Properties

Label 399.2.a.g.1.5
Level $399$
Weight $2$
Character 399.1
Self dual yes
Analytic conductor $3.186$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(1,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,3,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.78948\) of defining polynomial
Character \(\chi\) \(=\) 399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.78948 q^{2} -1.00000 q^{3} +5.78120 q^{4} -0.430991 q^{5} -2.78948 q^{6} +1.00000 q^{7} +10.5476 q^{8} +1.00000 q^{9} -1.20224 q^{10} -4.67080 q^{11} -5.78120 q^{12} -4.61014 q^{13} +2.78948 q^{14} +0.430991 q^{15} +17.8599 q^{16} +5.52283 q^{17} +2.78948 q^{18} -1.00000 q^{19} -2.49165 q^{20} -1.00000 q^{21} -13.0291 q^{22} -1.98344 q^{23} -10.5476 q^{24} -4.81425 q^{25} -12.8599 q^{26} -1.00000 q^{27} +5.78120 q^{28} +6.41443 q^{29} +1.20224 q^{30} -6.95226 q^{31} +28.7247 q^{32} +4.67080 q^{33} +15.4058 q^{34} -0.430991 q^{35} +5.78120 q^{36} -3.95382 q^{37} -2.78948 q^{38} +4.61014 q^{39} -4.54592 q^{40} -0.487127 q^{41} -2.78948 q^{42} -2.25184 q^{43} -27.0028 q^{44} -0.430991 q^{45} -5.53278 q^{46} +7.10179 q^{47} -17.8599 q^{48} +1.00000 q^{49} -13.4292 q^{50} -5.52283 q^{51} -26.6522 q^{52} -7.50627 q^{53} -2.78948 q^{54} +2.01307 q^{55} +10.5476 q^{56} +1.00000 q^{57} +17.8929 q^{58} -2.68735 q^{59} +2.49165 q^{60} -2.22985 q^{61} -19.3932 q^{62} +1.00000 q^{63} +44.4071 q^{64} +1.98693 q^{65} +13.0291 q^{66} +0.358299 q^{67} +31.9286 q^{68} +1.98344 q^{69} -1.20224 q^{70} -13.0852 q^{71} +10.5476 q^{72} -1.77919 q^{73} -11.0291 q^{74} +4.81425 q^{75} -5.78120 q^{76} -4.67080 q^{77} +12.8599 q^{78} +13.1117 q^{79} -7.69746 q^{80} +1.00000 q^{81} -1.35883 q^{82} +2.40136 q^{83} -5.78120 q^{84} -2.38029 q^{85} -6.28147 q^{86} -6.41443 q^{87} -49.2656 q^{88} +16.4540 q^{89} -1.20224 q^{90} -4.61014 q^{91} -11.4667 q^{92} +6.95226 q^{93} +19.8103 q^{94} +0.430991 q^{95} -28.7247 q^{96} +3.22028 q^{97} +2.78948 q^{98} -4.67080 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} - 5 q^{3} + 7 q^{4} + 4 q^{5} - 3 q^{6} + 5 q^{7} + 9 q^{8} + 5 q^{9} - 6 q^{10} + 8 q^{11} - 7 q^{12} - 6 q^{13} + 3 q^{14} - 4 q^{15} + 19 q^{16} + 12 q^{17} + 3 q^{18} - 5 q^{19} + 8 q^{20}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.78948 1.97246 0.986230 0.165377i \(-0.0528842\pi\)
0.986230 + 0.165377i \(0.0528842\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.78120 2.89060
\(5\) −0.430991 −0.192745 −0.0963725 0.995345i \(-0.530724\pi\)
−0.0963725 + 0.995345i \(0.530724\pi\)
\(6\) −2.78948 −1.13880
\(7\) 1.00000 0.377964
\(8\) 10.5476 3.72914
\(9\) 1.00000 0.333333
\(10\) −1.20224 −0.380182
\(11\) −4.67080 −1.40830 −0.704149 0.710052i \(-0.748671\pi\)
−0.704149 + 0.710052i \(0.748671\pi\)
\(12\) −5.78120 −1.66889
\(13\) −4.61014 −1.27862 −0.639311 0.768948i \(-0.720781\pi\)
−0.639311 + 0.768948i \(0.720781\pi\)
\(14\) 2.78948 0.745520
\(15\) 0.430991 0.111281
\(16\) 17.8599 4.46497
\(17\) 5.52283 1.33948 0.669741 0.742595i \(-0.266405\pi\)
0.669741 + 0.742595i \(0.266405\pi\)
\(18\) 2.78948 0.657487
\(19\) −1.00000 −0.229416
\(20\) −2.49165 −0.557149
\(21\) −1.00000 −0.218218
\(22\) −13.0291 −2.77781
\(23\) −1.98344 −0.413577 −0.206788 0.978386i \(-0.566301\pi\)
−0.206788 + 0.978386i \(0.566301\pi\)
\(24\) −10.5476 −2.15302
\(25\) −4.81425 −0.962849
\(26\) −12.8599 −2.52203
\(27\) −1.00000 −0.192450
\(28\) 5.78120 1.09254
\(29\) 6.41443 1.19113 0.595565 0.803307i \(-0.296928\pi\)
0.595565 + 0.803307i \(0.296928\pi\)
\(30\) 1.20224 0.219498
\(31\) −6.95226 −1.24866 −0.624332 0.781159i \(-0.714629\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(32\) 28.7247 5.07785
\(33\) 4.67080 0.813081
\(34\) 15.4058 2.64208
\(35\) −0.430991 −0.0728508
\(36\) 5.78120 0.963534
\(37\) −3.95382 −0.650003 −0.325002 0.945713i \(-0.605365\pi\)
−0.325002 + 0.945713i \(0.605365\pi\)
\(38\) −2.78948 −0.452514
\(39\) 4.61014 0.738213
\(40\) −4.54592 −0.718773
\(41\) −0.487127 −0.0760765 −0.0380382 0.999276i \(-0.512111\pi\)
−0.0380382 + 0.999276i \(0.512111\pi\)
\(42\) −2.78948 −0.430426
\(43\) −2.25184 −0.343403 −0.171701 0.985149i \(-0.554926\pi\)
−0.171701 + 0.985149i \(0.554926\pi\)
\(44\) −27.0028 −4.07083
\(45\) −0.430991 −0.0642483
\(46\) −5.53278 −0.815764
\(47\) 7.10179 1.03590 0.517951 0.855410i \(-0.326695\pi\)
0.517951 + 0.855410i \(0.326695\pi\)
\(48\) −17.8599 −2.57785
\(49\) 1.00000 0.142857
\(50\) −13.4292 −1.89918
\(51\) −5.52283 −0.773350
\(52\) −26.6522 −3.69599
\(53\) −7.50627 −1.03107 −0.515533 0.856870i \(-0.672406\pi\)
−0.515533 + 0.856870i \(0.672406\pi\)
\(54\) −2.78948 −0.379600
\(55\) 2.01307 0.271442
\(56\) 10.5476 1.40948
\(57\) 1.00000 0.132453
\(58\) 17.8929 2.34946
\(59\) −2.68735 −0.349863 −0.174932 0.984581i \(-0.555970\pi\)
−0.174932 + 0.984581i \(0.555970\pi\)
\(60\) 2.49165 0.321670
\(61\) −2.22985 −0.285503 −0.142752 0.989759i \(-0.545595\pi\)
−0.142752 + 0.989759i \(0.545595\pi\)
\(62\) −19.3932 −2.46294
\(63\) 1.00000 0.125988
\(64\) 44.4071 5.55088
\(65\) 1.98693 0.246448
\(66\) 13.0291 1.60377
\(67\) 0.358299 0.0437731 0.0218866 0.999760i \(-0.493033\pi\)
0.0218866 + 0.999760i \(0.493033\pi\)
\(68\) 31.9286 3.87191
\(69\) 1.98344 0.238779
\(70\) −1.20224 −0.143695
\(71\) −13.0852 −1.55293 −0.776466 0.630160i \(-0.782989\pi\)
−0.776466 + 0.630160i \(0.782989\pi\)
\(72\) 10.5476 1.24305
\(73\) −1.77919 −0.208238 −0.104119 0.994565i \(-0.533202\pi\)
−0.104119 + 0.994565i \(0.533202\pi\)
\(74\) −11.0291 −1.28211
\(75\) 4.81425 0.555901
\(76\) −5.78120 −0.663149
\(77\) −4.67080 −0.532287
\(78\) 12.8599 1.45610
\(79\) 13.1117 1.47519 0.737593 0.675246i \(-0.235962\pi\)
0.737593 + 0.675246i \(0.235962\pi\)
\(80\) −7.69746 −0.860602
\(81\) 1.00000 0.111111
\(82\) −1.35883 −0.150058
\(83\) 2.40136 0.263584 0.131792 0.991277i \(-0.457927\pi\)
0.131792 + 0.991277i \(0.457927\pi\)
\(84\) −5.78120 −0.630781
\(85\) −2.38029 −0.258178
\(86\) −6.28147 −0.677348
\(87\) −6.41443 −0.687700
\(88\) −49.2656 −5.25174
\(89\) 16.4540 1.74412 0.872061 0.489397i \(-0.162783\pi\)
0.872061 + 0.489397i \(0.162783\pi\)
\(90\) −1.20224 −0.126727
\(91\) −4.61014 −0.483274
\(92\) −11.4667 −1.19548
\(93\) 6.95226 0.720916
\(94\) 19.8103 2.04328
\(95\) 0.430991 0.0442187
\(96\) −28.7247 −2.93170
\(97\) 3.22028 0.326970 0.163485 0.986546i \(-0.447726\pi\)
0.163485 + 0.986546i \(0.447726\pi\)
\(98\) 2.78948 0.281780
\(99\) −4.67080 −0.469433
\(100\) −27.8321 −2.78321
\(101\) 19.8188 1.97204 0.986020 0.166624i \(-0.0532867\pi\)
0.986020 + 0.166624i \(0.0532867\pi\)
\(102\) −15.4058 −1.52540
\(103\) 9.34159 0.920454 0.460227 0.887801i \(-0.347768\pi\)
0.460227 + 0.887801i \(0.347768\pi\)
\(104\) −48.6259 −4.76816
\(105\) 0.430991 0.0420604
\(106\) −20.9386 −2.03374
\(107\) 1.22688 0.118607 0.0593037 0.998240i \(-0.481112\pi\)
0.0593037 + 0.998240i \(0.481112\pi\)
\(108\) −5.78120 −0.556296
\(109\) −2.11227 −0.202319 −0.101159 0.994870i \(-0.532255\pi\)
−0.101159 + 0.994870i \(0.532255\pi\)
\(110\) 5.61542 0.535410
\(111\) 3.95382 0.375280
\(112\) 17.8599 1.68760
\(113\) 10.4144 0.979708 0.489854 0.871805i \(-0.337050\pi\)
0.489854 + 0.871805i \(0.337050\pi\)
\(114\) 2.78948 0.261259
\(115\) 0.854846 0.0797148
\(116\) 37.0831 3.44308
\(117\) −4.61014 −0.426208
\(118\) −7.49632 −0.690092
\(119\) 5.52283 0.506277
\(120\) 4.54592 0.414984
\(121\) 10.8163 0.983303
\(122\) −6.22013 −0.563144
\(123\) 0.487127 0.0439228
\(124\) −40.1925 −3.60939
\(125\) 4.22985 0.378329
\(126\) 2.78948 0.248507
\(127\) −2.17463 −0.192967 −0.0964836 0.995335i \(-0.530760\pi\)
−0.0964836 + 0.995335i \(0.530760\pi\)
\(128\) 66.4234 5.87105
\(129\) 2.25184 0.198264
\(130\) 5.54250 0.486109
\(131\) 0.789672 0.0689939 0.0344970 0.999405i \(-0.489017\pi\)
0.0344970 + 0.999405i \(0.489017\pi\)
\(132\) 27.0028 2.35029
\(133\) −1.00000 −0.0867110
\(134\) 0.999467 0.0863408
\(135\) 0.430991 0.0370938
\(136\) 58.2525 4.99511
\(137\) 16.3158 1.39396 0.696978 0.717092i \(-0.254527\pi\)
0.696978 + 0.717092i \(0.254527\pi\)
\(138\) 5.53278 0.470981
\(139\) −18.9040 −1.60342 −0.801708 0.597716i \(-0.796075\pi\)
−0.801708 + 0.597716i \(0.796075\pi\)
\(140\) −2.49165 −0.210583
\(141\) −7.10179 −0.598078
\(142\) −36.5010 −3.06310
\(143\) 21.5330 1.80068
\(144\) 17.8599 1.48832
\(145\) −2.76456 −0.229585
\(146\) −4.96301 −0.410741
\(147\) −1.00000 −0.0824786
\(148\) −22.8578 −1.87890
\(149\) 2.45067 0.200766 0.100383 0.994949i \(-0.467993\pi\)
0.100383 + 0.994949i \(0.467993\pi\)
\(150\) 13.4292 1.09649
\(151\) −17.9737 −1.46268 −0.731340 0.682013i \(-0.761105\pi\)
−0.731340 + 0.682013i \(0.761105\pi\)
\(152\) −10.5476 −0.855523
\(153\) 5.52283 0.446494
\(154\) −13.0291 −1.04991
\(155\) 2.99636 0.240674
\(156\) 26.6522 2.13388
\(157\) 6.64117 0.530023 0.265011 0.964245i \(-0.414624\pi\)
0.265011 + 0.964245i \(0.414624\pi\)
\(158\) 36.5749 2.90975
\(159\) 7.50627 0.595286
\(160\) −12.3801 −0.978730
\(161\) −1.98344 −0.156317
\(162\) 2.78948 0.219162
\(163\) 18.1264 1.41977 0.709883 0.704320i \(-0.248748\pi\)
0.709883 + 0.704320i \(0.248748\pi\)
\(164\) −2.81618 −0.219907
\(165\) −2.01307 −0.156717
\(166\) 6.69856 0.519909
\(167\) −8.35830 −0.646785 −0.323392 0.946265i \(-0.604823\pi\)
−0.323392 + 0.946265i \(0.604823\pi\)
\(168\) −10.5476 −0.813764
\(169\) 8.25339 0.634876
\(170\) −6.63977 −0.509247
\(171\) −1.00000 −0.0764719
\(172\) −13.0184 −0.992640
\(173\) −10.1671 −0.772991 −0.386496 0.922291i \(-0.626315\pi\)
−0.386496 + 0.922291i \(0.626315\pi\)
\(174\) −17.8929 −1.35646
\(175\) −4.81425 −0.363923
\(176\) −83.4199 −6.28801
\(177\) 2.68735 0.201994
\(178\) 45.8982 3.44021
\(179\) −1.91113 −0.142845 −0.0714224 0.997446i \(-0.522754\pi\)
−0.0714224 + 0.997446i \(0.522754\pi\)
\(180\) −2.49165 −0.185716
\(181\) 13.0656 0.971155 0.485578 0.874194i \(-0.338609\pi\)
0.485578 + 0.874194i \(0.338609\pi\)
\(182\) −12.8599 −0.953239
\(183\) 2.22985 0.164835
\(184\) −20.9206 −1.54228
\(185\) 1.70406 0.125285
\(186\) 19.3932 1.42198
\(187\) −25.7960 −1.88639
\(188\) 41.0569 2.99438
\(189\) −1.00000 −0.0727393
\(190\) 1.20224 0.0872197
\(191\) 19.0790 1.38051 0.690254 0.723567i \(-0.257499\pi\)
0.690254 + 0.723567i \(0.257499\pi\)
\(192\) −44.4071 −3.20480
\(193\) −4.91720 −0.353948 −0.176974 0.984216i \(-0.556631\pi\)
−0.176974 + 0.984216i \(0.556631\pi\)
\(194\) 8.98291 0.644935
\(195\) −1.98693 −0.142287
\(196\) 5.78120 0.412943
\(197\) −10.8819 −0.775302 −0.387651 0.921806i \(-0.626713\pi\)
−0.387651 + 0.921806i \(0.626713\pi\)
\(198\) −13.0291 −0.925937
\(199\) −14.2036 −1.00686 −0.503432 0.864035i \(-0.667930\pi\)
−0.503432 + 0.864035i \(0.667930\pi\)
\(200\) −50.7787 −3.59060
\(201\) −0.358299 −0.0252724
\(202\) 55.2841 3.88977
\(203\) 6.41443 0.450205
\(204\) −31.9286 −2.23545
\(205\) 0.209947 0.0146634
\(206\) 26.0582 1.81556
\(207\) −1.98344 −0.137859
\(208\) −82.3366 −5.70902
\(209\) 4.67080 0.323086
\(210\) 1.20224 0.0829625
\(211\) −11.4963 −0.791439 −0.395720 0.918371i \(-0.629505\pi\)
−0.395720 + 0.918371i \(0.629505\pi\)
\(212\) −43.3953 −2.98040
\(213\) 13.0852 0.896585
\(214\) 3.42237 0.233948
\(215\) 0.970524 0.0661892
\(216\) −10.5476 −0.717673
\(217\) −6.95226 −0.471950
\(218\) −5.89214 −0.399066
\(219\) 1.77919 0.120226
\(220\) 11.6380 0.784632
\(221\) −25.4610 −1.71269
\(222\) 11.0291 0.740224
\(223\) −16.9223 −1.13320 −0.566599 0.823994i \(-0.691741\pi\)
−0.566599 + 0.823994i \(0.691741\pi\)
\(224\) 28.7247 1.91925
\(225\) −4.81425 −0.320950
\(226\) 29.0509 1.93243
\(227\) −6.29594 −0.417876 −0.208938 0.977929i \(-0.567001\pi\)
−0.208938 + 0.977929i \(0.567001\pi\)
\(228\) 5.78120 0.382869
\(229\) 8.76651 0.579307 0.289654 0.957132i \(-0.406460\pi\)
0.289654 + 0.957132i \(0.406460\pi\)
\(230\) 2.38458 0.157234
\(231\) 4.67080 0.307316
\(232\) 67.6568 4.44189
\(233\) −6.76961 −0.443492 −0.221746 0.975104i \(-0.571176\pi\)
−0.221746 + 0.975104i \(0.571176\pi\)
\(234\) −12.8599 −0.840678
\(235\) −3.06081 −0.199665
\(236\) −15.5361 −1.01132
\(237\) −13.1117 −0.851699
\(238\) 15.4058 0.998611
\(239\) 1.87117 0.121036 0.0605180 0.998167i \(-0.480725\pi\)
0.0605180 + 0.998167i \(0.480725\pi\)
\(240\) 7.69746 0.496869
\(241\) 13.1579 0.847576 0.423788 0.905761i \(-0.360700\pi\)
0.423788 + 0.905761i \(0.360700\pi\)
\(242\) 30.1719 1.93953
\(243\) −1.00000 −0.0641500
\(244\) −12.8912 −0.825276
\(245\) −0.430991 −0.0275350
\(246\) 1.35883 0.0866359
\(247\) 4.61014 0.293336
\(248\) −73.3296 −4.65644
\(249\) −2.40136 −0.152180
\(250\) 11.7991 0.746240
\(251\) −10.2067 −0.644241 −0.322120 0.946699i \(-0.604396\pi\)
−0.322120 + 0.946699i \(0.604396\pi\)
\(252\) 5.78120 0.364182
\(253\) 9.26426 0.582439
\(254\) −6.06609 −0.380620
\(255\) 2.38029 0.149059
\(256\) 96.4726 6.02954
\(257\) 8.96674 0.559330 0.279665 0.960098i \(-0.409777\pi\)
0.279665 + 0.960098i \(0.409777\pi\)
\(258\) 6.28147 0.391067
\(259\) −3.95382 −0.245678
\(260\) 11.4868 0.712384
\(261\) 6.41443 0.397044
\(262\) 2.20277 0.136088
\(263\) −11.3491 −0.699816 −0.349908 0.936784i \(-0.613787\pi\)
−0.349908 + 0.936784i \(0.613787\pi\)
\(264\) 49.2656 3.03209
\(265\) 3.23513 0.198733
\(266\) −2.78948 −0.171034
\(267\) −16.4540 −1.00697
\(268\) 2.07140 0.126531
\(269\) −1.39750 −0.0852069 −0.0426035 0.999092i \(-0.513565\pi\)
−0.0426035 + 0.999092i \(0.513565\pi\)
\(270\) 1.20224 0.0731661
\(271\) 29.5492 1.79499 0.897493 0.441029i \(-0.145386\pi\)
0.897493 + 0.441029i \(0.145386\pi\)
\(272\) 98.6371 5.98075
\(273\) 4.61014 0.279018
\(274\) 45.5127 2.74952
\(275\) 22.4864 1.35598
\(276\) 11.4667 0.690214
\(277\) −4.09028 −0.245761 −0.122881 0.992421i \(-0.539213\pi\)
−0.122881 + 0.992421i \(0.539213\pi\)
\(278\) −52.7323 −3.16268
\(279\) −6.95226 −0.416221
\(280\) −4.54592 −0.271671
\(281\) 17.2302 1.02787 0.513935 0.857829i \(-0.328187\pi\)
0.513935 + 0.857829i \(0.328187\pi\)
\(282\) −19.8103 −1.17969
\(283\) −29.6999 −1.76548 −0.882738 0.469866i \(-0.844302\pi\)
−0.882738 + 0.469866i \(0.844302\pi\)
\(284\) −75.6484 −4.48890
\(285\) −0.430991 −0.0255297
\(286\) 60.0660 3.55177
\(287\) −0.487127 −0.0287542
\(288\) 28.7247 1.69262
\(289\) 13.5016 0.794212
\(290\) −7.71170 −0.452846
\(291\) −3.22028 −0.188776
\(292\) −10.2858 −0.601933
\(293\) −27.0490 −1.58022 −0.790110 0.612965i \(-0.789976\pi\)
−0.790110 + 0.612965i \(0.789976\pi\)
\(294\) −2.78948 −0.162686
\(295\) 1.15822 0.0674344
\(296\) −41.7032 −2.42395
\(297\) 4.67080 0.271027
\(298\) 6.83609 0.396004
\(299\) 9.14395 0.528808
\(300\) 27.8321 1.60689
\(301\) −2.25184 −0.129794
\(302\) −50.1373 −2.88508
\(303\) −19.8188 −1.13856
\(304\) −17.8599 −1.02434
\(305\) 0.961046 0.0550293
\(306\) 15.4058 0.880692
\(307\) −22.3893 −1.27783 −0.638913 0.769279i \(-0.720616\pi\)
−0.638913 + 0.769279i \(0.720616\pi\)
\(308\) −27.0028 −1.53863
\(309\) −9.34159 −0.531425
\(310\) 8.35830 0.474719
\(311\) 18.0389 1.02289 0.511446 0.859315i \(-0.329110\pi\)
0.511446 + 0.859315i \(0.329110\pi\)
\(312\) 48.6259 2.75290
\(313\) −10.6673 −0.602952 −0.301476 0.953474i \(-0.597479\pi\)
−0.301476 + 0.953474i \(0.597479\pi\)
\(314\) 18.5254 1.04545
\(315\) −0.430991 −0.0242836
\(316\) 75.8016 4.26417
\(317\) 15.7560 0.884947 0.442473 0.896782i \(-0.354101\pi\)
0.442473 + 0.896782i \(0.354101\pi\)
\(318\) 20.9386 1.17418
\(319\) −29.9605 −1.67747
\(320\) −19.1391 −1.06991
\(321\) −1.22688 −0.0684780
\(322\) −5.53278 −0.308330
\(323\) −5.52283 −0.307298
\(324\) 5.78120 0.321178
\(325\) 22.1944 1.23112
\(326\) 50.5631 2.80043
\(327\) 2.11227 0.116809
\(328\) −5.13802 −0.283700
\(329\) 7.10179 0.391534
\(330\) −5.61542 −0.309119
\(331\) −22.2790 −1.22456 −0.612282 0.790639i \(-0.709748\pi\)
−0.612282 + 0.790639i \(0.709748\pi\)
\(332\) 13.8828 0.761916
\(333\) −3.95382 −0.216668
\(334\) −23.3153 −1.27576
\(335\) −0.154423 −0.00843705
\(336\) −17.8599 −0.974337
\(337\) −12.6452 −0.688828 −0.344414 0.938818i \(-0.611922\pi\)
−0.344414 + 0.938818i \(0.611922\pi\)
\(338\) 23.0227 1.25227
\(339\) −10.4144 −0.565634
\(340\) −13.7609 −0.746291
\(341\) 32.4726 1.75849
\(342\) −2.78948 −0.150838
\(343\) 1.00000 0.0539949
\(344\) −23.7515 −1.28060
\(345\) −0.854846 −0.0460234
\(346\) −28.3610 −1.52469
\(347\) 5.87117 0.315181 0.157590 0.987505i \(-0.449627\pi\)
0.157590 + 0.987505i \(0.449627\pi\)
\(348\) −37.0831 −1.98787
\(349\) 13.6285 0.729517 0.364758 0.931102i \(-0.381152\pi\)
0.364758 + 0.931102i \(0.381152\pi\)
\(350\) −13.4292 −0.717824
\(351\) 4.61014 0.246071
\(352\) −134.167 −7.15112
\(353\) −9.75268 −0.519083 −0.259541 0.965732i \(-0.583571\pi\)
−0.259541 + 0.965732i \(0.583571\pi\)
\(354\) 7.49632 0.398425
\(355\) 5.63962 0.299320
\(356\) 95.1240 5.04156
\(357\) −5.52283 −0.292299
\(358\) −5.33107 −0.281756
\(359\) −8.73005 −0.460754 −0.230377 0.973101i \(-0.573996\pi\)
−0.230377 + 0.973101i \(0.573996\pi\)
\(360\) −4.54592 −0.239591
\(361\) 1.00000 0.0526316
\(362\) 36.4461 1.91557
\(363\) −10.8163 −0.567710
\(364\) −26.6522 −1.39695
\(365\) 0.766813 0.0401368
\(366\) 6.22013 0.325131
\(367\) 13.7923 0.719950 0.359975 0.932962i \(-0.382785\pi\)
0.359975 + 0.932962i \(0.382785\pi\)
\(368\) −35.4241 −1.84661
\(369\) −0.487127 −0.0253588
\(370\) 4.75344 0.247120
\(371\) −7.50627 −0.389706
\(372\) 40.1925 2.08388
\(373\) −18.2569 −0.945306 −0.472653 0.881249i \(-0.656704\pi\)
−0.472653 + 0.881249i \(0.656704\pi\)
\(374\) −71.9574 −3.72083
\(375\) −4.22985 −0.218429
\(376\) 74.9067 3.86302
\(377\) −29.5714 −1.52301
\(378\) −2.78948 −0.143475
\(379\) 22.9149 1.17706 0.588529 0.808476i \(-0.299707\pi\)
0.588529 + 0.808476i \(0.299707\pi\)
\(380\) 2.49165 0.127819
\(381\) 2.17463 0.111410
\(382\) 53.2205 2.72300
\(383\) −38.6741 −1.97616 −0.988078 0.153953i \(-0.950800\pi\)
−0.988078 + 0.153953i \(0.950800\pi\)
\(384\) −66.4234 −3.38965
\(385\) 2.01307 0.102596
\(386\) −13.7164 −0.698149
\(387\) −2.25184 −0.114468
\(388\) 18.6171 0.945140
\(389\) 8.76651 0.444480 0.222240 0.974992i \(-0.428663\pi\)
0.222240 + 0.974992i \(0.428663\pi\)
\(390\) −5.54250 −0.280655
\(391\) −10.9542 −0.553978
\(392\) 10.5476 0.532734
\(393\) −0.789672 −0.0398337
\(394\) −30.3548 −1.52925
\(395\) −5.65104 −0.284335
\(396\) −27.0028 −1.35694
\(397\) −23.8561 −1.19731 −0.598653 0.801009i \(-0.704297\pi\)
−0.598653 + 0.801009i \(0.704297\pi\)
\(398\) −39.6206 −1.98600
\(399\) 1.00000 0.0500626
\(400\) −85.9820 −4.29910
\(401\) −35.5461 −1.77509 −0.887543 0.460724i \(-0.847590\pi\)
−0.887543 + 0.460724i \(0.847590\pi\)
\(402\) −0.999467 −0.0498489
\(403\) 32.0509 1.59657
\(404\) 114.576 5.70038
\(405\) −0.430991 −0.0214161
\(406\) 17.8929 0.888012
\(407\) 18.4675 0.915398
\(408\) −58.2525 −2.88393
\(409\) −12.1947 −0.602987 −0.301493 0.953468i \(-0.597485\pi\)
−0.301493 + 0.953468i \(0.597485\pi\)
\(410\) 0.585644 0.0289229
\(411\) −16.3158 −0.804801
\(412\) 54.0056 2.66067
\(413\) −2.68735 −0.132236
\(414\) −5.53278 −0.271921
\(415\) −1.03497 −0.0508045
\(416\) −132.425 −6.49265
\(417\) 18.9040 0.925733
\(418\) 13.0291 0.637274
\(419\) 16.4827 0.805234 0.402617 0.915369i \(-0.368101\pi\)
0.402617 + 0.915369i \(0.368101\pi\)
\(420\) 2.49165 0.121580
\(421\) 10.6213 0.517649 0.258824 0.965924i \(-0.416665\pi\)
0.258824 + 0.965924i \(0.416665\pi\)
\(422\) −32.0688 −1.56108
\(423\) 7.10179 0.345301
\(424\) −79.1731 −3.84498
\(425\) −26.5882 −1.28972
\(426\) 36.5010 1.76848
\(427\) −2.22985 −0.107910
\(428\) 7.09287 0.342847
\(429\) −21.5330 −1.03962
\(430\) 2.70726 0.130556
\(431\) 5.66851 0.273043 0.136521 0.990637i \(-0.456408\pi\)
0.136521 + 0.990637i \(0.456408\pi\)
\(432\) −17.8599 −0.859285
\(433\) 39.1499 1.88142 0.940712 0.339207i \(-0.110159\pi\)
0.940712 + 0.339207i \(0.110159\pi\)
\(434\) −19.3932 −0.930904
\(435\) 2.76456 0.132551
\(436\) −12.2115 −0.584824
\(437\) 1.98344 0.0948810
\(438\) 4.96301 0.237142
\(439\) −17.6065 −0.840313 −0.420156 0.907452i \(-0.638025\pi\)
−0.420156 + 0.907452i \(0.638025\pi\)
\(440\) 21.2330 1.01225
\(441\) 1.00000 0.0476190
\(442\) −71.0230 −3.37822
\(443\) 23.4373 1.11354 0.556770 0.830667i \(-0.312040\pi\)
0.556770 + 0.830667i \(0.312040\pi\)
\(444\) 22.8578 1.08478
\(445\) −7.09153 −0.336171
\(446\) −47.2043 −2.23519
\(447\) −2.45067 −0.115913
\(448\) 44.4071 2.09804
\(449\) −36.3882 −1.71726 −0.858632 0.512593i \(-0.828685\pi\)
−0.858632 + 0.512593i \(0.828685\pi\)
\(450\) −13.4292 −0.633061
\(451\) 2.27527 0.107138
\(452\) 60.2080 2.83194
\(453\) 17.9737 0.844479
\(454\) −17.5624 −0.824245
\(455\) 1.98693 0.0931487
\(456\) 10.5476 0.493936
\(457\) 16.4395 0.769009 0.384505 0.923123i \(-0.374372\pi\)
0.384505 + 0.923123i \(0.374372\pi\)
\(458\) 24.4540 1.14266
\(459\) −5.52283 −0.257783
\(460\) 4.94204 0.230424
\(461\) −19.6734 −0.916281 −0.458140 0.888880i \(-0.651484\pi\)
−0.458140 + 0.888880i \(0.651484\pi\)
\(462\) 13.0291 0.606168
\(463\) −11.1248 −0.517014 −0.258507 0.966009i \(-0.583230\pi\)
−0.258507 + 0.966009i \(0.583230\pi\)
\(464\) 114.561 5.31837
\(465\) −2.99636 −0.138953
\(466\) −18.8837 −0.874771
\(467\) −24.5917 −1.13797 −0.568985 0.822348i \(-0.692664\pi\)
−0.568985 + 0.822348i \(0.692664\pi\)
\(468\) −26.6522 −1.23200
\(469\) 0.358299 0.0165447
\(470\) −8.53806 −0.393831
\(471\) −6.64117 −0.306009
\(472\) −28.3451 −1.30469
\(473\) 10.5179 0.483613
\(474\) −36.5749 −1.67994
\(475\) 4.81425 0.220893
\(476\) 31.9286 1.46344
\(477\) −7.50627 −0.343688
\(478\) 5.21960 0.238739
\(479\) −16.0429 −0.733020 −0.366510 0.930414i \(-0.619447\pi\)
−0.366510 + 0.930414i \(0.619447\pi\)
\(480\) 12.3801 0.565070
\(481\) 18.2276 0.831109
\(482\) 36.7038 1.67181
\(483\) 1.98344 0.0902498
\(484\) 62.5314 2.84234
\(485\) −1.38791 −0.0630218
\(486\) −2.78948 −0.126533
\(487\) −13.2823 −0.601880 −0.300940 0.953643i \(-0.597300\pi\)
−0.300940 + 0.953643i \(0.597300\pi\)
\(488\) −23.5196 −1.06468
\(489\) −18.1264 −0.819702
\(490\) −1.20224 −0.0543117
\(491\) 30.6276 1.38220 0.691102 0.722758i \(-0.257126\pi\)
0.691102 + 0.722758i \(0.257126\pi\)
\(492\) 2.81618 0.126963
\(493\) 35.4258 1.59550
\(494\) 12.8599 0.578594
\(495\) 2.01307 0.0904808
\(496\) −124.167 −5.57525
\(497\) −13.0852 −0.586953
\(498\) −6.69856 −0.300170
\(499\) 37.5985 1.68314 0.841570 0.540149i \(-0.181632\pi\)
0.841570 + 0.540149i \(0.181632\pi\)
\(500\) 24.4536 1.09360
\(501\) 8.35830 0.373421
\(502\) −28.4714 −1.27074
\(503\) −19.9344 −0.888830 −0.444415 0.895821i \(-0.646588\pi\)
−0.444415 + 0.895821i \(0.646588\pi\)
\(504\) 10.5476 0.469827
\(505\) −8.54171 −0.380101
\(506\) 25.8425 1.14884
\(507\) −8.25339 −0.366546
\(508\) −12.5720 −0.557791
\(509\) 10.6949 0.474042 0.237021 0.971505i \(-0.423829\pi\)
0.237021 + 0.971505i \(0.423829\pi\)
\(510\) 6.63977 0.294014
\(511\) −1.77919 −0.0787066
\(512\) 136.262 6.02197
\(513\) 1.00000 0.0441511
\(514\) 25.0125 1.10326
\(515\) −4.02614 −0.177413
\(516\) 13.0184 0.573101
\(517\) −33.1710 −1.45886
\(518\) −11.0291 −0.484591
\(519\) 10.1671 0.446287
\(520\) 20.9573 0.919039
\(521\) 24.5070 1.07367 0.536836 0.843686i \(-0.319619\pi\)
0.536836 + 0.843686i \(0.319619\pi\)
\(522\) 17.8929 0.783153
\(523\) 8.32697 0.364113 0.182056 0.983288i \(-0.441725\pi\)
0.182056 + 0.983288i \(0.441725\pi\)
\(524\) 4.56525 0.199434
\(525\) 4.81425 0.210111
\(526\) −31.6581 −1.38036
\(527\) −38.3961 −1.67256
\(528\) 83.4199 3.63039
\(529\) −19.0660 −0.828954
\(530\) 9.02435 0.391993
\(531\) −2.68735 −0.116621
\(532\) −5.78120 −0.250647
\(533\) 2.24572 0.0972731
\(534\) −45.8982 −1.98621
\(535\) −0.528776 −0.0228610
\(536\) 3.77919 0.163236
\(537\) 1.91113 0.0824715
\(538\) −3.89829 −0.168067
\(539\) −4.67080 −0.201185
\(540\) 2.49165 0.107223
\(541\) 45.0614 1.93734 0.968670 0.248351i \(-0.0798886\pi\)
0.968670 + 0.248351i \(0.0798886\pi\)
\(542\) 82.4269 3.54054
\(543\) −13.0656 −0.560697
\(544\) 158.641 6.80169
\(545\) 0.910370 0.0389960
\(546\) 12.8599 0.550353
\(547\) −14.6050 −0.624463 −0.312231 0.950006i \(-0.601076\pi\)
−0.312231 + 0.950006i \(0.601076\pi\)
\(548\) 94.3252 4.02937
\(549\) −2.22985 −0.0951678
\(550\) 62.7253 2.67461
\(551\) −6.41443 −0.273264
\(552\) 20.9206 0.890438
\(553\) 13.1117 0.557568
\(554\) −11.4098 −0.484754
\(555\) −1.70406 −0.0723333
\(556\) −109.288 −4.63484
\(557\) −34.6441 −1.46792 −0.733960 0.679193i \(-0.762330\pi\)
−0.733960 + 0.679193i \(0.762330\pi\)
\(558\) −19.3932 −0.820980
\(559\) 10.3813 0.439082
\(560\) −7.69746 −0.325277
\(561\) 25.7960 1.08911
\(562\) 48.0634 2.02743
\(563\) 33.4497 1.40974 0.704868 0.709338i \(-0.251006\pi\)
0.704868 + 0.709338i \(0.251006\pi\)
\(564\) −41.0569 −1.72881
\(565\) −4.48853 −0.188834
\(566\) −82.8473 −3.48233
\(567\) 1.00000 0.0419961
\(568\) −138.018 −5.79109
\(569\) −8.24277 −0.345555 −0.172777 0.984961i \(-0.555274\pi\)
−0.172777 + 0.984961i \(0.555274\pi\)
\(570\) −1.20224 −0.0503563
\(571\) 15.7498 0.659109 0.329554 0.944137i \(-0.393101\pi\)
0.329554 + 0.944137i \(0.393101\pi\)
\(572\) 124.487 5.20505
\(573\) −19.0790 −0.797037
\(574\) −1.35883 −0.0567165
\(575\) 9.54879 0.398212
\(576\) 44.4071 1.85029
\(577\) −20.4094 −0.849652 −0.424826 0.905275i \(-0.639665\pi\)
−0.424826 + 0.905275i \(0.639665\pi\)
\(578\) 37.6624 1.56655
\(579\) 4.91720 0.204352
\(580\) −15.9825 −0.663637
\(581\) 2.40136 0.0996254
\(582\) −8.98291 −0.372354
\(583\) 35.0602 1.45205
\(584\) −18.7661 −0.776548
\(585\) 1.98693 0.0821494
\(586\) −75.4527 −3.11692
\(587\) 20.0429 0.827260 0.413630 0.910445i \(-0.364261\pi\)
0.413630 + 0.910445i \(0.364261\pi\)
\(588\) −5.78120 −0.238413
\(589\) 6.95226 0.286463
\(590\) 3.23085 0.133012
\(591\) 10.8819 0.447621
\(592\) −70.6148 −2.90225
\(593\) −11.7074 −0.480766 −0.240383 0.970678i \(-0.577273\pi\)
−0.240383 + 0.970678i \(0.577273\pi\)
\(594\) 13.0291 0.534590
\(595\) −2.38029 −0.0975823
\(596\) 14.1678 0.580336
\(597\) 14.2036 0.581314
\(598\) 25.5069 1.04305
\(599\) −2.41822 −0.0988059 −0.0494029 0.998779i \(-0.515732\pi\)
−0.0494029 + 0.998779i \(0.515732\pi\)
\(600\) 50.7787 2.07303
\(601\) −9.78632 −0.399192 −0.199596 0.979878i \(-0.563963\pi\)
−0.199596 + 0.979878i \(0.563963\pi\)
\(602\) −6.28147 −0.256014
\(603\) 0.358299 0.0145910
\(604\) −103.910 −4.22803
\(605\) −4.66174 −0.189527
\(606\) −55.2841 −2.24576
\(607\) −23.6574 −0.960226 −0.480113 0.877207i \(-0.659404\pi\)
−0.480113 + 0.877207i \(0.659404\pi\)
\(608\) −28.7247 −1.16494
\(609\) −6.41443 −0.259926
\(610\) 2.68082 0.108543
\(611\) −32.7402 −1.32453
\(612\) 31.9286 1.29064
\(613\) −27.9055 −1.12709 −0.563547 0.826084i \(-0.690564\pi\)
−0.563547 + 0.826084i \(0.690564\pi\)
\(614\) −62.4546 −2.52046
\(615\) −0.209947 −0.00846590
\(616\) −49.2656 −1.98497
\(617\) 1.12898 0.0454510 0.0227255 0.999742i \(-0.492766\pi\)
0.0227255 + 0.999742i \(0.492766\pi\)
\(618\) −26.0582 −1.04821
\(619\) −48.2125 −1.93782 −0.968911 0.247408i \(-0.920421\pi\)
−0.968911 + 0.247408i \(0.920421\pi\)
\(620\) 17.3226 0.695692
\(621\) 1.98344 0.0795929
\(622\) 50.3192 2.01761
\(623\) 16.4540 0.659216
\(624\) 82.3366 3.29610
\(625\) 22.2482 0.889928
\(626\) −29.7563 −1.18930
\(627\) −4.67080 −0.186534
\(628\) 38.3939 1.53208
\(629\) −21.8362 −0.870668
\(630\) −1.20224 −0.0478984
\(631\) −29.4819 −1.17366 −0.586828 0.809711i \(-0.699624\pi\)
−0.586828 + 0.809711i \(0.699624\pi\)
\(632\) 138.297 5.50117
\(633\) 11.4963 0.456938
\(634\) 43.9511 1.74552
\(635\) 0.937246 0.0371935
\(636\) 43.3953 1.72073
\(637\) −4.61014 −0.182660
\(638\) −83.5743 −3.30874
\(639\) −13.0852 −0.517644
\(640\) −28.6279 −1.13162
\(641\) −4.03313 −0.159299 −0.0796495 0.996823i \(-0.525380\pi\)
−0.0796495 + 0.996823i \(0.525380\pi\)
\(642\) −3.42237 −0.135070
\(643\) 29.0555 1.14584 0.572918 0.819613i \(-0.305812\pi\)
0.572918 + 0.819613i \(0.305812\pi\)
\(644\) −11.4667 −0.451851
\(645\) −0.970524 −0.0382143
\(646\) −15.4058 −0.606134
\(647\) 9.75943 0.383683 0.191841 0.981426i \(-0.438554\pi\)
0.191841 + 0.981426i \(0.438554\pi\)
\(648\) 10.5476 0.414349
\(649\) 12.5521 0.492712
\(650\) 61.9107 2.42834
\(651\) 6.95226 0.272481
\(652\) 104.792 4.10398
\(653\) −20.1174 −0.787256 −0.393628 0.919270i \(-0.628780\pi\)
−0.393628 + 0.919270i \(0.628780\pi\)
\(654\) 5.89214 0.230401
\(655\) −0.340341 −0.0132982
\(656\) −8.70004 −0.339680
\(657\) −1.77919 −0.0694127
\(658\) 19.8103 0.772286
\(659\) 17.4676 0.680441 0.340221 0.940346i \(-0.389498\pi\)
0.340221 + 0.940346i \(0.389498\pi\)
\(660\) −11.6380 −0.453007
\(661\) −16.2717 −0.632898 −0.316449 0.948610i \(-0.602491\pi\)
−0.316449 + 0.948610i \(0.602491\pi\)
\(662\) −62.1468 −2.41541
\(663\) 25.4610 0.988823
\(664\) 25.3286 0.982940
\(665\) 0.430991 0.0167131
\(666\) −11.0291 −0.427369
\(667\) −12.7227 −0.492624
\(668\) −48.3210 −1.86960
\(669\) 16.9223 0.654252
\(670\) −0.430761 −0.0166418
\(671\) 10.4152 0.402074
\(672\) −28.7247 −1.10808
\(673\) 41.0755 1.58335 0.791673 0.610946i \(-0.209211\pi\)
0.791673 + 0.610946i \(0.209211\pi\)
\(674\) −35.2735 −1.35869
\(675\) 4.81425 0.185300
\(676\) 47.7145 1.83517
\(677\) 2.81542 0.108205 0.0541026 0.998535i \(-0.482770\pi\)
0.0541026 + 0.998535i \(0.482770\pi\)
\(678\) −29.0509 −1.11569
\(679\) 3.22028 0.123583
\(680\) −25.1063 −0.962783
\(681\) 6.29594 0.241261
\(682\) 90.5817 3.46855
\(683\) −28.9174 −1.10649 −0.553247 0.833017i \(-0.686612\pi\)
−0.553247 + 0.833017i \(0.686612\pi\)
\(684\) −5.78120 −0.221050
\(685\) −7.03198 −0.268678
\(686\) 2.78948 0.106503
\(687\) −8.76651 −0.334463
\(688\) −40.2177 −1.53328
\(689\) 34.6050 1.31834
\(690\) −2.38458 −0.0907793
\(691\) 35.4760 1.34957 0.674785 0.738015i \(-0.264236\pi\)
0.674785 + 0.738015i \(0.264236\pi\)
\(692\) −58.7781 −2.23441
\(693\) −4.67080 −0.177429
\(694\) 16.3775 0.621682
\(695\) 8.14745 0.309050
\(696\) −67.6568 −2.56453
\(697\) −2.69032 −0.101903
\(698\) 38.0164 1.43894
\(699\) 6.76961 0.256050
\(700\) −27.8321 −1.05196
\(701\) 30.5104 1.15236 0.576181 0.817322i \(-0.304542\pi\)
0.576181 + 0.817322i \(0.304542\pi\)
\(702\) 12.8599 0.485366
\(703\) 3.95382 0.149121
\(704\) −207.416 −7.81730
\(705\) 3.06081 0.115277
\(706\) −27.2049 −1.02387
\(707\) 19.8188 0.745361
\(708\) 15.5361 0.583883
\(709\) 43.7808 1.64422 0.822112 0.569326i \(-0.192796\pi\)
0.822112 + 0.569326i \(0.192796\pi\)
\(710\) 15.7316 0.590396
\(711\) 13.1117 0.491729
\(712\) 173.550 6.50407
\(713\) 13.7894 0.516418
\(714\) −15.4058 −0.576548
\(715\) −9.28054 −0.347072
\(716\) −11.0486 −0.412907
\(717\) −1.87117 −0.0698802
\(718\) −24.3523 −0.908820
\(719\) 14.5597 0.542985 0.271492 0.962441i \(-0.412483\pi\)
0.271492 + 0.962441i \(0.412483\pi\)
\(720\) −7.69746 −0.286867
\(721\) 9.34159 0.347899
\(722\) 2.78948 0.103814
\(723\) −13.1579 −0.489348
\(724\) 75.5346 2.80722
\(725\) −30.8807 −1.14688
\(726\) −30.1719 −1.11979
\(727\) 35.4537 1.31491 0.657453 0.753496i \(-0.271634\pi\)
0.657453 + 0.753496i \(0.271634\pi\)
\(728\) −48.6259 −1.80219
\(729\) 1.00000 0.0370370
\(730\) 2.13901 0.0791683
\(731\) −12.4365 −0.459982
\(732\) 12.8912 0.476473
\(733\) 2.00373 0.0740095 0.0370047 0.999315i \(-0.488218\pi\)
0.0370047 + 0.999315i \(0.488218\pi\)
\(734\) 38.4732 1.42007
\(735\) 0.430991 0.0158973
\(736\) −56.9737 −2.10008
\(737\) −1.67354 −0.0616456
\(738\) −1.35883 −0.0500193
\(739\) 33.6847 1.23911 0.619556 0.784952i \(-0.287312\pi\)
0.619556 + 0.784952i \(0.287312\pi\)
\(740\) 9.85151 0.362149
\(741\) −4.61014 −0.169358
\(742\) −20.9386 −0.768680
\(743\) 18.0757 0.663132 0.331566 0.943432i \(-0.392423\pi\)
0.331566 + 0.943432i \(0.392423\pi\)
\(744\) 73.3296 2.68840
\(745\) −1.05622 −0.0386967
\(746\) −50.9272 −1.86458
\(747\) 2.40136 0.0878613
\(748\) −149.132 −5.45280
\(749\) 1.22688 0.0448294
\(750\) −11.7991 −0.430842
\(751\) 6.55814 0.239310 0.119655 0.992816i \(-0.461821\pi\)
0.119655 + 0.992816i \(0.461821\pi\)
\(752\) 126.837 4.62528
\(753\) 10.2067 0.371953
\(754\) −82.4890 −3.00407
\(755\) 7.74651 0.281924
\(756\) −5.78120 −0.210260
\(757\) −44.0279 −1.60022 −0.800110 0.599853i \(-0.795226\pi\)
−0.800110 + 0.599853i \(0.795226\pi\)
\(758\) 63.9206 2.32170
\(759\) −9.26426 −0.336271
\(760\) 4.54592 0.164898
\(761\) −8.08173 −0.292963 −0.146481 0.989213i \(-0.546795\pi\)
−0.146481 + 0.989213i \(0.546795\pi\)
\(762\) 6.06609 0.219751
\(763\) −2.11227 −0.0764694
\(764\) 110.300 3.99050
\(765\) −2.38029 −0.0860595
\(766\) −107.881 −3.89789
\(767\) 12.3891 0.447343
\(768\) −96.4726 −3.48115
\(769\) −12.9570 −0.467242 −0.233621 0.972328i \(-0.575057\pi\)
−0.233621 + 0.972328i \(0.575057\pi\)
\(770\) 5.61542 0.202366
\(771\) −8.96674 −0.322929
\(772\) −28.4274 −1.02312
\(773\) −6.70111 −0.241022 −0.120511 0.992712i \(-0.538453\pi\)
−0.120511 + 0.992712i \(0.538453\pi\)
\(774\) −6.28147 −0.225783
\(775\) 33.4699 1.20227
\(776\) 33.9662 1.21932
\(777\) 3.95382 0.141842
\(778\) 24.4540 0.876719
\(779\) 0.487127 0.0174531
\(780\) −11.4868 −0.411295
\(781\) 61.1184 2.18699
\(782\) −30.5566 −1.09270
\(783\) −6.41443 −0.229233
\(784\) 17.8599 0.637853
\(785\) −2.86228 −0.102159
\(786\) −2.20277 −0.0785704
\(787\) −5.64379 −0.201179 −0.100590 0.994928i \(-0.532073\pi\)
−0.100590 + 0.994928i \(0.532073\pi\)
\(788\) −62.9104 −2.24109
\(789\) 11.3491 0.404039
\(790\) −15.7635 −0.560839
\(791\) 10.4144 0.370295
\(792\) −49.2656 −1.75058
\(793\) 10.2799 0.365051
\(794\) −66.5462 −2.36164
\(795\) −3.23513 −0.114738
\(796\) −82.1137 −2.91044
\(797\) −34.0525 −1.20620 −0.603101 0.797665i \(-0.706068\pi\)
−0.603101 + 0.797665i \(0.706068\pi\)
\(798\) 2.78948 0.0987465
\(799\) 39.2219 1.38757
\(800\) −138.288 −4.88920
\(801\) 16.4540 0.581374
\(802\) −99.1551 −3.50129
\(803\) 8.31022 0.293261
\(804\) −2.07140 −0.0730525
\(805\) 0.854846 0.0301294
\(806\) 89.4054 3.14917
\(807\) 1.39750 0.0491942
\(808\) 209.040 7.35401
\(809\) 3.90376 0.137249 0.0686245 0.997643i \(-0.478139\pi\)
0.0686245 + 0.997643i \(0.478139\pi\)
\(810\) −1.20224 −0.0422424
\(811\) 24.6511 0.865618 0.432809 0.901486i \(-0.357522\pi\)
0.432809 + 0.901486i \(0.357522\pi\)
\(812\) 37.0831 1.30136
\(813\) −29.5492 −1.03634
\(814\) 51.5146 1.80559
\(815\) −7.81230 −0.273653
\(816\) −98.6371 −3.45299
\(817\) 2.25184 0.0787820
\(818\) −34.0168 −1.18937
\(819\) −4.61014 −0.161091
\(820\) 1.21375 0.0423859
\(821\) 17.9234 0.625530 0.312765 0.949831i \(-0.398745\pi\)
0.312765 + 0.949831i \(0.398745\pi\)
\(822\) −45.5127 −1.58744
\(823\) 41.8653 1.45933 0.729666 0.683803i \(-0.239675\pi\)
0.729666 + 0.683803i \(0.239675\pi\)
\(824\) 98.5313 3.43250
\(825\) −22.4864 −0.782875
\(826\) −7.49632 −0.260830
\(827\) 40.8151 1.41928 0.709641 0.704564i \(-0.248857\pi\)
0.709641 + 0.704564i \(0.248857\pi\)
\(828\) −11.4667 −0.398495
\(829\) −50.9370 −1.76911 −0.884557 0.466432i \(-0.845539\pi\)
−0.884557 + 0.466432i \(0.845539\pi\)
\(830\) −2.88702 −0.100210
\(831\) 4.09028 0.141890
\(832\) −204.723 −7.09749
\(833\) 5.52283 0.191355
\(834\) 52.7323 1.82597
\(835\) 3.60235 0.124665
\(836\) 27.0028 0.933912
\(837\) 6.95226 0.240305
\(838\) 45.9783 1.58829
\(839\) 12.2527 0.423011 0.211505 0.977377i \(-0.432163\pi\)
0.211505 + 0.977377i \(0.432163\pi\)
\(840\) 4.54592 0.156849
\(841\) 12.1450 0.418792
\(842\) 29.6278 1.02104
\(843\) −17.2302 −0.593441
\(844\) −66.4625 −2.28773
\(845\) −3.55714 −0.122369
\(846\) 19.8103 0.681092
\(847\) 10.8163 0.371654
\(848\) −134.061 −4.60368
\(849\) 29.6999 1.01930
\(850\) −74.1674 −2.54392
\(851\) 7.84217 0.268826
\(852\) 75.6484 2.59167
\(853\) −31.7198 −1.08607 −0.543033 0.839712i \(-0.682724\pi\)
−0.543033 + 0.839712i \(0.682724\pi\)
\(854\) −6.22013 −0.212848
\(855\) 0.430991 0.0147396
\(856\) 12.9407 0.442303
\(857\) 35.4906 1.21234 0.606168 0.795336i \(-0.292706\pi\)
0.606168 + 0.795336i \(0.292706\pi\)
\(858\) −60.0660 −2.05062
\(859\) 24.2527 0.827492 0.413746 0.910392i \(-0.364220\pi\)
0.413746 + 0.910392i \(0.364220\pi\)
\(860\) 5.61079 0.191326
\(861\) 0.487127 0.0166012
\(862\) 15.8122 0.538566
\(863\) −22.2259 −0.756579 −0.378289 0.925687i \(-0.623488\pi\)
−0.378289 + 0.925687i \(0.623488\pi\)
\(864\) −28.7247 −0.977233
\(865\) 4.38193 0.148990
\(866\) 109.208 3.71103
\(867\) −13.5016 −0.458538
\(868\) −40.1925 −1.36422
\(869\) −61.2423 −2.07750
\(870\) 7.71170 0.261451
\(871\) −1.65181 −0.0559693
\(872\) −22.2794 −0.754475
\(873\) 3.22028 0.108990
\(874\) 5.53278 0.187149
\(875\) 4.22985 0.142995
\(876\) 10.2858 0.347526
\(877\) 25.3600 0.856345 0.428173 0.903697i \(-0.359158\pi\)
0.428173 + 0.903697i \(0.359158\pi\)
\(878\) −49.1130 −1.65748
\(879\) 27.0490 0.912340
\(880\) 35.9532 1.21198
\(881\) 7.42362 0.250108 0.125054 0.992150i \(-0.460090\pi\)
0.125054 + 0.992150i \(0.460090\pi\)
\(882\) 2.78948 0.0939267
\(883\) −14.7424 −0.496123 −0.248061 0.968744i \(-0.579793\pi\)
−0.248061 + 0.968744i \(0.579793\pi\)
\(884\) −147.195 −4.95071
\(885\) −1.15822 −0.0389333
\(886\) 65.3779 2.19641
\(887\) −40.5456 −1.36139 −0.680693 0.732568i \(-0.738321\pi\)
−0.680693 + 0.732568i \(0.738321\pi\)
\(888\) 41.7032 1.39947
\(889\) −2.17463 −0.0729348
\(890\) −19.7817 −0.663084
\(891\) −4.67080 −0.156478
\(892\) −97.8310 −3.27562
\(893\) −7.10179 −0.237652
\(894\) −6.83609 −0.228633
\(895\) 0.823681 0.0275326
\(896\) 66.4234 2.21905
\(897\) −9.14395 −0.305308
\(898\) −101.504 −3.38723
\(899\) −44.5948 −1.48732
\(900\) −27.8321 −0.927738
\(901\) −41.4558 −1.38109
\(902\) 6.34683 0.211326
\(903\) 2.25184 0.0749366
\(904\) 109.847 3.65346
\(905\) −5.63114 −0.187185
\(906\) 50.1373 1.66570
\(907\) −45.5330 −1.51190 −0.755950 0.654630i \(-0.772825\pi\)
−0.755950 + 0.654630i \(0.772825\pi\)
\(908\) −36.3981 −1.20791
\(909\) 19.8188 0.657347
\(910\) 5.54250 0.183732
\(911\) −33.8615 −1.12188 −0.560941 0.827855i \(-0.689561\pi\)
−0.560941 + 0.827855i \(0.689561\pi\)
\(912\) 17.8599 0.591400
\(913\) −11.2163 −0.371205
\(914\) 45.8578 1.51684
\(915\) −0.961046 −0.0317712
\(916\) 50.6810 1.67455
\(917\) 0.789672 0.0260773
\(918\) −15.4058 −0.508468
\(919\) 9.24999 0.305129 0.152564 0.988294i \(-0.451247\pi\)
0.152564 + 0.988294i \(0.451247\pi\)
\(920\) 9.01657 0.297268
\(921\) 22.3893 0.737753
\(922\) −54.8785 −1.80733
\(923\) 60.3247 1.98561
\(924\) 27.0028 0.888327
\(925\) 19.0346 0.625855
\(926\) −31.0324 −1.01979
\(927\) 9.34159 0.306818
\(928\) 184.252 6.04838
\(929\) 48.7467 1.59933 0.799664 0.600448i \(-0.205011\pi\)
0.799664 + 0.600448i \(0.205011\pi\)
\(930\) −8.35830 −0.274079
\(931\) −1.00000 −0.0327737
\(932\) −39.1365 −1.28196
\(933\) −18.0389 −0.590567
\(934\) −68.5982 −2.24460
\(935\) 11.1178 0.363592
\(936\) −48.6259 −1.58939
\(937\) 33.4921 1.09414 0.547070 0.837087i \(-0.315743\pi\)
0.547070 + 0.837087i \(0.315743\pi\)
\(938\) 0.999467 0.0326337
\(939\) 10.6673 0.348115
\(940\) −17.6951 −0.577152
\(941\) −23.3742 −0.761977 −0.380988 0.924580i \(-0.624416\pi\)
−0.380988 + 0.924580i \(0.624416\pi\)
\(942\) −18.5254 −0.603590
\(943\) 0.966189 0.0314634
\(944\) −47.9958 −1.56213
\(945\) 0.430991 0.0140201
\(946\) 29.3395 0.953908
\(947\) −23.9643 −0.778735 −0.389368 0.921082i \(-0.627306\pi\)
−0.389368 + 0.921082i \(0.627306\pi\)
\(948\) −75.8016 −2.46192
\(949\) 8.20230 0.266258
\(950\) 13.4292 0.435702
\(951\) −15.7560 −0.510924
\(952\) 58.2525 1.88797
\(953\) 36.5266 1.18321 0.591606 0.806227i \(-0.298494\pi\)
0.591606 + 0.806227i \(0.298494\pi\)
\(954\) −20.9386 −0.677912
\(955\) −8.22288 −0.266086
\(956\) 10.8176 0.349867
\(957\) 29.9605 0.968486
\(958\) −44.7514 −1.44585
\(959\) 16.3158 0.526866
\(960\) 19.1391 0.617710
\(961\) 17.3340 0.559161
\(962\) 50.8457 1.63933
\(963\) 1.22688 0.0395358
\(964\) 76.0686 2.45001
\(965\) 2.11927 0.0682217
\(966\) 5.53278 0.178014
\(967\) −15.6636 −0.503706 −0.251853 0.967766i \(-0.581040\pi\)
−0.251853 + 0.967766i \(0.581040\pi\)
\(968\) 114.086 3.66687
\(969\) 5.52283 0.177419
\(970\) −3.87155 −0.124308
\(971\) −5.25339 −0.168589 −0.0842947 0.996441i \(-0.526864\pi\)
−0.0842947 + 0.996441i \(0.526864\pi\)
\(972\) −5.78120 −0.185432
\(973\) −18.9040 −0.606034
\(974\) −37.0508 −1.18718
\(975\) −22.1944 −0.710788
\(976\) −39.8249 −1.27476
\(977\) 21.9525 0.702322 0.351161 0.936315i \(-0.385787\pi\)
0.351161 + 0.936315i \(0.385787\pi\)
\(978\) −50.5631 −1.61683
\(979\) −76.8533 −2.45624
\(980\) −2.49165 −0.0795927
\(981\) −2.11227 −0.0674397
\(982\) 85.4350 2.72634
\(983\) −18.7244 −0.597214 −0.298607 0.954376i \(-0.596522\pi\)
−0.298607 + 0.954376i \(0.596522\pi\)
\(984\) 5.13802 0.163794
\(985\) 4.69000 0.149436
\(986\) 98.8196 3.14706
\(987\) −7.10179 −0.226052
\(988\) 26.6522 0.847918
\(989\) 4.46640 0.142023
\(990\) 5.61542 0.178470
\(991\) 20.1060 0.638689 0.319345 0.947639i \(-0.396537\pi\)
0.319345 + 0.947639i \(0.396537\pi\)
\(992\) −199.701 −6.34053
\(993\) 22.2790 0.707003
\(994\) −36.5010 −1.15774
\(995\) 6.12161 0.194068
\(996\) −13.8828 −0.439892
\(997\) 29.5676 0.936415 0.468207 0.883619i \(-0.344900\pi\)
0.468207 + 0.883619i \(0.344900\pi\)
\(998\) 104.880 3.31993
\(999\) 3.95382 0.125093
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.a.g.1.5 5
3.2 odd 2 1197.2.a.o.1.1 5
4.3 odd 2 6384.2.a.cf.1.2 5
5.4 even 2 9975.2.a.bp.1.1 5
7.6 odd 2 2793.2.a.bg.1.5 5
19.18 odd 2 7581.2.a.w.1.1 5
21.20 even 2 8379.2.a.cb.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.g.1.5 5 1.1 even 1 trivial
1197.2.a.o.1.1 5 3.2 odd 2
2793.2.a.bg.1.5 5 7.6 odd 2
6384.2.a.cf.1.2 5 4.3 odd 2
7581.2.a.w.1.1 5 19.18 odd 2
8379.2.a.cb.1.1 5 21.20 even 2
9975.2.a.bp.1.1 5 5.4 even 2