd 6 8379.2.a.h.1.1 1
21.17 even 6 8379.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.b.58.1 2 7.2 even 3 inner
399.2.j.b.172.1 yes 2 1.1 even 1 trivial
1197.2.j.a.172.1 2 3.2 odd 2
1197.2.j.a.856.1 2 21.2 odd 6
2793.2.a.g.1.1 1 7.3 odd 6
2793.2.a.h.1.1 1 7.4 even 3
8379.2.a.h.1.1 1 21.11 odd 6
8379.2.a.i.1.1 1 21.17 even 6