Properties

Label 399.2.j.a.58.1
Level $399$
Weight $2$
Character 399.58
Analytic conductor $3.186$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(58,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.58"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 58.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 399.58
Dual form 399.2.j.a.172.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(-0.500000 + 0.866025i) q^{5} +2.00000 q^{6} +(2.00000 - 1.73205i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-1.00000 - 1.73205i) q^{10} +(-2.00000 - 3.46410i) q^{11} +(-1.00000 + 1.73205i) q^{12} +4.00000 q^{13} +(1.00000 + 5.19615i) q^{14} +1.00000 q^{15} +(2.00000 - 3.46410i) q^{16} +(-1.50000 - 2.59808i) q^{17} +(-1.00000 - 1.73205i) q^{18} +(0.500000 - 0.866025i) q^{19} +2.00000 q^{20} +(-2.50000 - 0.866025i) q^{21} +8.00000 q^{22} +(1.50000 - 2.59808i) q^{23} +(2.00000 + 3.46410i) q^{25} +(-4.00000 + 6.92820i) q^{26} +1.00000 q^{27} +(-5.00000 - 1.73205i) q^{28} +10.0000 q^{29} +(-1.00000 + 1.73205i) q^{30} +(4.00000 + 6.92820i) q^{32} +(-2.00000 + 3.46410i) q^{33} +6.00000 q^{34} +(0.500000 + 2.59808i) q^{35} +2.00000 q^{36} +(3.00000 - 5.19615i) q^{37} +(1.00000 + 1.73205i) q^{38} +(-2.00000 - 3.46410i) q^{39} +2.00000 q^{41} +(4.00000 - 3.46410i) q^{42} -7.00000 q^{43} +(-4.00000 + 6.92820i) q^{44} +(-0.500000 - 0.866025i) q^{45} +(3.00000 + 5.19615i) q^{46} -4.00000 q^{48} +(1.00000 - 6.92820i) q^{49} -8.00000 q^{50} +(-1.50000 + 2.59808i) q^{51} +(-4.00000 - 6.92820i) q^{52} +(6.00000 + 10.3923i) q^{53} +(-1.00000 + 1.73205i) q^{54} +4.00000 q^{55} -1.00000 q^{57} +(-10.0000 + 17.3205i) q^{58} +(-6.00000 - 10.3923i) q^{59} +(-1.00000 - 1.73205i) q^{60} +(-5.00000 + 8.66025i) q^{61} +(0.500000 + 2.59808i) q^{63} -8.00000 q^{64} +(-2.00000 + 3.46410i) q^{65} +(-4.00000 - 6.92820i) q^{66} +(-5.00000 - 8.66025i) q^{67} +(-3.00000 + 5.19615i) q^{68} -3.00000 q^{69} +(-5.00000 - 1.73205i) q^{70} +6.00000 q^{71} +(-3.00000 - 5.19615i) q^{73} +(6.00000 + 10.3923i) q^{74} +(2.00000 - 3.46410i) q^{75} -2.00000 q^{76} +(-10.0000 - 3.46410i) q^{77} +8.00000 q^{78} +(5.00000 - 8.66025i) q^{79} +(2.00000 + 3.46410i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-2.00000 + 3.46410i) q^{82} +3.00000 q^{83} +(1.00000 + 5.19615i) q^{84} +3.00000 q^{85} +(7.00000 - 12.1244i) q^{86} +(-5.00000 - 8.66025i) q^{87} +(7.00000 - 12.1244i) q^{89} +2.00000 q^{90} +(8.00000 - 6.92820i) q^{91} -6.00000 q^{92} +(0.500000 + 0.866025i) q^{95} +(4.00000 - 6.92820i) q^{96} -12.0000 q^{97} +(11.0000 + 8.66025i) q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - q^{3} - 2 q^{4} - q^{5} + 4 q^{6} + 4 q^{7} - q^{9} - 2 q^{10} - 4 q^{11} - 2 q^{12} + 8 q^{13} + 2 q^{14} + 2 q^{15} + 4 q^{16} - 3 q^{17} - 2 q^{18} + q^{19} + 4 q^{20} - 5 q^{21}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 2.00000 0.816497
\(7\) 2.00000 1.73205i 0.755929 0.654654i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.00000 1.73205i −0.316228 0.547723i
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) −1.00000 + 1.73205i −0.288675 + 0.500000i
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 1.00000 + 5.19615i 0.267261 + 1.38873i
\(15\) 1.00000 0.258199
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) −1.00000 1.73205i −0.235702 0.408248i
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) 2.00000 0.447214
\(21\) −2.50000 0.866025i −0.545545 0.188982i
\(22\) 8.00000 1.70561
\(23\) 1.50000 2.59808i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −4.00000 + 6.92820i −0.784465 + 1.35873i
\(27\) 1.00000 0.192450
\(28\) −5.00000 1.73205i −0.944911 0.327327i
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) −1.00000 + 1.73205i −0.182574 + 0.316228i
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 4.00000 + 6.92820i 0.707107 + 1.22474i
\(33\) −2.00000 + 3.46410i −0.348155 + 0.603023i
\(34\) 6.00000 1.02899
\(35\) 0.500000 + 2.59808i 0.0845154 + 0.439155i
\(36\) 2.00000 0.333333
\(37\) 3.00000 5.19615i 0.493197 0.854242i −0.506772 0.862080i \(-0.669162\pi\)
0.999969 + 0.00783774i \(0.00249486\pi\)
\(38\) 1.00000 + 1.73205i 0.162221 + 0.280976i
\(39\) −2.00000 3.46410i −0.320256 0.554700i
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 4.00000 3.46410i 0.617213 0.534522i
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) −4.00000 + 6.92820i −0.603023 + 1.04447i
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −4.00000 −0.577350
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) −8.00000 −1.13137
\(51\) −1.50000 + 2.59808i −0.210042 + 0.363803i
\(52\) −4.00000 6.92820i −0.554700 0.960769i
\(53\) 6.00000 + 10.3923i 0.824163 + 1.42749i 0.902557 + 0.430570i \(0.141688\pi\)
−0.0783936 + 0.996922i \(0.524979\pi\)
\(54\) −1.00000 + 1.73205i −0.136083 + 0.235702i
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) −10.0000 + 17.3205i −1.31306 + 2.27429i
\(59\) −6.00000 10.3923i −0.781133 1.35296i −0.931282 0.364299i \(-0.881308\pi\)
0.150148 0.988663i \(-0.452025\pi\)
\(60\) −1.00000 1.73205i −0.129099 0.223607i
\(61\) −5.00000 + 8.66025i −0.640184 + 1.10883i 0.345207 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170305i \(0.945525\pi\)
\(62\) 0 0
\(63\) 0.500000 + 2.59808i 0.0629941 + 0.327327i
\(64\) −8.00000 −1.00000
\(65\) −2.00000 + 3.46410i −0.248069 + 0.429669i
\(66\) −4.00000 6.92820i −0.492366 0.852803i
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) −3.00000 + 5.19615i −0.363803 + 0.630126i
\(69\) −3.00000 −0.361158
\(70\) −5.00000 1.73205i −0.597614 0.207020i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −3.00000 5.19615i −0.351123 0.608164i 0.635323 0.772246i \(-0.280867\pi\)
−0.986447 + 0.164083i \(0.947534\pi\)
\(74\) 6.00000 + 10.3923i 0.697486 + 1.20808i
\(75\) 2.00000 3.46410i 0.230940 0.400000i
\(76\) −2.00000 −0.229416
\(77\) −10.0000 3.46410i −1.13961 0.394771i
\(78\) 8.00000 0.905822
\(79\) 5.00000 8.66025i 0.562544 0.974355i −0.434730 0.900561i \(-0.643156\pi\)
0.997274 0.0737937i \(-0.0235106\pi\)
\(80\) 2.00000 + 3.46410i 0.223607 + 0.387298i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −2.00000 + 3.46410i −0.220863 + 0.382546i
\(83\) 3.00000 0.329293 0.164646 0.986353i \(-0.447352\pi\)
0.164646 + 0.986353i \(0.447352\pi\)
\(84\) 1.00000 + 5.19615i 0.109109 + 0.566947i
\(85\) 3.00000 0.325396
\(86\) 7.00000 12.1244i 0.754829 1.30740i
\(87\) −5.00000 8.66025i −0.536056 0.928477i
\(88\) 0 0
\(89\) 7.00000 12.1244i 0.741999 1.28518i −0.209585 0.977790i \(-0.567211\pi\)
0.951584 0.307389i \(-0.0994552\pi\)
\(90\) 2.00000 0.210819
\(91\) 8.00000 6.92820i 0.838628 0.726273i
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 0 0
\(95\) 0.500000 + 0.866025i 0.0512989 + 0.0888523i
\(96\) 4.00000 6.92820i 0.408248 0.707107i
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 11.0000 + 8.66025i 1.11117 + 0.874818i
\(99\) 4.00000 0.402015
\(100\) 4.00000 6.92820i 0.400000 0.692820i
\(101\) −5.50000 9.52628i −0.547270 0.947900i −0.998460 0.0554722i \(-0.982334\pi\)
0.451190 0.892428i \(-0.351000\pi\)
\(102\) −3.00000 5.19615i −0.297044 0.514496i
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 0 0
\(105\) 2.00000 1.73205i 0.195180 0.169031i
\(106\) −24.0000 −2.33109
\(107\) −5.00000 + 8.66025i −0.483368 + 0.837218i −0.999818 0.0190994i \(-0.993920\pi\)
0.516449 + 0.856318i \(0.327253\pi\)
\(108\) −1.00000 1.73205i −0.0962250 0.166667i
\(109\) 3.00000 + 5.19615i 0.287348 + 0.497701i 0.973176 0.230063i \(-0.0738931\pi\)
−0.685828 + 0.727764i \(0.740560\pi\)
\(110\) −4.00000 + 6.92820i −0.381385 + 0.660578i
\(111\) −6.00000 −0.569495
\(112\) −2.00000 10.3923i −0.188982 0.981981i
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 1.00000 1.73205i 0.0936586 0.162221i
\(115\) 1.50000 + 2.59808i 0.139876 + 0.242272i
\(116\) −10.0000 17.3205i −0.928477 1.60817i
\(117\) −2.00000 + 3.46410i −0.184900 + 0.320256i
\(118\) 24.0000 2.20938
\(119\) −7.50000 2.59808i −0.687524 0.238165i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −10.0000 17.3205i −0.905357 1.56813i
\(123\) −1.00000 1.73205i −0.0901670 0.156174i
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −5.00000 1.73205i −0.445435 0.154303i
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 3.50000 + 6.06218i 0.308158 + 0.533745i
\(130\) −4.00000 6.92820i −0.350823 0.607644i
\(131\) 2.50000 4.33013i 0.218426 0.378325i −0.735901 0.677089i \(-0.763241\pi\)
0.954327 + 0.298764i \(0.0965744\pi\)
\(132\) 8.00000 0.696311
\(133\) −0.500000 2.59808i −0.0433555 0.225282i
\(134\) 20.0000 1.72774
\(135\) −0.500000 + 0.866025i −0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) 9.00000 + 15.5885i 0.768922 + 1.33181i 0.938148 + 0.346235i \(0.112540\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 3.00000 5.19615i 0.255377 0.442326i
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 4.00000 3.46410i 0.338062 0.292770i
\(141\) 0 0
\(142\) −6.00000 + 10.3923i −0.503509 + 0.872103i
\(143\) −8.00000 13.8564i −0.668994 1.15873i
\(144\) 2.00000 + 3.46410i 0.166667 + 0.288675i
\(145\) −5.00000 + 8.66025i −0.415227 + 0.719195i
\(146\) 12.0000 0.993127
\(147\) −6.50000 + 2.59808i −0.536111 + 0.214286i
\(148\) −12.0000 −0.986394
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 4.00000 + 6.92820i 0.326599 + 0.565685i
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) 3.00000 0.242536
\(154\) 16.0000 13.8564i 1.28932 1.11658i
\(155\) 0 0
\(156\) −4.00000 + 6.92820i −0.320256 + 0.554700i
\(157\) −0.500000 0.866025i −0.0399043 0.0691164i 0.845383 0.534160i \(-0.179372\pi\)
−0.885288 + 0.465044i \(0.846039\pi\)
\(158\) 10.0000 + 17.3205i 0.795557 + 1.37795i
\(159\) 6.00000 10.3923i 0.475831 0.824163i
\(160\) −8.00000 −0.632456
\(161\) −1.50000 7.79423i −0.118217 0.614271i
\(162\) 2.00000 0.157135
\(163\) −9.50000 + 16.4545i −0.744097 + 1.28881i 0.206518 + 0.978443i \(0.433787\pi\)
−0.950615 + 0.310372i \(0.899546\pi\)
\(164\) −2.00000 3.46410i −0.156174 0.270501i
\(165\) −2.00000 3.46410i −0.155700 0.269680i
\(166\) −3.00000 + 5.19615i −0.232845 + 0.403300i
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −3.00000 + 5.19615i −0.230089 + 0.398527i
\(171\) 0.500000 + 0.866025i 0.0382360 + 0.0662266i
\(172\) 7.00000 + 12.1244i 0.533745 + 0.924473i
\(173\) −7.00000 + 12.1244i −0.532200 + 0.921798i 0.467093 + 0.884208i \(0.345301\pi\)
−0.999293 + 0.0375896i \(0.988032\pi\)
\(174\) 20.0000 1.51620
\(175\) 10.0000 + 3.46410i 0.755929 + 0.261861i
\(176\) −16.0000 −1.20605
\(177\) −6.00000 + 10.3923i −0.450988 + 0.781133i
\(178\) 14.0000 + 24.2487i 1.04934 + 1.81752i
\(179\) 8.00000 + 13.8564i 0.597948 + 1.03568i 0.993124 + 0.117071i \(0.0373504\pi\)
−0.395175 + 0.918606i \(0.629316\pi\)
\(180\) −1.00000 + 1.73205i −0.0745356 + 0.129099i
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 4.00000 + 20.7846i 0.296500 + 1.54066i
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) 3.00000 + 5.19615i 0.220564 + 0.382029i
\(186\) 0 0
\(187\) −6.00000 + 10.3923i −0.438763 + 0.759961i
\(188\) 0 0
\(189\) 2.00000 1.73205i 0.145479 0.125988i
\(190\) −2.00000 −0.145095
\(191\) 8.50000 14.7224i 0.615038 1.06528i −0.375339 0.926887i \(-0.622474\pi\)
0.990378 0.138390i \(-0.0441928\pi\)
\(192\) 4.00000 + 6.92820i 0.288675 + 0.500000i
\(193\) 8.00000 + 13.8564i 0.575853 + 0.997406i 0.995948 + 0.0899262i \(0.0286631\pi\)
−0.420096 + 0.907480i \(0.638004\pi\)
\(194\) 12.0000 20.7846i 0.861550 1.49225i
\(195\) 4.00000 0.286446
\(196\) −13.0000 + 5.19615i −0.928571 + 0.371154i
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) −4.00000 + 6.92820i −0.284268 + 0.492366i
\(199\) 13.5000 + 23.3827i 0.956990 + 1.65755i 0.729748 + 0.683716i \(0.239637\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(200\) 0 0
\(201\) −5.00000 + 8.66025i −0.352673 + 0.610847i
\(202\) 22.0000 1.54791
\(203\) 20.0000 17.3205i 1.40372 1.21566i
\(204\) 6.00000 0.420084
\(205\) −1.00000 + 1.73205i −0.0698430 + 0.120972i
\(206\) −8.00000 13.8564i −0.557386 0.965422i
\(207\) 1.50000 + 2.59808i 0.104257 + 0.180579i
\(208\) 8.00000 13.8564i 0.554700 0.960769i
\(209\) −4.00000 −0.276686
\(210\) 1.00000 + 5.19615i 0.0690066 + 0.358569i
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 12.0000 20.7846i 0.824163 1.42749i
\(213\) −3.00000 5.19615i −0.205557 0.356034i
\(214\) −10.0000 17.3205i −0.683586 1.18401i
\(215\) 3.50000 6.06218i 0.238698 0.413437i
\(216\) 0 0
\(217\) 0 0
\(218\) −12.0000 −0.812743
\(219\) −3.00000 + 5.19615i −0.202721 + 0.351123i
\(220\) −4.00000 6.92820i −0.269680 0.467099i
\(221\) −6.00000 10.3923i −0.403604 0.699062i
\(222\) 6.00000 10.3923i 0.402694 0.697486i
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 20.0000 + 6.92820i 1.33631 + 0.462910i
\(225\) −4.00000 −0.266667
\(226\) 8.00000 13.8564i 0.532152 0.921714i
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 1.00000 + 1.73205i 0.0662266 + 0.114708i
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) −6.00000 −0.395628
\(231\) 2.00000 + 10.3923i 0.131590 + 0.683763i
\(232\) 0 0
\(233\) −4.50000 + 7.79423i −0.294805 + 0.510617i −0.974939 0.222470i \(-0.928588\pi\)
0.680135 + 0.733087i \(0.261921\pi\)
\(234\) −4.00000 6.92820i −0.261488 0.452911i
\(235\) 0 0
\(236\) −12.0000 + 20.7846i −0.781133 + 1.35296i
\(237\) −10.0000 −0.649570
\(238\) 12.0000 10.3923i 0.777844 0.673633i
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 2.00000 3.46410i 0.129099 0.223607i
\(241\) 14.0000 + 24.2487i 0.901819 + 1.56200i 0.825131 + 0.564942i \(0.191101\pi\)
0.0766885 + 0.997055i \(0.475565\pi\)
\(242\) −5.00000 8.66025i −0.321412 0.556702i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 20.0000 1.28037
\(245\) 5.50000 + 4.33013i 0.351382 + 0.276642i
\(246\) 4.00000 0.255031
\(247\) 2.00000 3.46410i 0.127257 0.220416i
\(248\) 0 0
\(249\) −1.50000 2.59808i −0.0950586 0.164646i
\(250\) 9.00000 15.5885i 0.569210 0.985901i
\(251\) −23.0000 −1.45175 −0.725874 0.687828i \(-0.758564\pi\)
−0.725874 + 0.687828i \(0.758564\pi\)
\(252\) 4.00000 3.46410i 0.251976 0.218218i
\(253\) −12.0000 −0.754434
\(254\) −12.0000 + 20.7846i −0.752947 + 1.30414i
\(255\) −1.50000 2.59808i −0.0939336 0.162698i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −1.00000 + 1.73205i −0.0623783 + 0.108042i −0.895528 0.445005i \(-0.853202\pi\)
0.833150 + 0.553047i \(0.186535\pi\)
\(258\) −14.0000 −0.871602
\(259\) −3.00000 15.5885i −0.186411 0.968620i
\(260\) 8.00000 0.496139
\(261\) −5.00000 + 8.66025i −0.309492 + 0.536056i
\(262\) 5.00000 + 8.66025i 0.308901 + 0.535032i
\(263\) 8.50000 + 14.7224i 0.524132 + 0.907824i 0.999605 + 0.0280936i \(0.00894366\pi\)
−0.475473 + 0.879730i \(0.657723\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 5.00000 + 1.73205i 0.306570 + 0.106199i
\(267\) −14.0000 −0.856786
\(268\) −10.0000 + 17.3205i −0.610847 + 1.05802i
\(269\) 9.00000 + 15.5885i 0.548740 + 0.950445i 0.998361 + 0.0572259i \(0.0182255\pi\)
−0.449622 + 0.893219i \(0.648441\pi\)
\(270\) −1.00000 1.73205i −0.0608581 0.105409i
\(271\) 11.5000 19.9186i 0.698575 1.20997i −0.270385 0.962752i \(-0.587151\pi\)
0.968960 0.247216i \(-0.0795156\pi\)
\(272\) −12.0000 −0.727607
\(273\) −10.0000 3.46410i −0.605228 0.209657i
\(274\) −36.0000 −2.17484
\(275\) 8.00000 13.8564i 0.482418 0.835573i
\(276\) 3.00000 + 5.19615i 0.180579 + 0.312772i
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) 12.0000 20.7846i 0.719712 1.24658i
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0.500000 0.866025i 0.0296174 0.0512989i
\(286\) 32.0000 1.89220
\(287\) 4.00000 3.46410i 0.236113 0.204479i
\(288\) −8.00000 −0.471405
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −10.0000 17.3205i −0.587220 1.01710i
\(291\) 6.00000 + 10.3923i 0.351726 + 0.609208i
\(292\) −6.00000 + 10.3923i −0.351123 + 0.608164i
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 2.00000 13.8564i 0.116642 0.808122i
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) −2.00000 3.46410i −0.116052 0.201008i
\(298\) 9.00000 + 15.5885i 0.521356 + 0.903015i
\(299\) 6.00000 10.3923i 0.346989 0.601003i
\(300\) −8.00000 −0.461880
\(301\) −14.0000 + 12.1244i −0.806947 + 0.698836i
\(302\) −20.0000 −1.15087
\(303\) −5.50000 + 9.52628i −0.315967 + 0.547270i
\(304\) −2.00000 3.46410i −0.114708 0.198680i
\(305\) −5.00000 8.66025i −0.286299 0.495885i
\(306\) −3.00000 + 5.19615i −0.171499 + 0.297044i
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 4.00000 + 20.7846i 0.227921 + 1.18431i
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −1.50000 2.59808i −0.0850572 0.147323i 0.820358 0.571850i \(-0.193774\pi\)
−0.905416 + 0.424526i \(0.860441\pi\)
\(312\) 0 0
\(313\) −5.50000 + 9.52628i −0.310878 + 0.538457i −0.978553 0.205996i \(-0.933957\pi\)
0.667674 + 0.744453i \(0.267290\pi\)
\(314\) 2.00000 0.112867
\(315\) −2.50000 0.866025i −0.140859 0.0487950i
\(316\) −20.0000 −1.12509
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 12.0000 + 20.7846i 0.672927 + 1.16554i
\(319\) −20.0000 34.6410i −1.11979 1.93952i
\(320\) 4.00000 6.92820i 0.223607 0.387298i
\(321\) 10.0000 0.558146
\(322\) 15.0000 + 5.19615i 0.835917 + 0.289570i
\(323\) −3.00000 −0.166924
\(324\) −1.00000 + 1.73205i −0.0555556 + 0.0962250i
\(325\) 8.00000 + 13.8564i 0.443760 + 0.768615i
\(326\) −19.0000 32.9090i −1.05231 1.82266i
\(327\) 3.00000 5.19615i 0.165900 0.287348i
\(328\) 0 0
\(329\) 0 0
\(330\) 8.00000 0.440386
\(331\) 11.0000 19.0526i 0.604615 1.04722i −0.387498 0.921871i \(-0.626660\pi\)
0.992112 0.125353i \(-0.0400062\pi\)
\(332\) −3.00000 5.19615i −0.164646 0.285176i
\(333\) 3.00000 + 5.19615i 0.164399 + 0.284747i
\(334\) 2.00000 3.46410i 0.109435 0.189547i
\(335\) 10.0000 0.546358
\(336\) −8.00000 + 6.92820i −0.436436 + 0.377964i
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) −3.00000 + 5.19615i −0.163178 + 0.282633i
\(339\) 4.00000 + 6.92820i 0.217250 + 0.376288i
\(340\) −3.00000 5.19615i −0.162698 0.281801i
\(341\) 0 0
\(342\) −2.00000 −0.108148
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 1.50000 2.59808i 0.0807573 0.139876i
\(346\) −14.0000 24.2487i −0.752645 1.30362i
\(347\) −14.5000 25.1147i −0.778401 1.34823i −0.932863 0.360231i \(-0.882698\pi\)
0.154462 0.987999i \(-0.450635\pi\)
\(348\) −10.0000 + 17.3205i −0.536056 + 0.928477i
\(349\) 13.0000 0.695874 0.347937 0.937518i \(-0.386882\pi\)
0.347937 + 0.937518i \(0.386882\pi\)
\(350\) −16.0000 + 13.8564i −0.855236 + 0.740656i
\(351\) 4.00000 0.213504
\(352\) 16.0000 27.7128i 0.852803 1.47710i
\(353\) 13.0000 + 22.5167i 0.691920 + 1.19844i 0.971208 + 0.238233i \(0.0765683\pi\)
−0.279288 + 0.960207i \(0.590098\pi\)
\(354\) −12.0000 20.7846i −0.637793 1.10469i
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) −28.0000 −1.48400
\(357\) 1.50000 + 7.79423i 0.0793884 + 0.412514i
\(358\) −32.0000 −1.69125
\(359\) −10.0000 + 17.3205i −0.527780 + 0.914141i 0.471696 + 0.881761i \(0.343642\pi\)
−0.999476 + 0.0323801i \(0.989691\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 14.0000 24.2487i 0.735824 1.27448i
\(363\) 5.00000 0.262432
\(364\) −20.0000 6.92820i −1.04828 0.363137i
\(365\) 6.00000 0.314054
\(366\) −10.0000 + 17.3205i −0.522708 + 0.905357i
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) −6.00000 10.3923i −0.312772 0.541736i
\(369\) −1.00000 + 1.73205i −0.0520579 + 0.0901670i
\(370\) −12.0000 −0.623850
\(371\) 30.0000 + 10.3923i 1.55752 + 0.539542i
\(372\) 0 0
\(373\) −16.0000 + 27.7128i −0.828449 + 1.43492i 0.0708063 + 0.997490i \(0.477443\pi\)
−0.899255 + 0.437425i \(0.855891\pi\)
\(374\) −12.0000 20.7846i −0.620505 1.07475i
\(375\) 4.50000 + 7.79423i 0.232379 + 0.402492i
\(376\) 0 0
\(377\) 40.0000 2.06010
\(378\) 1.00000 + 5.19615i 0.0514344 + 0.267261i
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 1.00000 1.73205i 0.0512989 0.0888523i
\(381\) −6.00000 10.3923i −0.307389 0.532414i
\(382\) 17.0000 + 29.4449i 0.869796 + 1.50653i
\(383\) −6.00000 + 10.3923i −0.306586 + 0.531022i −0.977613 0.210411i \(-0.932520\pi\)
0.671027 + 0.741433i \(0.265853\pi\)
\(384\) 0 0
\(385\) 8.00000 6.92820i 0.407718 0.353094i
\(386\) −32.0000 −1.62876
\(387\) 3.50000 6.06218i 0.177915 0.308158i
\(388\) 12.0000 + 20.7846i 0.609208 + 1.05518i
\(389\) 1.50000 + 2.59808i 0.0760530 + 0.131728i 0.901544 0.432688i \(-0.142435\pi\)
−0.825491 + 0.564416i \(0.809102\pi\)
\(390\) −4.00000 + 6.92820i −0.202548 + 0.350823i
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) −5.00000 −0.252217
\(394\) 11.0000 19.0526i 0.554172 0.959854i
\(395\) 5.00000 + 8.66025i 0.251577 + 0.435745i
\(396\) −4.00000 6.92820i −0.201008 0.348155i
\(397\) 7.50000 12.9904i 0.376414 0.651969i −0.614123 0.789210i \(-0.710490\pi\)
0.990538 + 0.137241i \(0.0438236\pi\)
\(398\) −54.0000 −2.70678
\(399\) −2.00000 + 1.73205i −0.100125 + 0.0867110i
\(400\) 16.0000 0.800000
\(401\) 6.00000 10.3923i 0.299626 0.518967i −0.676425 0.736512i \(-0.736472\pi\)
0.976050 + 0.217545i \(0.0698049\pi\)
\(402\) −10.0000 17.3205i −0.498755 0.863868i
\(403\) 0 0
\(404\) −11.0000 + 19.0526i −0.547270 + 0.947900i
\(405\) 1.00000 0.0496904
\(406\) 10.0000 + 51.9615i 0.496292 + 2.57881i
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −16.0000 27.7128i −0.791149 1.37031i −0.925256 0.379344i \(-0.876150\pi\)
0.134107 0.990967i \(-0.457183\pi\)
\(410\) −2.00000 3.46410i −0.0987730 0.171080i
\(411\) 9.00000 15.5885i 0.443937 0.768922i
\(412\) 16.0000 0.788263
\(413\) −30.0000 10.3923i −1.47620 0.511372i
\(414\) −6.00000 −0.294884
\(415\) −1.50000 + 2.59808i −0.0736321 + 0.127535i
\(416\) 16.0000 + 27.7128i 0.784465 + 1.35873i
\(417\) 6.00000 + 10.3923i 0.293821 + 0.508913i
\(418\) 4.00000 6.92820i 0.195646 0.338869i
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) −5.00000 1.73205i −0.243975 0.0845154i
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) −4.00000 + 6.92820i −0.194717 + 0.337260i
\(423\) 0 0
\(424\) 0 0
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 12.0000 0.581402
\(427\) 5.00000 + 25.9808i 0.241967 + 1.25730i
\(428\) 20.0000 0.966736
\(429\) −8.00000 + 13.8564i −0.386244 + 0.668994i
\(430\) 7.00000 + 12.1244i 0.337570 + 0.584688i
\(431\) 6.00000 + 10.3923i 0.289010 + 0.500580i 0.973574 0.228373i \(-0.0733406\pi\)
−0.684564 + 0.728953i \(0.740007\pi\)
\(432\) 2.00000 3.46410i 0.0962250 0.166667i
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 10.0000 0.479463
\(436\) 6.00000 10.3923i 0.287348 0.497701i
\(437\) −1.50000 2.59808i −0.0717547 0.124283i
\(438\) −6.00000 10.3923i −0.286691 0.496564i
\(439\) −15.0000 + 25.9808i −0.715911 + 1.23999i 0.246696 + 0.969093i \(0.420655\pi\)
−0.962607 + 0.270901i \(0.912678\pi\)
\(440\) 0 0
\(441\) 5.50000 + 4.33013i 0.261905 + 0.206197i
\(442\) 24.0000 1.14156
\(443\) 10.5000 18.1865i 0.498870 0.864068i −0.501129 0.865373i \(-0.667082\pi\)
0.999999 + 0.00130426i \(0.000415158\pi\)
\(444\) 6.00000 + 10.3923i 0.284747 + 0.493197i
\(445\) 7.00000 + 12.1244i 0.331832 + 0.574750i
\(446\) −10.0000 + 17.3205i −0.473514 + 0.820150i
\(447\) −9.00000 −0.425685
\(448\) −16.0000 + 13.8564i −0.755929 + 0.654654i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 4.00000 6.92820i 0.188562 0.326599i
\(451\) −4.00000 6.92820i −0.188353 0.326236i
\(452\) 8.00000 + 13.8564i 0.376288 + 0.651751i
\(453\) 5.00000 8.66025i 0.234920 0.406894i
\(454\) 0 0
\(455\) 2.00000 + 10.3923i 0.0937614 + 0.487199i
\(456\) 0 0
\(457\) −11.0000 + 19.0526i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168929i \(0.994623\pi\)
\(458\) 7.00000 + 12.1244i 0.327089 + 0.566534i
\(459\) −1.50000 2.59808i −0.0700140 0.121268i
\(460\) 3.00000 5.19615i 0.139876 0.242272i
\(461\) 26.0000 1.21094 0.605470 0.795868i \(-0.292985\pi\)
0.605470 + 0.795868i \(0.292985\pi\)
\(462\) −20.0000 6.92820i −0.930484 0.322329i
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 20.0000 34.6410i 0.928477 1.60817i
\(465\) 0 0
\(466\) −9.00000 15.5885i −0.416917 0.722121i
\(467\) −18.0000 + 31.1769i −0.832941 + 1.44270i 0.0627555 + 0.998029i \(0.480011\pi\)
−0.895696 + 0.444667i \(0.853322\pi\)
\(468\) 8.00000 0.369800
\(469\) −25.0000 8.66025i −1.15439 0.399893i
\(470\) 0 0
\(471\) −0.500000 + 0.866025i −0.0230388 + 0.0399043i
\(472\) 0 0
\(473\) 14.0000 + 24.2487i 0.643721 + 1.11496i
\(474\) 10.0000 17.3205i 0.459315 0.795557i
\(475\) 4.00000 0.183533
\(476\) 3.00000 + 15.5885i 0.137505 + 0.714496i
\(477\) −12.0000 −0.549442
\(478\) −9.00000 + 15.5885i −0.411650 + 0.712999i
\(479\) −5.50000 9.52628i −0.251301 0.435267i 0.712583 0.701588i \(-0.247525\pi\)
−0.963884 + 0.266321i \(0.914192\pi\)
\(480\) 4.00000 + 6.92820i 0.182574 + 0.316228i
\(481\) 12.0000 20.7846i 0.547153 0.947697i
\(482\) −56.0000 −2.55073
\(483\) −6.00000 + 5.19615i −0.273009 + 0.236433i
\(484\) 10.0000 0.454545
\(485\) 6.00000 10.3923i 0.272446 0.471890i
\(486\) −1.00000 1.73205i −0.0453609 0.0785674i
\(487\) 16.0000 + 27.7128i 0.725029 + 1.25579i 0.958962 + 0.283535i \(0.0915071\pi\)
−0.233933 + 0.972253i \(0.575160\pi\)
\(488\) 0 0
\(489\) 19.0000 0.859210
\(490\) −13.0000 + 5.19615i −0.587280 + 0.234738i
\(491\) −1.00000 −0.0451294 −0.0225647 0.999745i \(-0.507183\pi\)
−0.0225647 + 0.999745i \(0.507183\pi\)
\(492\) −2.00000 + 3.46410i −0.0901670 + 0.156174i
\(493\) −15.0000 25.9808i −0.675566 1.17011i
\(494\) 4.00000 + 6.92820i 0.179969 + 0.311715i
\(495\) −2.00000 + 3.46410i −0.0898933 + 0.155700i
\(496\) 0 0
\(497\) 12.0000 10.3923i 0.538274 0.466159i
\(498\) 6.00000 0.268866
\(499\) −3.50000 + 6.06218i −0.156682 + 0.271380i −0.933670 0.358134i \(-0.883413\pi\)
0.776989 + 0.629515i \(0.216746\pi\)
\(500\) 9.00000 + 15.5885i 0.402492 + 0.697137i
\(501\) 1.00000 + 1.73205i 0.0446767 + 0.0773823i
\(502\) 23.0000 39.8372i 1.02654 1.77802i
\(503\) −3.00000 −0.133763 −0.0668817 0.997761i \(-0.521305\pi\)
−0.0668817 + 0.997761i \(0.521305\pi\)
\(504\) 0 0
\(505\) 11.0000 0.489494
\(506\) 12.0000 20.7846i 0.533465 0.923989i
\(507\) −1.50000 2.59808i −0.0666173 0.115385i
\(508\) −12.0000 20.7846i −0.532414 0.922168i
\(509\) −19.0000 + 32.9090i −0.842160 + 1.45866i 0.0459045 + 0.998946i \(0.485383\pi\)
−0.888065 + 0.459718i \(0.847950\pi\)
\(510\) 6.00000 0.265684
\(511\) −15.0000 5.19615i −0.663561 0.229864i
\(512\) 32.0000 1.41421
\(513\) 0.500000 0.866025i 0.0220755 0.0382360i
\(514\) −2.00000 3.46410i −0.0882162 0.152795i
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) 7.00000 12.1244i 0.308158 0.533745i
\(517\) 0 0
\(518\) 30.0000 + 10.3923i 1.31812 + 0.456612i
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) −10.0000 17.3205i −0.437688 0.758098i
\(523\) −20.0000 + 34.6410i −0.874539 + 1.51475i −0.0172859 + 0.999851i \(0.505503\pi\)
−0.857253 + 0.514895i \(0.827831\pi\)
\(524\) −10.0000 −0.436852
\(525\) −2.00000 10.3923i −0.0872872 0.453557i
\(526\) −34.0000 −1.48247
\(527\) 0 0
\(528\) 8.00000 + 13.8564i 0.348155 + 0.603023i
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 12.0000 20.7846i 0.521247 0.902826i
\(531\) 12.0000 0.520756
\(532\) −4.00000 + 3.46410i −0.173422 + 0.150188i
\(533\) 8.00000 0.346518
\(534\) 14.0000 24.2487i 0.605839 1.04934i
\(535\) −5.00000 8.66025i −0.216169 0.374415i
\(536\) 0 0
\(537\) 8.00000 13.8564i 0.345225 0.597948i
\(538\) −36.0000 −1.55207
\(539\) −26.0000 + 10.3923i −1.11990 + 0.447628i
\(540\) 2.00000 0.0860663
\(541\) −17.5000 + 30.3109i −0.752384 + 1.30317i 0.194281 + 0.980946i \(0.437763\pi\)
−0.946664 + 0.322221i \(0.895571\pi\)
\(542\) 23.0000 + 39.8372i 0.987935 + 1.71115i
\(543\) 7.00000 + 12.1244i 0.300399 + 0.520306i
\(544\) 12.0000 20.7846i 0.514496 0.891133i
\(545\) −6.00000 −0.257012
\(546\) 16.0000 13.8564i 0.684737 0.592999i
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) 18.0000 31.1769i 0.768922 1.33181i
\(549\) −5.00000 8.66025i −0.213395 0.369611i
\(550\) 16.0000 + 27.7128i 0.682242 + 1.18168i
\(551\) 5.00000 8.66025i 0.213007 0.368939i
\(552\) 0 0
\(553\) −5.00000 25.9808i −0.212622 1.10481i
\(554\) 44.0000 1.86938
\(555\) 3.00000 5.19615i 0.127343 0.220564i
\(556\) 12.0000 + 20.7846i 0.508913 + 0.881464i
\(557\) −3.50000 6.06218i −0.148300 0.256863i 0.782299 0.622903i \(-0.214047\pi\)
−0.930599 + 0.366040i \(0.880713\pi\)
\(558\) 0 0
\(559\) −28.0000 −1.18427
\(560\) 10.0000 + 3.46410i 0.422577 + 0.146385i
\(561\) 12.0000 0.506640
\(562\) −20.0000 + 34.6410i −0.843649 + 1.46124i
\(563\) −5.00000 8.66025i −0.210725 0.364986i 0.741217 0.671266i \(-0.234249\pi\)
−0.951942 + 0.306280i \(0.900916\pi\)
\(564\) 0 0
\(565\) 4.00000 6.92820i 0.168281 0.291472i
\(566\) 2.00000 0.0840663
\(567\) −2.50000 0.866025i −0.104990 0.0363696i
\(568\) 0 0
\(569\) 10.0000 17.3205i 0.419222 0.726113i −0.576640 0.816999i \(-0.695636\pi\)
0.995861 + 0.0908852i \(0.0289696\pi\)
\(570\) 1.00000 + 1.73205i 0.0418854 + 0.0725476i
\(571\) −2.50000 4.33013i −0.104622 0.181210i 0.808962 0.587861i \(-0.200030\pi\)
−0.913584 + 0.406651i \(0.866697\pi\)
\(572\) −16.0000 + 27.7128i −0.668994 + 1.15873i
\(573\) −17.0000 −0.710185
\(574\) 2.00000 + 10.3923i 0.0834784 + 0.433766i
\(575\) 12.0000 0.500435
\(576\) 4.00000 6.92820i 0.166667 0.288675i
\(577\) 1.00000 + 1.73205i 0.0416305 + 0.0721062i 0.886090 0.463513i \(-0.153411\pi\)
−0.844459 + 0.535620i \(0.820078\pi\)
\(578\) 8.00000 + 13.8564i 0.332756 + 0.576351i
\(579\) 8.00000 13.8564i 0.332469 0.575853i
\(580\) 20.0000 0.830455
\(581\) 6.00000 5.19615i 0.248922 0.215573i
\(582\) −24.0000 −0.994832
\(583\) 24.0000 41.5692i 0.993978 1.72162i
\(584\) 0 0
\(585\) −2.00000 3.46410i −0.0826898 0.143223i
\(586\) 16.0000 27.7128i 0.660954 1.14481i
\(587\) 7.00000 0.288921 0.144460 0.989511i \(-0.453855\pi\)
0.144460 + 0.989511i \(0.453855\pi\)
\(588\) 11.0000 + 8.66025i 0.453632 + 0.357143i
\(589\) 0 0
\(590\) −12.0000 + 20.7846i −0.494032 + 0.855689i
\(591\) 5.50000 + 9.52628i 0.226240 + 0.391859i
\(592\) −12.0000 20.7846i −0.493197 0.854242i
\(593\) 19.5000 33.7750i 0.800769 1.38697i −0.118342 0.992973i \(-0.537758\pi\)
0.919111 0.394000i \(-0.128909\pi\)
\(594\) 8.00000 0.328244
\(595\) 6.00000 5.19615i 0.245976 0.213021i
\(596\) −18.0000 −0.737309
\(597\) 13.5000 23.3827i 0.552518 0.956990i
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) −6.00000 10.3923i −0.245153 0.424618i 0.717021 0.697051i \(-0.245505\pi\)
−0.962175 + 0.272433i \(0.912172\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) −7.00000 36.3731i −0.285299 1.48246i
\(603\) 10.0000 0.407231
\(604\) 10.0000 17.3205i 0.406894 0.704761i
\(605\) −2.50000 4.33013i −0.101639 0.176045i
\(606\) −11.0000 19.0526i −0.446844 0.773957i
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) 8.00000 0.324443
\(609\) −25.0000 8.66025i −1.01305 0.350931i
\(610\) 20.0000 0.809776
\(611\) 0 0
\(612\) −3.00000 5.19615i −0.121268 0.210042i
\(613\) −12.5000 21.6506i −0.504870 0.874461i −0.999984 0.00563283i \(-0.998207\pi\)
0.495114 0.868828i \(-0.335126\pi\)
\(614\) −22.0000 + 38.1051i −0.887848 + 1.53780i
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) 27.0000 1.08698 0.543490 0.839416i \(-0.317103\pi\)
0.543490 + 0.839416i \(0.317103\pi\)
\(618\) −8.00000 + 13.8564i −0.321807 + 0.557386i
\(619\) 17.5000 + 30.3109i 0.703384 + 1.21830i 0.967271 + 0.253744i \(0.0816620\pi\)
−0.263887 + 0.964554i \(0.585005\pi\)
\(620\) 0 0
\(621\) 1.50000 2.59808i 0.0601929 0.104257i
\(622\) 6.00000 0.240578
\(623\) −7.00000 36.3731i −0.280449 1.45726i
\(624\) −16.0000 −0.640513
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) −11.0000 19.0526i −0.439648 0.761493i
\(627\) 2.00000 + 3.46410i 0.0798723 + 0.138343i
\(628\) −1.00000 + 1.73205i −0.0399043 + 0.0691164i
\(629\) −18.0000 −0.717707
\(630\) 4.00000 3.46410i 0.159364 0.138013i
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) −2.00000 3.46410i −0.0794929 0.137686i
\(634\) 0 0
\(635\) −6.00000 + 10.3923i −0.238103 + 0.412406i
\(636\) −24.0000 −0.951662
\(637\) 4.00000 27.7128i 0.158486 1.09802i
\(638\) 80.0000 3.16723
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) 15.0000 + 25.9808i 0.592464 + 1.02618i 0.993899 + 0.110291i \(0.0351782\pi\)
−0.401435 + 0.915888i \(0.631488\pi\)
\(642\) −10.0000 + 17.3205i −0.394669 + 0.683586i
\(643\) 11.0000 0.433798 0.216899 0.976194i \(-0.430406\pi\)
0.216899 + 0.976194i \(0.430406\pi\)
\(644\) −12.0000 + 10.3923i −0.472866 + 0.409514i
\(645\) −7.00000 −0.275625
\(646\) 3.00000 5.19615i 0.118033 0.204440i
\(647\) −11.5000 19.9186i −0.452112 0.783080i 0.546405 0.837521i \(-0.315996\pi\)
−0.998517 + 0.0544405i \(0.982662\pi\)
\(648\) 0 0
\(649\) −24.0000 + 41.5692i −0.942082 + 1.63173i
\(650\) −32.0000 −1.25514
\(651\) 0 0
\(652\) 38.0000 1.48819
\(653\) 10.5000 18.1865i 0.410897 0.711694i −0.584091 0.811688i \(-0.698549\pi\)
0.994988 + 0.0999939i \(0.0318823\pi\)
\(654\) 6.00000 + 10.3923i 0.234619 + 0.406371i
\(655\) 2.50000 + 4.33013i 0.0976831 + 0.169192i
\(656\) 4.00000 6.92820i 0.156174 0.270501i
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) −4.00000 + 6.92820i −0.155700 + 0.269680i
\(661\) −20.0000 34.6410i −0.777910 1.34738i −0.933144 0.359502i \(-0.882947\pi\)
0.155235 0.987878i \(-0.450387\pi\)
\(662\) 22.0000 + 38.1051i 0.855054 + 1.48100i
\(663\) −6.00000 + 10.3923i −0.233021 + 0.403604i
\(664\) 0 0
\(665\) 2.50000 + 0.866025i 0.0969458 + 0.0335830i
\(666\) −12.0000 −0.464991
\(667\) 15.0000 25.9808i 0.580802 1.00598i
\(668\) 2.00000 + 3.46410i 0.0773823 + 0.134030i
\(669\) −5.00000 8.66025i −0.193311 0.334825i
\(670\) −10.0000 + 17.3205i −0.386334 + 0.669150i
\(671\) 40.0000 1.54418
\(672\) −4.00000 20.7846i −0.154303 0.801784i
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 8.00000 13.8564i 0.308148 0.533729i
\(675\) 2.00000 + 3.46410i 0.0769800 + 0.133333i
\(676\) −3.00000 5.19615i −0.115385 0.199852i
\(677\) −15.0000 + 25.9808i −0.576497 + 0.998522i 0.419380 + 0.907811i \(0.362247\pi\)
−0.995877 + 0.0907112i \(0.971086\pi\)
\(678\) −16.0000 −0.614476
\(679\) −24.0000 + 20.7846i −0.921035 + 0.797640i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18.0000 + 31.1769i 0.688751 + 1.19295i 0.972242 + 0.233977i \(0.0751739\pi\)
−0.283491 + 0.958975i \(0.591493\pi\)
\(684\) 1.00000 1.73205i 0.0382360 0.0662266i
\(685\) −18.0000 −0.687745
\(686\) 37.0000 1.73205i 1.41267 0.0661300i
\(687\) −7.00000 −0.267067
\(688\) −14.0000 + 24.2487i −0.533745 + 0.924473i
\(689\) 24.0000 + 41.5692i 0.914327 + 1.58366i
\(690\) 3.00000 + 5.19615i 0.114208 + 0.197814i
\(691\) −20.5000 + 35.5070i −0.779857 + 1.35075i 0.152167 + 0.988355i \(0.451375\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) 28.0000 1.06440
\(693\) 8.00000 6.92820i 0.303895 0.263181i
\(694\) 58.0000 2.20165
\(695\) 6.00000 10.3923i 0.227593 0.394203i
\(696\) 0 0
\(697\) −3.00000 5.19615i −0.113633 0.196818i
\(698\) −13.0000 + 22.5167i −0.492057 + 0.852268i
\(699\) 9.00000 0.340411
\(700\) −4.00000 20.7846i −0.151186 0.785584i
\(701\) −21.0000 −0.793159 −0.396580 0.918000i \(-0.629803\pi\)
−0.396580 + 0.918000i \(0.629803\pi\)
\(702\) −4.00000 + 6.92820i −0.150970 + 0.261488i
\(703\) −3.00000 5.19615i −0.113147 0.195977i
\(704\) 16.0000 + 27.7128i 0.603023 + 1.04447i
\(705\) 0 0
\(706\) −52.0000 −1.95705
\(707\) −27.5000 9.52628i −1.03424 0.358273i
\(708\) 24.0000 0.901975
\(709\) −10.5000 + 18.1865i −0.394336 + 0.683010i −0.993016 0.117978i \(-0.962359\pi\)
0.598680 + 0.800988i \(0.295692\pi\)
\(710\) −6.00000 10.3923i −0.225176 0.390016i
\(711\) 5.00000 + 8.66025i 0.187515 + 0.324785i
\(712\) 0 0
\(713\) 0 0
\(714\) −15.0000 5.19615i −0.561361 0.194461i
\(715\) 16.0000 0.598366
\(716\) 16.0000 27.7128i 0.597948 1.03568i
\(717\) −4.50000 7.79423i −0.168056 0.291081i
\(718\) −20.0000 34.6410i −0.746393 1.29279i
\(719\) −10.5000 + 18.1865i −0.391584 + 0.678243i −0.992659 0.120950i \(-0.961406\pi\)
0.601075 + 0.799193i \(0.294739\pi\)
\(720\) −4.00000 −0.149071
\(721\) 4.00000 + 20.7846i 0.148968 + 0.774059i
\(722\) 2.00000 0.0744323
\(723\) 14.0000 24.2487i 0.520666 0.901819i
\(724\) 14.0000 + 24.2487i 0.520306 + 0.901196i
\(725\) 20.0000 + 34.6410i 0.742781 + 1.28654i
\(726\) −5.00000 + 8.66025i −0.185567 + 0.321412i
\(727\) 47.0000 1.74313 0.871567 0.490277i \(-0.163104\pi\)
0.871567 + 0.490277i \(0.163104\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −6.00000 + 10.3923i −0.222070 + 0.384636i
\(731\) 10.5000 + 18.1865i 0.388357 + 0.672653i
\(732\) −10.0000 17.3205i −0.369611 0.640184i
\(733\) 15.0000 25.9808i 0.554038 0.959621i −0.443940 0.896056i \(-0.646420\pi\)
0.997978 0.0635649i \(-0.0202470\pi\)
\(734\) 0 0
\(735\) 1.00000 6.92820i 0.0368856 0.255551i
\(736\) 24.0000 0.884652
\(737\) −20.0000 + 34.6410i −0.736709 + 1.27602i
\(738\) −2.00000 3.46410i −0.0736210 0.127515i
\(739\) −25.5000 44.1673i −0.938033 1.62472i −0.769135 0.639087i \(-0.779313\pi\)
−0.168898 0.985634i \(-0.554021\pi\)
\(740\) 6.00000 10.3923i 0.220564 0.382029i
\(741\) −4.00000 −0.146944
\(742\) −48.0000 + 41.5692i −1.76214 + 1.52605i
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 4.50000 + 7.79423i 0.164867 + 0.285558i
\(746\) −32.0000 55.4256i −1.17160 2.02928i
\(747\) −1.50000 + 2.59808i −0.0548821 + 0.0950586i
\(748\) 24.0000 0.877527
\(749\) 5.00000 + 25.9808i 0.182696 + 0.949316i
\(750\) −18.0000 −0.657267
\(751\) 7.00000 12.1244i 0.255434 0.442424i −0.709580 0.704625i \(-0.751115\pi\)
0.965013 + 0.262201i \(0.0844484\pi\)
\(752\) 0 0
\(753\) 11.5000 + 19.9186i 0.419083 + 0.725874i
\(754\) −40.0000 + 69.2820i −1.45671 + 2.52310i
\(755\) −10.0000 −0.363937
\(756\) −5.00000 1.73205i −0.181848 0.0629941i
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) −12.0000 + 20.7846i −0.435860 + 0.754931i
\(759\) 6.00000 + 10.3923i 0.217786 + 0.377217i
\(760\) 0 0
\(761\) 10.5000 18.1865i 0.380625 0.659261i −0.610527 0.791995i \(-0.709042\pi\)
0.991152 + 0.132734i \(0.0423756\pi\)
\(762\) 24.0000 0.869428
\(763\) 15.0000 + 5.19615i 0.543036 + 0.188113i
\(764\) −34.0000 −1.23008
\(765\) −1.50000 + 2.59808i −0.0542326 + 0.0939336i
\(766\) −12.0000 20.7846i −0.433578 0.750978i
\(767\) −24.0000 41.5692i −0.866590 1.50098i
\(768\) −8.00000 + 13.8564i −0.288675 + 0.500000i
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 4.00000 + 20.7846i 0.144150 + 0.749025i
\(771\) 2.00000 0.0720282
\(772\) 16.0000 27.7128i 0.575853 0.997406i
\(773\) 14.0000 + 24.2487i 0.503545 + 0.872166i 0.999992 + 0.00409826i \(0.00130452\pi\)
−0.496447 + 0.868067i \(0.665362\pi\)
\(774\) 7.00000 + 12.1244i 0.251610 + 0.435801i
\(775\) 0 0
\(776\) 0 0
\(777\) −12.0000 + 10.3923i −0.430498 + 0.372822i
\(778\) −6.00000 −0.215110
\(779\) 1.00000 1.73205i 0.0358287 0.0620572i
\(780\) −4.00000 6.92820i −0.143223 0.248069i
\(781\) −12.0000 20.7846i −0.429394 0.743732i
\(782\) 9.00000 15.5885i 0.321839 0.557442i
\(783\) 10.0000 0.357371
\(784\) −22.0000 17.3205i −0.785714 0.618590i
\(785\) 1.00000 0.0356915
\(786\) 5.00000 8.66025i 0.178344 0.308901i
\(787\) −23.0000 39.8372i −0.819861 1.42004i −0.905784 0.423740i \(-0.860717\pi\)
0.0859225 0.996302i \(-0.472616\pi\)
\(788\) 11.0000 + 19.0526i 0.391859 + 0.678719i
\(789\) 8.50000 14.7224i 0.302608 0.524132i
\(790\) −20.0000 −0.711568
\(791\) −16.0000 + 13.8564i −0.568895 + 0.492677i
\(792\) 0 0
\(793\) −20.0000 + 34.6410i −0.710221 + 1.23014i
\(794\) 15.0000 + 25.9808i 0.532330 + 0.922023i
\(795\) 6.00000 + 10.3923i 0.212798 + 0.368577i
\(796\) 27.0000 46.7654i 0.956990 1.65755i
\(797\) 4.00000 0.141687 0.0708436 0.997487i \(-0.477431\pi\)
0.0708436 + 0.997487i \(0.477431\pi\)
\(798\) −1.00000 5.19615i −0.0353996 0.183942i
\(799\) 0 0
\(800\) −16.0000 + 27.7128i −0.565685 + 0.979796i
\(801\) 7.00000 + 12.1244i 0.247333 + 0.428393i
\(802\) 12.0000 + 20.7846i 0.423735 + 0.733930i
\(803\) −12.0000 + 20.7846i −0.423471 + 0.733473i
\(804\) 20.0000 0.705346
\(805\) 7.50000 + 2.59808i 0.264340 + 0.0915702i
\(806\) 0 0
\(807\) 9.00000 15.5885i 0.316815 0.548740i
\(808\) 0 0
\(809\) 13.5000 + 23.3827i 0.474635 + 0.822091i 0.999578 0.0290457i \(-0.00924684\pi\)
−0.524943 + 0.851137i \(0.675914\pi\)
\(810\) −1.00000 + 1.73205i −0.0351364 + 0.0608581i
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) −50.0000 17.3205i −1.75466 0.607831i
\(813\) −23.0000 −0.806645
\(814\) 24.0000 41.5692i 0.841200 1.45700i
\(815\) −9.50000 16.4545i −0.332770 0.576375i
\(816\) 6.00000 + 10.3923i 0.210042 + 0.363803i
\(817\) −3.50000 + 6.06218i −0.122449 + 0.212089i
\(818\) 64.0000 2.23771
\(819\) 2.00000 + 10.3923i 0.0698857 + 0.363137i
\(820\) 4.00000 0.139686
\(821\) 5.00000 8.66025i 0.174501 0.302245i −0.765487 0.643451i \(-0.777502\pi\)
0.939989 + 0.341206i \(0.110835\pi\)
\(822\) 18.0000 + 31.1769i 0.627822 + 1.08742i
\(823\) 12.0000 + 20.7846i 0.418294 + 0.724506i 0.995768 0.0919029i \(-0.0292950\pi\)
−0.577474 + 0.816409i \(0.695962\pi\)
\(824\) 0 0
\(825\) −16.0000 −0.557048
\(826\) 48.0000 41.5692i 1.67013 1.44638i
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) 3.00000 5.19615i 0.104257 0.180579i
\(829\) 26.0000 + 45.0333i 0.903017 + 1.56407i 0.823557 + 0.567234i \(0.191986\pi\)
0.0794606 + 0.996838i \(0.474680\pi\)
\(830\) −3.00000 5.19615i −0.104132 0.180361i
\(831\) −11.0000 + 19.0526i −0.381586 + 0.660926i
\(832\) −32.0000 −1.10940
\(833\) −19.5000 + 7.79423i −0.675635 + 0.270054i
\(834\) −24.0000 −0.831052
\(835\) 1.00000 1.73205i 0.0346064 0.0599401i
\(836\) 4.00000 + 6.92820i 0.138343 + 0.239617i
\(837\) 0 0
\(838\) 9.00000 15.5885i 0.310900 0.538494i
\(839\) −56.0000 −1.93333 −0.966667 0.256036i \(-0.917584\pi\)
−0.966667 + 0.256036i \(0.917584\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) −8.00000 + 13.8564i −0.275698 + 0.477523i
\(843\) −10.0000 17.3205i −0.344418 0.596550i
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) −1.50000 + 2.59808i −0.0516016 + 0.0893765i
\(846\) 0 0
\(847\) 2.50000 + 12.9904i 0.0859010 + 0.446355i
\(848\) 48.0000 1.64833
\(849\) −0.500000 + 0.866025i −0.0171600 + 0.0297219i
\(850\) 12.0000 + 20.7846i 0.411597 + 0.712906i
\(851\) −9.00000 15.5885i −0.308516 0.534365i
\(852\) −6.00000 + 10.3923i −0.205557 + 0.356034i
\(853\) −37.0000 −1.26686 −0.633428 0.773802i \(-0.718353\pi\)
−0.633428 + 0.773802i \(0.718353\pi\)
\(854\) −50.0000 17.3205i −1.71096 0.592696i
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) −20.0000 34.6410i −0.683187 1.18331i −0.974003 0.226536i \(-0.927260\pi\)
0.290816 0.956779i \(-0.406073\pi\)
\(858\) −16.0000 27.7128i −0.546231 0.946100i
\(859\) −8.50000 + 14.7224i −0.290016 + 0.502323i −0.973813 0.227349i \(-0.926994\pi\)
0.683797 + 0.729672i \(0.260327\pi\)
\(860\) −14.0000 −0.477396
\(861\) −5.00000 1.73205i −0.170400 0.0590281i
\(862\) −24.0000 −0.817443
\(863\) 6.00000 10.3923i 0.204242 0.353758i −0.745649 0.666339i \(-0.767860\pi\)
0.949891 + 0.312581i \(0.101194\pi\)
\(864\) 4.00000 + 6.92820i 0.136083 + 0.235702i
\(865\) −7.00000 12.1244i −0.238007 0.412240i
\(866\) 14.0000 24.2487i 0.475739 0.824005i
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −40.0000 −1.35691
\(870\) −10.0000 + 17.3205i −0.339032 + 0.587220i
\(871\) −20.0000 34.6410i −0.677674 1.17377i
\(872\) 0 0
\(873\) 6.00000 10.3923i 0.203069 0.351726i
\(874\) 6.00000 0.202953
\(875\) −18.0000 + 15.5885i −0.608511 + 0.526986i
\(876\) 12.0000 0.405442
\(877\) 16.0000 27.7128i 0.540282 0.935795i −0.458606 0.888640i \(-0.651651\pi\)
0.998888 0.0471555i \(-0.0150156\pi\)
\(878\) −30.0000 51.9615i −1.01245 1.75362i
\(879\) 8.00000 + 13.8564i 0.269833 + 0.467365i
\(880\) 8.00000 13.8564i 0.269680 0.467099i
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) −13.0000 + 5.19615i −0.437733 + 0.174964i
\(883\) 47.0000 1.58168 0.790838 0.612026i \(-0.209645\pi\)
0.790838 + 0.612026i \(0.209645\pi\)
\(884\) −12.0000 + 20.7846i −0.403604 + 0.699062i
\(885\) −6.00000 10.3923i −0.201688 0.349334i
\(886\) 21.0000 + 36.3731i 0.705509 + 1.22198i
\(887\) −7.00000 + 12.1244i −0.235037 + 0.407096i −0.959283 0.282445i \(-0.908854\pi\)
0.724246 + 0.689541i \(0.242188\pi\)
\(888\) 0 0
\(889\) 24.0000 20.7846i 0.804934 0.697093i
\(890\) −28.0000 −0.938562
\(891\) −2.00000 + 3.46410i −0.0670025 + 0.116052i
\(892\) −10.0000 17.3205i −0.334825 0.579934i
\(893\) 0 0
\(894\) 9.00000 15.5885i 0.301005 0.521356i
\(895\) −16.0000 −0.534821
\(896\) 0 0
\(897\) −12.0000 −0.400668
\(898\) −6.00000 + 10.3923i −0.200223 + 0.346796i
\(899\) 0 0
\(900\) 4.00000 + 6.92820i 0.133333 + 0.230940i
\(901\) 18.0000 31.1769i 0.599667 1.03865i
\(902\) 16.0000 0.532742
\(903\) 17.5000 + 6.06218i 0.582364 + 0.201737i
\(904\) 0 0
\(905\) 7.00000 12.1244i 0.232688 0.403027i
\(906\) 10.0000 + 17.3205i 0.332228 + 0.575435i
\(907\) −10.0000 17.3205i −0.332045 0.575118i 0.650868 0.759191i \(-0.274405\pi\)
−0.982913 + 0.184073i \(0.941072\pi\)
\(908\) 0 0
\(909\) 11.0000 0.364847
\(910\) −20.0000 6.92820i −0.662994 0.229668i
\(911\) −42.0000 −1.39152 −0.695761 0.718273i \(-0.744933\pi\)
−0.695761 + 0.718273i \(0.744933\pi\)
\(912\) −2.00000 + 3.46410i −0.0662266 + 0.114708i
\(913\) −6.00000 10.3923i −0.198571 0.343935i
\(914\) −22.0000 38.1051i −0.727695 1.26041i
\(915\) −5.00000 + 8.66025i −0.165295 + 0.286299i
\(916\) −14.0000 −0.462573
\(917\) −2.50000 12.9904i −0.0825573 0.428980i
\(918\) 6.00000 0.198030
\(919\) 3.50000 6.06218i 0.115454 0.199973i −0.802507 0.596643i \(-0.796501\pi\)
0.917961 + 0.396670i \(0.129834\pi\)
\(920\) 0 0
\(921\) −11.0000 19.0526i −0.362462 0.627803i
\(922\) −26.0000 + 45.0333i −0.856264 + 1.48309i
\(923\) 24.0000 0.789970
\(924\) 16.0000 13.8564i 0.526361 0.455842i
\(925\) 24.0000 0.789115
\(926\) −4.00000 + 6.92820i −0.131448 + 0.227675i
\(927\) −4.00000 6.92820i −0.131377 0.227552i
\(928\) 40.0000 + 69.2820i 1.31306 + 2.27429i
\(929\) 27.5000 47.6314i 0.902246 1.56274i 0.0776734 0.996979i \(-0.475251\pi\)
0.824572 0.565757i \(-0.191416\pi\)
\(930\) 0 0
\(931\) −5.50000 4.33013i −0.180255 0.141914i
\(932\) 18.0000 0.589610
\(933\) −1.50000 + 2.59808i −0.0491078 + 0.0850572i
\(934\) −36.0000 62.3538i −1.17796 2.04028i
\(935\) −6.00000 10.3923i −0.196221 0.339865i
\(936\) 0 0
\(937\) 57.0000 1.86211 0.931054 0.364880i \(-0.118890\pi\)
0.931054 + 0.364880i \(0.118890\pi\)
\(938\) 40.0000 34.6410i 1.30605 1.13107i
\(939\) 11.0000 0.358971
\(940\) 0 0
\(941\) −10.0000 17.3205i −0.325991 0.564632i 0.655722 0.755003i \(-0.272364\pi\)
−0.981712 + 0.190370i \(0.939031\pi\)
\(942\) −1.00000 1.73205i −0.0325818 0.0564333i
\(943\) 3.00000 5.19615i 0.0976934 0.169210i
\(944\) −48.0000 −1.56227
\(945\) 0.500000 + 2.59808i 0.0162650 + 0.0845154i
\(946\) −56.0000 −1.82072
\(947\) 14.0000 24.2487i 0.454939 0.787977i −0.543746 0.839250i \(-0.682994\pi\)
0.998685 + 0.0512727i \(0.0163278\pi\)
\(948\) 10.0000 + 17.3205i 0.324785 + 0.562544i
\(949\) −12.0000 20.7846i −0.389536 0.674697i
\(950\) −4.00000 + 6.92820i −0.129777 + 0.224781i
\(951\) 0 0
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 12.0000 20.7846i 0.388514 0.672927i
\(955\) 8.50000 + 14.7224i 0.275054 + 0.476407i
\(956\) −9.00000 15.5885i −0.291081 0.504167i
\(957\) −20.0000 + 34.6410i −0.646508 + 1.11979i
\(958\) 22.0000 0.710788
\(959\) 45.0000 + 15.5885i 1.45313 + 0.503378i
\(960\) −8.00000 −0.258199
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) 24.0000 + 41.5692i 0.773791 + 1.34025i
\(963\) −5.00000 8.66025i −0.161123 0.279073i
\(964\) 28.0000 48.4974i 0.901819 1.56200i
\(965\) −16.0000 −0.515058
\(966\) −3.00000 15.5885i −0.0965234 0.501550i
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 1.50000 + 2.59808i 0.0481869 + 0.0834622i
\(970\) 12.0000 + 20.7846i 0.385297 + 0.667354i
\(971\) −24.0000 + 41.5692i −0.770197 + 1.33402i 0.167258 + 0.985913i \(0.446509\pi\)
−0.937455 + 0.348107i \(0.886825\pi\)
\(972\) 2.00000 0.0641500
\(973\) −24.0000 + 20.7846i −0.769405 + 0.666324i
\(974\) −64.0000 −2.05069
\(975\) 8.00000 13.8564i 0.256205 0.443760i
\(976\) 20.0000 + 34.6410i 0.640184 + 1.10883i
\(977\) 21.0000 + 36.3731i 0.671850 + 1.16368i 0.977379 + 0.211495i \(0.0678332\pi\)
−0.305530 + 0.952183i \(0.598833\pi\)
\(978\) −19.0000 + 32.9090i −0.607553 + 1.05231i
\(979\) −56.0000 −1.78977
\(980\) 2.00000 13.8564i 0.0638877 0.442627i
\(981\) −6.00000 −0.191565
\(982\) 1.00000 1.73205i 0.0319113 0.0552720i
\(983\) −12.0000 20.7846i −0.382741 0.662926i 0.608712 0.793391i \(-0.291686\pi\)
−0.991453 + 0.130465i \(0.958353\pi\)
\(984\) 0 0
\(985\) 5.50000 9.52628i 0.175245 0.303533i
\(986\) 60.0000 1.91079
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) −10.5000 + 18.1865i −0.333881 + 0.578298i
\(990\) −4.00000 6.92820i −0.127128 0.220193i
\(991\) 8.00000 + 13.8564i 0.254128 + 0.440163i 0.964658 0.263504i \(-0.0848781\pi\)
−0.710530 + 0.703667i \(0.751545\pi\)
\(992\) 0 0
\(993\) −22.0000 −0.698149
\(994\) 6.00000 + 31.1769i 0.190308 + 0.988872i
\(995\) −27.0000 −0.855958
\(996\) −3.00000 + 5.19615i −0.0950586 + 0.164646i
\(997\) −12.5000 21.6506i −0.395879 0.685682i 0.597334 0.801993i \(-0.296227\pi\)
−0.993213 + 0.116310i \(0.962893\pi\)
\(998\) −7.00000 12.1244i −0.221581 0.383790i
\(999\) 3.00000 5.19615i 0.0949158 0.164399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.j.a.58.1 2
3.2 odd 2 1197.2.j.b.856.1 2
7.2 even 3 2793.2.a.l.1.1 1
7.4 even 3 inner 399.2.j.a.172.1 yes 2
7.5 odd 6 2793.2.a.k.1.1 1
21.2 odd 6 8379.2.a.b.1.1 1
21.5 even 6 8379.2.a.c.1.1 1
21.11 odd 6 1197.2.j.b.172.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.a.58.1 2 1.1 even 1 trivial
399.2.j.a.172.1 yes 2 7.4 even 3 inner
1197.2.j.b.172.1 2 21.11 odd 6
1197.2.j.b.856.1 2 3.2 odd 2
2793.2.a.k.1.1 1 7.5 odd 6
2793.2.a.l.1.1 1 7.2 even 3
8379.2.a.b.1.1 1 21.2 odd 6
8379.2.a.c.1.1 1 21.5 even 6