Properties

Label 399.2.a.e.1.3
Level $399$
Weight $2$
Character 399.1
Self dual yes
Analytic conductor $3.186$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(1,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.86620\) of defining polynomial
Character \(\chi\) \(=\) 399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.34889 q^{2} +1.00000 q^{3} +3.51730 q^{4} -0.517304 q^{5} +2.34889 q^{6} -1.00000 q^{7} +3.56399 q^{8} +1.00000 q^{9} -1.21509 q^{10} -3.73240 q^{11} +3.51730 q^{12} +5.73240 q^{13} -2.34889 q^{14} -0.517304 q^{15} +1.33682 q^{16} +4.51730 q^{17} +2.34889 q^{18} -1.00000 q^{19} -1.81952 q^{20} -1.00000 q^{21} -8.76700 q^{22} -7.73240 q^{23} +3.56399 q^{24} -4.73240 q^{25} +13.4648 q^{26} +1.00000 q^{27} -3.51730 q^{28} -6.18048 q^{29} -1.21509 q^{30} -6.69779 q^{31} -3.98793 q^{32} -3.73240 q^{33} +10.6107 q^{34} +0.517304 q^{35} +3.51730 q^{36} +9.46479 q^{37} -2.34889 q^{38} +5.73240 q^{39} -1.84366 q^{40} +2.26760 q^{41} -2.34889 q^{42} +1.30221 q^{43} -13.1280 q^{44} -0.517304 q^{45} -18.1626 q^{46} -4.18048 q^{47} +1.33682 q^{48} +1.00000 q^{49} -11.1159 q^{50} +4.51730 q^{51} +20.1626 q^{52} +13.6453 q^{53} +2.34889 q^{54} +1.93078 q^{55} -3.56399 q^{56} -1.00000 q^{57} -14.5173 q^{58} +6.06922 q^{59} -1.81952 q^{60} -5.46479 q^{61} -15.7324 q^{62} -1.00000 q^{63} -12.0409 q^{64} -2.96539 q^{65} -8.76700 q^{66} +6.43018 q^{67} +15.8887 q^{68} -7.73240 q^{69} +1.21509 q^{70} +0.947489 q^{71} +3.56399 q^{72} +3.03461 q^{73} +22.2318 q^{74} -4.73240 q^{75} -3.51730 q^{76} +3.73240 q^{77} +13.4648 q^{78} +6.06922 q^{79} -0.691542 q^{80} +1.00000 q^{81} +5.32636 q^{82} +6.24970 q^{83} -3.51730 q^{84} -2.33682 q^{85} +3.05876 q^{86} -6.18048 q^{87} -13.3022 q^{88} -7.80161 q^{89} -1.21509 q^{90} -5.73240 q^{91} -27.1972 q^{92} -6.69779 q^{93} -9.81952 q^{94} +0.517304 q^{95} -3.98793 q^{96} +15.3956 q^{97} +2.34889 q^{98} -3.73240 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 3 q^{3} + 9 q^{4} + q^{6} - 3 q^{7} - 9 q^{8} + 3 q^{9} + 10 q^{10} + 4 q^{11} + 9 q^{12} + 2 q^{13} - q^{14} + 13 q^{16} + 12 q^{17} + q^{18} - 3 q^{19} - 16 q^{20} - 3 q^{21} - 8 q^{22}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.34889 1.66092 0.830460 0.557079i \(-0.188078\pi\)
0.830460 + 0.557079i \(0.188078\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.51730 1.75865
\(5\) −0.517304 −0.231345 −0.115673 0.993287i \(-0.536902\pi\)
−0.115673 + 0.993287i \(0.536902\pi\)
\(6\) 2.34889 0.958932
\(7\) −1.00000 −0.377964
\(8\) 3.56399 1.26006
\(9\) 1.00000 0.333333
\(10\) −1.21509 −0.384246
\(11\) −3.73240 −1.12536 −0.562680 0.826675i \(-0.690230\pi\)
−0.562680 + 0.826675i \(0.690230\pi\)
\(12\) 3.51730 1.01536
\(13\) 5.73240 1.58988 0.794940 0.606688i \(-0.207502\pi\)
0.794940 + 0.606688i \(0.207502\pi\)
\(14\) −2.34889 −0.627768
\(15\) −0.517304 −0.133567
\(16\) 1.33682 0.334205
\(17\) 4.51730 1.09561 0.547804 0.836607i \(-0.315464\pi\)
0.547804 + 0.836607i \(0.315464\pi\)
\(18\) 2.34889 0.553640
\(19\) −1.00000 −0.229416
\(20\) −1.81952 −0.406856
\(21\) −1.00000 −0.218218
\(22\) −8.76700 −1.86913
\(23\) −7.73240 −1.61232 −0.806158 0.591700i \(-0.798457\pi\)
−0.806158 + 0.591700i \(0.798457\pi\)
\(24\) 3.56399 0.727496
\(25\) −4.73240 −0.946479
\(26\) 13.4648 2.64066
\(27\) 1.00000 0.192450
\(28\) −3.51730 −0.664708
\(29\) −6.18048 −1.14769 −0.573844 0.818965i \(-0.694548\pi\)
−0.573844 + 0.818965i \(0.694548\pi\)
\(30\) −1.21509 −0.221845
\(31\) −6.69779 −1.20296 −0.601479 0.798888i \(-0.705422\pi\)
−0.601479 + 0.798888i \(0.705422\pi\)
\(32\) −3.98793 −0.704972
\(33\) −3.73240 −0.649727
\(34\) 10.6107 1.81971
\(35\) 0.517304 0.0874403
\(36\) 3.51730 0.586217
\(37\) 9.46479 1.55600 0.778001 0.628263i \(-0.216234\pi\)
0.778001 + 0.628263i \(0.216234\pi\)
\(38\) −2.34889 −0.381041
\(39\) 5.73240 0.917918
\(40\) −1.84366 −0.291509
\(41\) 2.26760 0.354140 0.177070 0.984198i \(-0.443338\pi\)
0.177070 + 0.984198i \(0.443338\pi\)
\(42\) −2.34889 −0.362442
\(43\) 1.30221 0.198585 0.0992927 0.995058i \(-0.468342\pi\)
0.0992927 + 0.995058i \(0.468342\pi\)
\(44\) −13.1280 −1.97912
\(45\) −0.517304 −0.0771151
\(46\) −18.1626 −2.67793
\(47\) −4.18048 −0.609786 −0.304893 0.952387i \(-0.598621\pi\)
−0.304893 + 0.952387i \(0.598621\pi\)
\(48\) 1.33682 0.192953
\(49\) 1.00000 0.142857
\(50\) −11.1159 −1.57203
\(51\) 4.51730 0.632549
\(52\) 20.1626 2.79605
\(53\) 13.6453 1.87432 0.937162 0.348896i \(-0.113443\pi\)
0.937162 + 0.348896i \(0.113443\pi\)
\(54\) 2.34889 0.319644
\(55\) 1.93078 0.260347
\(56\) −3.56399 −0.476258
\(57\) −1.00000 −0.132453
\(58\) −14.5173 −1.90622
\(59\) 6.06922 0.790145 0.395072 0.918650i \(-0.370720\pi\)
0.395072 + 0.918650i \(0.370720\pi\)
\(60\) −1.81952 −0.234898
\(61\) −5.46479 −0.699695 −0.349848 0.936807i \(-0.613767\pi\)
−0.349848 + 0.936807i \(0.613767\pi\)
\(62\) −15.7324 −1.99802
\(63\) −1.00000 −0.125988
\(64\) −12.0409 −1.50511
\(65\) −2.96539 −0.367812
\(66\) −8.76700 −1.07914
\(67\) 6.43018 0.785572 0.392786 0.919630i \(-0.371511\pi\)
0.392786 + 0.919630i \(0.371511\pi\)
\(68\) 15.8887 1.92679
\(69\) −7.73240 −0.930871
\(70\) 1.21509 0.145231
\(71\) 0.947489 0.112446 0.0562231 0.998418i \(-0.482094\pi\)
0.0562231 + 0.998418i \(0.482094\pi\)
\(72\) 3.56399 0.420020
\(73\) 3.03461 0.355174 0.177587 0.984105i \(-0.443171\pi\)
0.177587 + 0.984105i \(0.443171\pi\)
\(74\) 22.2318 2.58439
\(75\) −4.73240 −0.546450
\(76\) −3.51730 −0.403462
\(77\) 3.73240 0.425346
\(78\) 13.4648 1.52459
\(79\) 6.06922 0.682840 0.341420 0.939911i \(-0.389092\pi\)
0.341420 + 0.939911i \(0.389092\pi\)
\(80\) −0.691542 −0.0773168
\(81\) 1.00000 0.111111
\(82\) 5.32636 0.588198
\(83\) 6.24970 0.685994 0.342997 0.939337i \(-0.388558\pi\)
0.342997 + 0.939337i \(0.388558\pi\)
\(84\) −3.51730 −0.383769
\(85\) −2.33682 −0.253464
\(86\) 3.05876 0.329834
\(87\) −6.18048 −0.662617
\(88\) −13.3022 −1.41802
\(89\) −7.80161 −0.826969 −0.413485 0.910511i \(-0.635688\pi\)
−0.413485 + 0.910511i \(0.635688\pi\)
\(90\) −1.21509 −0.128082
\(91\) −5.73240 −0.600918
\(92\) −27.1972 −2.83550
\(93\) −6.69779 −0.694528
\(94\) −9.81952 −1.01281
\(95\) 0.517304 0.0530743
\(96\) −3.98793 −0.407016
\(97\) 15.3956 1.56318 0.781592 0.623790i \(-0.214408\pi\)
0.781592 + 0.623790i \(0.214408\pi\)
\(98\) 2.34889 0.237274
\(99\) −3.73240 −0.375120
\(100\) −16.6453 −1.66453
\(101\) −11.9821 −1.19226 −0.596132 0.802887i \(-0.703296\pi\)
−0.596132 + 0.802887i \(0.703296\pi\)
\(102\) 10.6107 1.05061
\(103\) 15.4648 1.52379 0.761896 0.647700i \(-0.224269\pi\)
0.761896 + 0.647700i \(0.224269\pi\)
\(104\) 20.4302 2.00334
\(105\) 0.517304 0.0504837
\(106\) 32.0513 3.11310
\(107\) −14.5173 −1.40344 −0.701720 0.712452i \(-0.747584\pi\)
−0.701720 + 0.712452i \(0.747584\pi\)
\(108\) 3.51730 0.338453
\(109\) −6.49940 −0.622530 −0.311265 0.950323i \(-0.600753\pi\)
−0.311265 + 0.950323i \(0.600753\pi\)
\(110\) 4.53521 0.432415
\(111\) 9.46479 0.898358
\(112\) −1.33682 −0.126318
\(113\) −2.18048 −0.205123 −0.102561 0.994727i \(-0.532704\pi\)
−0.102561 + 0.994727i \(0.532704\pi\)
\(114\) −2.34889 −0.219994
\(115\) 4.00000 0.373002
\(116\) −21.7386 −2.01838
\(117\) 5.73240 0.529960
\(118\) 14.2559 1.31237
\(119\) −4.51730 −0.414101
\(120\) −1.84366 −0.168303
\(121\) 2.93078 0.266435
\(122\) −12.8362 −1.16214
\(123\) 2.26760 0.204463
\(124\) −23.5582 −2.11559
\(125\) 5.03461 0.450309
\(126\) −2.34889 −0.209256
\(127\) 18.4302 1.63541 0.817707 0.575634i \(-0.195245\pi\)
0.817707 + 0.575634i \(0.195245\pi\)
\(128\) −20.3068 −1.79489
\(129\) 1.30221 0.114653
\(130\) −6.96539 −0.610905
\(131\) 14.6107 1.27654 0.638270 0.769813i \(-0.279650\pi\)
0.638270 + 0.769813i \(0.279650\pi\)
\(132\) −13.1280 −1.14264
\(133\) 1.00000 0.0867110
\(134\) 15.1038 1.30477
\(135\) −0.517304 −0.0445224
\(136\) 16.0996 1.38053
\(137\) −3.39558 −0.290104 −0.145052 0.989424i \(-0.546335\pi\)
−0.145052 + 0.989424i \(0.546335\pi\)
\(138\) −18.1626 −1.54610
\(139\) 2.96539 0.251521 0.125761 0.992061i \(-0.459863\pi\)
0.125761 + 0.992061i \(0.459863\pi\)
\(140\) 1.81952 0.153777
\(141\) −4.18048 −0.352060
\(142\) 2.22555 0.186764
\(143\) −21.3956 −1.78919
\(144\) 1.33682 0.111402
\(145\) 3.19719 0.265512
\(146\) 7.12797 0.589915
\(147\) 1.00000 0.0824786
\(148\) 33.2906 2.73647
\(149\) −10.3610 −0.848804 −0.424402 0.905474i \(-0.639516\pi\)
−0.424402 + 0.905474i \(0.639516\pi\)
\(150\) −11.1159 −0.907609
\(151\) 13.8950 1.13076 0.565379 0.824831i \(-0.308730\pi\)
0.565379 + 0.824831i \(0.308730\pi\)
\(152\) −3.56399 −0.289077
\(153\) 4.51730 0.365202
\(154\) 8.76700 0.706465
\(155\) 3.46479 0.278299
\(156\) 20.1626 1.61430
\(157\) −8.06922 −0.643994 −0.321997 0.946741i \(-0.604354\pi\)
−0.321997 + 0.946741i \(0.604354\pi\)
\(158\) 14.2559 1.13414
\(159\) 13.6453 1.08214
\(160\) 2.06297 0.163092
\(161\) 7.73240 0.609398
\(162\) 2.34889 0.184547
\(163\) −8.76700 −0.686685 −0.343342 0.939210i \(-0.611559\pi\)
−0.343342 + 0.939210i \(0.611559\pi\)
\(164\) 7.97585 0.622809
\(165\) 1.93078 0.150311
\(166\) 14.6799 1.13938
\(167\) −14.5686 −1.12735 −0.563677 0.825995i \(-0.690614\pi\)
−0.563677 + 0.825995i \(0.690614\pi\)
\(168\) −3.56399 −0.274968
\(169\) 19.8604 1.52772
\(170\) −5.48894 −0.420983
\(171\) −1.00000 −0.0764719
\(172\) 4.58027 0.349243
\(173\) −3.80161 −0.289031 −0.144516 0.989503i \(-0.546162\pi\)
−0.144516 + 0.989503i \(0.546162\pi\)
\(174\) −14.5173 −1.10055
\(175\) 4.73240 0.357736
\(176\) −4.98954 −0.376101
\(177\) 6.06922 0.456190
\(178\) −18.3252 −1.37353
\(179\) −3.55191 −0.265482 −0.132741 0.991151i \(-0.542378\pi\)
−0.132741 + 0.991151i \(0.542378\pi\)
\(180\) −1.81952 −0.135619
\(181\) 19.3956 1.44166 0.720831 0.693111i \(-0.243760\pi\)
0.720831 + 0.693111i \(0.243760\pi\)
\(182\) −13.4648 −0.998077
\(183\) −5.46479 −0.403969
\(184\) −27.5582 −2.03161
\(185\) −4.89618 −0.359974
\(186\) −15.7324 −1.15356
\(187\) −16.8604 −1.23295
\(188\) −14.7040 −1.07240
\(189\) −1.00000 −0.0727393
\(190\) 1.21509 0.0881521
\(191\) −9.80161 −0.709220 −0.354610 0.935014i \(-0.615386\pi\)
−0.354610 + 0.935014i \(0.615386\pi\)
\(192\) −12.0409 −0.868974
\(193\) −14.8604 −1.06967 −0.534836 0.844956i \(-0.679627\pi\)
−0.534836 + 0.844956i \(0.679627\pi\)
\(194\) 36.1626 2.59632
\(195\) −2.96539 −0.212356
\(196\) 3.51730 0.251236
\(197\) 9.32636 0.664476 0.332238 0.943196i \(-0.392196\pi\)
0.332238 + 0.943196i \(0.392196\pi\)
\(198\) −8.76700 −0.623044
\(199\) −8.36097 −0.592693 −0.296347 0.955080i \(-0.595768\pi\)
−0.296347 + 0.955080i \(0.595768\pi\)
\(200\) −16.8662 −1.19262
\(201\) 6.43018 0.453550
\(202\) −28.1447 −1.98025
\(203\) 6.18048 0.433785
\(204\) 15.8887 1.11243
\(205\) −1.17304 −0.0819287
\(206\) 36.3252 2.53089
\(207\) −7.73240 −0.537439
\(208\) 7.66318 0.531346
\(209\) 3.73240 0.258175
\(210\) 1.21509 0.0838493
\(211\) −13.5340 −0.931720 −0.465860 0.884859i \(-0.654255\pi\)
−0.465860 + 0.884859i \(0.654255\pi\)
\(212\) 47.9946 3.29628
\(213\) 0.947489 0.0649209
\(214\) −34.0996 −2.33100
\(215\) −0.673639 −0.0459418
\(216\) 3.56399 0.242499
\(217\) 6.69779 0.454676
\(218\) −15.2664 −1.03397
\(219\) 3.03461 0.205060
\(220\) 6.79115 0.457859
\(221\) 25.8950 1.74188
\(222\) 22.2318 1.49210
\(223\) 14.1626 0.948397 0.474198 0.880418i \(-0.342738\pi\)
0.474198 + 0.880418i \(0.342738\pi\)
\(224\) 3.98793 0.266454
\(225\) −4.73240 −0.315493
\(226\) −5.12173 −0.340692
\(227\) −19.8258 −1.31588 −0.657941 0.753069i \(-0.728572\pi\)
−0.657941 + 0.753069i \(0.728572\pi\)
\(228\) −3.51730 −0.232939
\(229\) −18.3610 −1.21333 −0.606663 0.794959i \(-0.707492\pi\)
−0.606663 + 0.794959i \(0.707492\pi\)
\(230\) 9.39558 0.619526
\(231\) 3.73240 0.245574
\(232\) −22.0272 −1.44615
\(233\) 9.10382 0.596411 0.298206 0.954502i \(-0.403612\pi\)
0.298206 + 0.954502i \(0.403612\pi\)
\(234\) 13.4648 0.880221
\(235\) 2.16258 0.141071
\(236\) 21.3473 1.38959
\(237\) 6.06922 0.394238
\(238\) −10.6107 −0.687788
\(239\) −20.2318 −1.30869 −0.654343 0.756198i \(-0.727055\pi\)
−0.654343 + 0.756198i \(0.727055\pi\)
\(240\) −0.691542 −0.0446389
\(241\) 7.39558 0.476391 0.238195 0.971217i \(-0.423444\pi\)
0.238195 + 0.971217i \(0.423444\pi\)
\(242\) 6.88410 0.442527
\(243\) 1.00000 0.0641500
\(244\) −19.2213 −1.23052
\(245\) −0.517304 −0.0330493
\(246\) 5.32636 0.339596
\(247\) −5.73240 −0.364744
\(248\) −23.8708 −1.51580
\(249\) 6.24970 0.396059
\(250\) 11.8258 0.747927
\(251\) 22.7491 1.43591 0.717955 0.696089i \(-0.245078\pi\)
0.717955 + 0.696089i \(0.245078\pi\)
\(252\) −3.51730 −0.221569
\(253\) 28.8604 1.81444
\(254\) 43.2906 2.71629
\(255\) −2.33682 −0.146337
\(256\) −23.6169 −1.47606
\(257\) 19.6274 1.22432 0.612161 0.790733i \(-0.290300\pi\)
0.612161 + 0.790733i \(0.290300\pi\)
\(258\) 3.05876 0.190430
\(259\) −9.46479 −0.588114
\(260\) −10.4302 −0.646853
\(261\) −6.18048 −0.382562
\(262\) 34.3189 2.12023
\(263\) −18.6978 −1.15296 −0.576478 0.817113i \(-0.695573\pi\)
−0.576478 + 0.817113i \(0.695573\pi\)
\(264\) −13.3022 −0.818695
\(265\) −7.05876 −0.433616
\(266\) 2.34889 0.144020
\(267\) −7.80161 −0.477451
\(268\) 22.6169 1.38155
\(269\) −19.6274 −1.19670 −0.598351 0.801234i \(-0.704177\pi\)
−0.598351 + 0.801234i \(0.704177\pi\)
\(270\) −1.21509 −0.0739482
\(271\) −11.4648 −0.696437 −0.348218 0.937413i \(-0.613213\pi\)
−0.348218 + 0.937413i \(0.613213\pi\)
\(272\) 6.03882 0.366157
\(273\) −5.73240 −0.346940
\(274\) −7.97585 −0.481839
\(275\) 17.6632 1.06513
\(276\) −27.1972 −1.63708
\(277\) −3.66318 −0.220099 −0.110050 0.993926i \(-0.535101\pi\)
−0.110050 + 0.993926i \(0.535101\pi\)
\(278\) 6.96539 0.417756
\(279\) −6.69779 −0.400986
\(280\) 1.84366 0.110180
\(281\) 23.2151 1.38490 0.692448 0.721468i \(-0.256532\pi\)
0.692448 + 0.721468i \(0.256532\pi\)
\(282\) −9.81952 −0.584744
\(283\) 29.8950 1.77707 0.888536 0.458807i \(-0.151723\pi\)
0.888536 + 0.458807i \(0.151723\pi\)
\(284\) 3.33261 0.197754
\(285\) 0.517304 0.0306424
\(286\) −50.2559 −2.97170
\(287\) −2.26760 −0.133852
\(288\) −3.98793 −0.234991
\(289\) 3.40604 0.200355
\(290\) 7.50986 0.440994
\(291\) 15.3956 0.902505
\(292\) 10.6736 0.624627
\(293\) 14.2676 0.833522 0.416761 0.909016i \(-0.363165\pi\)
0.416761 + 0.909016i \(0.363165\pi\)
\(294\) 2.34889 0.136990
\(295\) −3.13963 −0.182796
\(296\) 33.7324 1.96066
\(297\) −3.73240 −0.216576
\(298\) −24.3368 −1.40979
\(299\) −44.3252 −2.56339
\(300\) −16.6453 −0.961016
\(301\) −1.30221 −0.0750582
\(302\) 32.6378 1.87810
\(303\) −11.9821 −0.688353
\(304\) −1.33682 −0.0766719
\(305\) 2.82696 0.161871
\(306\) 10.6107 0.606572
\(307\) −4.76700 −0.272067 −0.136034 0.990704i \(-0.543436\pi\)
−0.136034 + 0.990704i \(0.543436\pi\)
\(308\) 13.1280 0.748036
\(309\) 15.4648 0.879761
\(310\) 8.13843 0.462232
\(311\) 11.1459 0.632025 0.316012 0.948755i \(-0.397656\pi\)
0.316012 + 0.948755i \(0.397656\pi\)
\(312\) 20.4302 1.15663
\(313\) −20.7912 −1.17519 −0.587593 0.809157i \(-0.699924\pi\)
−0.587593 + 0.809157i \(0.699924\pi\)
\(314\) −18.9537 −1.06962
\(315\) 0.517304 0.0291468
\(316\) 21.3473 1.20088
\(317\) −6.71569 −0.377191 −0.188595 0.982055i \(-0.560393\pi\)
−0.188595 + 0.982055i \(0.560393\pi\)
\(318\) 32.0513 1.79735
\(319\) 23.0680 1.29156
\(320\) 6.22878 0.348200
\(321\) −14.5173 −0.810277
\(322\) 18.1626 1.01216
\(323\) −4.51730 −0.251350
\(324\) 3.51730 0.195406
\(325\) −27.1280 −1.50479
\(326\) −20.5928 −1.14053
\(327\) −6.49940 −0.359418
\(328\) 8.08171 0.446238
\(329\) 4.18048 0.230478
\(330\) 4.53521 0.249655
\(331\) 10.4302 0.573295 0.286647 0.958036i \(-0.407459\pi\)
0.286647 + 0.958036i \(0.407459\pi\)
\(332\) 21.9821 1.20642
\(333\) 9.46479 0.518667
\(334\) −34.2201 −1.87244
\(335\) −3.32636 −0.181738
\(336\) −1.33682 −0.0729295
\(337\) 20.4302 1.11290 0.556452 0.830880i \(-0.312162\pi\)
0.556452 + 0.830880i \(0.312162\pi\)
\(338\) 46.6499 2.53742
\(339\) −2.18048 −0.118428
\(340\) −8.21931 −0.445754
\(341\) 24.9988 1.35376
\(342\) −2.34889 −0.127014
\(343\) −1.00000 −0.0539949
\(344\) 4.64106 0.250229
\(345\) 4.00000 0.215353
\(346\) −8.92959 −0.480058
\(347\) −15.2330 −0.817750 −0.408875 0.912590i \(-0.634079\pi\)
−0.408875 + 0.912590i \(0.634079\pi\)
\(348\) −21.7386 −1.16531
\(349\) −0.465991 −0.0249439 −0.0124720 0.999922i \(-0.503970\pi\)
−0.0124720 + 0.999922i \(0.503970\pi\)
\(350\) 11.1159 0.594170
\(351\) 5.73240 0.305973
\(352\) 14.8845 0.793348
\(353\) 10.5865 0.563464 0.281732 0.959493i \(-0.409091\pi\)
0.281732 + 0.959493i \(0.409091\pi\)
\(354\) 14.2559 0.757695
\(355\) −0.490140 −0.0260139
\(356\) −27.4406 −1.45435
\(357\) −4.51730 −0.239081
\(358\) −8.34307 −0.440945
\(359\) −22.6620 −1.19605 −0.598027 0.801476i \(-0.704048\pi\)
−0.598027 + 0.801476i \(0.704048\pi\)
\(360\) −1.84366 −0.0971697
\(361\) 1.00000 0.0526316
\(362\) 45.5582 2.39448
\(363\) 2.93078 0.153826
\(364\) −20.1626 −1.05681
\(365\) −1.56982 −0.0821679
\(366\) −12.8362 −0.670960
\(367\) −7.82576 −0.408501 −0.204251 0.978919i \(-0.565476\pi\)
−0.204251 + 0.978919i \(0.565476\pi\)
\(368\) −10.3368 −0.538844
\(369\) 2.26760 0.118047
\(370\) −11.5006 −0.597888
\(371\) −13.6453 −0.708428
\(372\) −23.5582 −1.22143
\(373\) −28.7912 −1.49075 −0.745375 0.666646i \(-0.767729\pi\)
−0.745375 + 0.666646i \(0.767729\pi\)
\(374\) −39.6032 −2.04783
\(375\) 5.03461 0.259986
\(376\) −14.8992 −0.768367
\(377\) −35.4290 −1.82469
\(378\) −2.34889 −0.120814
\(379\) −35.9642 −1.84736 −0.923678 0.383169i \(-0.874833\pi\)
−0.923678 + 0.383169i \(0.874833\pi\)
\(380\) 1.81952 0.0933392
\(381\) 18.4302 0.944207
\(382\) −23.0230 −1.17796
\(383\) 19.9642 1.02012 0.510061 0.860138i \(-0.329623\pi\)
0.510061 + 0.860138i \(0.329623\pi\)
\(384\) −20.3068 −1.03628
\(385\) −1.93078 −0.0984019
\(386\) −34.9054 −1.77664
\(387\) 1.30221 0.0661951
\(388\) 54.1509 2.74910
\(389\) −7.03461 −0.356669 −0.178334 0.983970i \(-0.557071\pi\)
−0.178334 + 0.983970i \(0.557071\pi\)
\(390\) −6.96539 −0.352706
\(391\) −34.9296 −1.76647
\(392\) 3.56399 0.180009
\(393\) 14.6107 0.737011
\(394\) 21.9066 1.10364
\(395\) −3.13963 −0.157972
\(396\) −13.1280 −0.659705
\(397\) −26.9988 −1.35503 −0.677516 0.735508i \(-0.736943\pi\)
−0.677516 + 0.735508i \(0.736943\pi\)
\(398\) −19.6390 −0.984416
\(399\) 1.00000 0.0500626
\(400\) −6.32636 −0.316318
\(401\) 19.7145 0.984495 0.492247 0.870455i \(-0.336176\pi\)
0.492247 + 0.870455i \(0.336176\pi\)
\(402\) 15.1038 0.753310
\(403\) −38.3944 −1.91256
\(404\) −42.1447 −2.09678
\(405\) −0.517304 −0.0257050
\(406\) 14.5173 0.720482
\(407\) −35.3264 −1.75106
\(408\) 16.0996 0.797050
\(409\) −19.1280 −0.945817 −0.472909 0.881111i \(-0.656796\pi\)
−0.472909 + 0.881111i \(0.656796\pi\)
\(410\) −2.75535 −0.136077
\(411\) −3.39558 −0.167491
\(412\) 54.3944 2.67982
\(413\) −6.06922 −0.298647
\(414\) −18.1626 −0.892642
\(415\) −3.23300 −0.158702
\(416\) −22.8604 −1.12082
\(417\) 2.96539 0.145216
\(418\) 8.76700 0.428808
\(419\) 13.0409 0.637087 0.318544 0.947908i \(-0.396806\pi\)
0.318544 + 0.947908i \(0.396806\pi\)
\(420\) 1.81952 0.0887833
\(421\) −25.1521 −1.22584 −0.612920 0.790145i \(-0.710005\pi\)
−0.612920 + 0.790145i \(0.710005\pi\)
\(422\) −31.7900 −1.54751
\(423\) −4.18048 −0.203262
\(424\) 48.6316 2.36176
\(425\) −21.3777 −1.03697
\(426\) 2.22555 0.107828
\(427\) 5.46479 0.264460
\(428\) −51.0618 −2.46816
\(429\) −21.3956 −1.03299
\(430\) −1.58231 −0.0763056
\(431\) 22.4815 1.08290 0.541448 0.840734i \(-0.317876\pi\)
0.541448 + 0.840734i \(0.317876\pi\)
\(432\) 1.33682 0.0643178
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 15.7324 0.755179
\(435\) 3.19719 0.153294
\(436\) −22.8604 −1.09481
\(437\) 7.73240 0.369891
\(438\) 7.12797 0.340588
\(439\) −33.4889 −1.59834 −0.799170 0.601105i \(-0.794727\pi\)
−0.799170 + 0.601105i \(0.794727\pi\)
\(440\) 6.88129 0.328053
\(441\) 1.00000 0.0476190
\(442\) 60.8246 2.89313
\(443\) 23.6966 1.12586 0.562930 0.826505i \(-0.309674\pi\)
0.562930 + 0.826505i \(0.309674\pi\)
\(444\) 33.2906 1.57990
\(445\) 4.03581 0.191316
\(446\) 33.2664 1.57521
\(447\) −10.3610 −0.490057
\(448\) 12.0409 0.568877
\(449\) 7.38933 0.348724 0.174362 0.984682i \(-0.444214\pi\)
0.174362 + 0.984682i \(0.444214\pi\)
\(450\) −11.1159 −0.524008
\(451\) −8.46360 −0.398535
\(452\) −7.66943 −0.360739
\(453\) 13.8950 0.652843
\(454\) −46.5686 −2.18557
\(455\) 2.96539 0.139020
\(456\) −3.56399 −0.166899
\(457\) −18.2676 −0.854522 −0.427261 0.904128i \(-0.640522\pi\)
−0.427261 + 0.904128i \(0.640522\pi\)
\(458\) −43.1280 −2.01524
\(459\) 4.51730 0.210850
\(460\) 14.0692 0.655981
\(461\) −32.8425 −1.52963 −0.764813 0.644252i \(-0.777169\pi\)
−0.764813 + 0.644252i \(0.777169\pi\)
\(462\) 8.76700 0.407878
\(463\) −13.9308 −0.647418 −0.323709 0.946157i \(-0.604930\pi\)
−0.323709 + 0.946157i \(0.604930\pi\)
\(464\) −8.26219 −0.383563
\(465\) 3.46479 0.160676
\(466\) 21.3839 0.990591
\(467\) −6.78491 −0.313968 −0.156984 0.987601i \(-0.550177\pi\)
−0.156984 + 0.987601i \(0.550177\pi\)
\(468\) 20.1626 0.932016
\(469\) −6.43018 −0.296918
\(470\) 5.07968 0.234308
\(471\) −8.06922 −0.371810
\(472\) 21.6306 0.995629
\(473\) −4.86037 −0.223480
\(474\) 14.2559 0.654797
\(475\) 4.73240 0.217137
\(476\) −15.8887 −0.728259
\(477\) 13.6453 0.624774
\(478\) −47.5224 −2.17362
\(479\) 3.11007 0.142103 0.0710514 0.997473i \(-0.477365\pi\)
0.0710514 + 0.997473i \(0.477365\pi\)
\(480\) 2.06297 0.0941613
\(481\) 54.2559 2.47386
\(482\) 17.3714 0.791247
\(483\) 7.73240 0.351836
\(484\) 10.3085 0.468566
\(485\) −7.96419 −0.361635
\(486\) 2.34889 0.106548
\(487\) −35.7900 −1.62180 −0.810899 0.585186i \(-0.801021\pi\)
−0.810899 + 0.585186i \(0.801021\pi\)
\(488\) −19.4764 −0.881657
\(489\) −8.76700 −0.396458
\(490\) −1.21509 −0.0548923
\(491\) −15.2330 −0.687455 −0.343728 0.939069i \(-0.611690\pi\)
−0.343728 + 0.939069i \(0.611690\pi\)
\(492\) 7.97585 0.359579
\(493\) −27.9191 −1.25741
\(494\) −13.4648 −0.605810
\(495\) 1.93078 0.0867823
\(496\) −8.95374 −0.402035
\(497\) −0.947489 −0.0425007
\(498\) 14.6799 0.657821
\(499\) 28.1867 1.26181 0.630906 0.775860i \(-0.282683\pi\)
0.630906 + 0.775860i \(0.282683\pi\)
\(500\) 17.7082 0.791937
\(501\) −14.5686 −0.650878
\(502\) 53.4352 2.38493
\(503\) 6.47224 0.288583 0.144291 0.989535i \(-0.453910\pi\)
0.144291 + 0.989535i \(0.453910\pi\)
\(504\) −3.56399 −0.158753
\(505\) 6.19839 0.275825
\(506\) 67.7900 3.01363
\(507\) 19.8604 0.882030
\(508\) 64.8246 2.87612
\(509\) −43.6274 −1.93375 −0.966875 0.255252i \(-0.917842\pi\)
−0.966875 + 0.255252i \(0.917842\pi\)
\(510\) −5.48894 −0.243054
\(511\) −3.03461 −0.134243
\(512\) −14.8600 −0.656723
\(513\) −1.00000 −0.0441511
\(514\) 46.1026 2.03350
\(515\) −8.00000 −0.352522
\(516\) 4.58027 0.201635
\(517\) 15.6032 0.686229
\(518\) −22.2318 −0.976809
\(519\) −3.80161 −0.166872
\(520\) −10.5686 −0.463465
\(521\) 38.9537 1.70659 0.853297 0.521425i \(-0.174599\pi\)
0.853297 + 0.521425i \(0.174599\pi\)
\(522\) −14.5173 −0.635405
\(523\) 37.7658 1.65138 0.825692 0.564122i \(-0.190785\pi\)
0.825692 + 0.564122i \(0.190785\pi\)
\(524\) 51.3902 2.24499
\(525\) 4.73240 0.206539
\(526\) −43.9191 −1.91496
\(527\) −30.2559 −1.31797
\(528\) −4.98954 −0.217142
\(529\) 36.7900 1.59956
\(530\) −16.5803 −0.720201
\(531\) 6.06922 0.263382
\(532\) 3.51730 0.152494
\(533\) 12.9988 0.563041
\(534\) −18.3252 −0.793007
\(535\) 7.50986 0.324680
\(536\) 22.9171 0.989868
\(537\) −3.55191 −0.153276
\(538\) −46.1026 −1.98763
\(539\) −3.73240 −0.160766
\(540\) −1.81952 −0.0782995
\(541\) 20.6527 0.887930 0.443965 0.896044i \(-0.353571\pi\)
0.443965 + 0.896044i \(0.353571\pi\)
\(542\) −26.9296 −1.15672
\(543\) 19.3956 0.832344
\(544\) −18.0147 −0.772373
\(545\) 3.36217 0.144019
\(546\) −13.4648 −0.576240
\(547\) 10.7912 0.461396 0.230698 0.973025i \(-0.425899\pi\)
0.230698 + 0.973025i \(0.425899\pi\)
\(548\) −11.9433 −0.510191
\(549\) −5.46479 −0.233232
\(550\) 41.4889 1.76909
\(551\) 6.18048 0.263297
\(552\) −27.5582 −1.17295
\(553\) −6.06922 −0.258089
\(554\) −8.60442 −0.365567
\(555\) −4.89618 −0.207831
\(556\) 10.4302 0.442338
\(557\) 38.8246 1.64505 0.822525 0.568729i \(-0.192565\pi\)
0.822525 + 0.568729i \(0.192565\pi\)
\(558\) −15.7324 −0.666005
\(559\) 7.46479 0.315727
\(560\) 0.691542 0.0292230
\(561\) −16.8604 −0.711845
\(562\) 54.5298 2.30020
\(563\) −1.56982 −0.0661598 −0.0330799 0.999453i \(-0.510532\pi\)
−0.0330799 + 0.999453i \(0.510532\pi\)
\(564\) −14.7040 −0.619152
\(565\) 1.12797 0.0474542
\(566\) 70.2201 2.95157
\(567\) −1.00000 −0.0419961
\(568\) 3.37684 0.141689
\(569\) 16.2139 0.679722 0.339861 0.940476i \(-0.389620\pi\)
0.339861 + 0.940476i \(0.389620\pi\)
\(570\) 1.21509 0.0508946
\(571\) 46.2559 1.93575 0.967876 0.251430i \(-0.0809007\pi\)
0.967876 + 0.251430i \(0.0809007\pi\)
\(572\) −75.2547 −3.14656
\(573\) −9.80161 −0.409468
\(574\) −5.32636 −0.222318
\(575\) 36.5928 1.52602
\(576\) −12.0409 −0.501702
\(577\) 1.86157 0.0774981 0.0387490 0.999249i \(-0.487663\pi\)
0.0387490 + 0.999249i \(0.487663\pi\)
\(578\) 8.00042 0.332774
\(579\) −14.8604 −0.617576
\(580\) 11.2455 0.466943
\(581\) −6.24970 −0.259281
\(582\) 36.1626 1.49899
\(583\) −50.9296 −2.10929
\(584\) 10.8153 0.447540
\(585\) −2.96539 −0.122604
\(586\) 33.5131 1.38441
\(587\) 11.9579 0.493557 0.246779 0.969072i \(-0.420628\pi\)
0.246779 + 0.969072i \(0.420628\pi\)
\(588\) 3.51730 0.145051
\(589\) 6.69779 0.275978
\(590\) −7.37466 −0.303610
\(591\) 9.32636 0.383635
\(592\) 12.6527 0.520024
\(593\) −16.8425 −0.691637 −0.345819 0.938301i \(-0.612399\pi\)
−0.345819 + 0.938301i \(0.612399\pi\)
\(594\) −8.76700 −0.359715
\(595\) 2.33682 0.0958003
\(596\) −36.4427 −1.49275
\(597\) −8.36097 −0.342192
\(598\) −104.115 −4.25758
\(599\) −35.8771 −1.46590 −0.732949 0.680284i \(-0.761857\pi\)
−0.732949 + 0.680284i \(0.761857\pi\)
\(600\) −16.8662 −0.688560
\(601\) 20.0692 0.818640 0.409320 0.912391i \(-0.365766\pi\)
0.409320 + 0.912391i \(0.365766\pi\)
\(602\) −3.05876 −0.124666
\(603\) 6.43018 0.261857
\(604\) 48.8729 1.98861
\(605\) −1.51611 −0.0616385
\(606\) −28.1447 −1.14330
\(607\) 16.5352 0.671143 0.335572 0.942015i \(-0.391071\pi\)
0.335572 + 0.942015i \(0.391071\pi\)
\(608\) 3.98793 0.161732
\(609\) 6.18048 0.250446
\(610\) 6.64023 0.268855
\(611\) −23.9642 −0.969488
\(612\) 15.8887 0.642264
\(613\) 24.1984 0.977364 0.488682 0.872462i \(-0.337478\pi\)
0.488682 + 0.872462i \(0.337478\pi\)
\(614\) −11.1972 −0.451882
\(615\) −1.17304 −0.0473016
\(616\) 13.3022 0.535961
\(617\) −3.93078 −0.158247 −0.0791237 0.996865i \(-0.525212\pi\)
−0.0791237 + 0.996865i \(0.525212\pi\)
\(618\) 36.3252 1.46121
\(619\) −5.03461 −0.202358 −0.101179 0.994868i \(-0.532261\pi\)
−0.101179 + 0.994868i \(0.532261\pi\)
\(620\) 12.1867 0.489431
\(621\) −7.73240 −0.310290
\(622\) 26.1805 1.04974
\(623\) 7.80161 0.312565
\(624\) 7.66318 0.306773
\(625\) 21.0576 0.842302
\(626\) −48.8362 −1.95189
\(627\) 3.73240 0.149058
\(628\) −28.3819 −1.13256
\(629\) 42.7553 1.70477
\(630\) 1.21509 0.0484104
\(631\) −23.3714 −0.930402 −0.465201 0.885205i \(-0.654018\pi\)
−0.465201 + 0.885205i \(0.654018\pi\)
\(632\) 21.6306 0.860419
\(633\) −13.5340 −0.537929
\(634\) −15.7744 −0.626483
\(635\) −9.53401 −0.378346
\(636\) 47.9946 1.90311
\(637\) 5.73240 0.227126
\(638\) 54.1843 2.14518
\(639\) 0.947489 0.0374821
\(640\) 10.5048 0.415239
\(641\) −13.1459 −0.519231 −0.259615 0.965712i \(-0.583596\pi\)
−0.259615 + 0.965712i \(0.583596\pi\)
\(642\) −34.0996 −1.34580
\(643\) 6.96539 0.274688 0.137344 0.990523i \(-0.456143\pi\)
0.137344 + 0.990523i \(0.456143\pi\)
\(644\) 27.1972 1.07172
\(645\) −0.673639 −0.0265245
\(646\) −10.6107 −0.417471
\(647\) 22.6107 0.888917 0.444459 0.895799i \(-0.353396\pi\)
0.444459 + 0.895799i \(0.353396\pi\)
\(648\) 3.56399 0.140007
\(649\) −22.6527 −0.889197
\(650\) −63.7207 −2.49933
\(651\) 6.69779 0.262507
\(652\) −30.8362 −1.20764
\(653\) −30.8604 −1.20766 −0.603830 0.797113i \(-0.706359\pi\)
−0.603830 + 0.797113i \(0.706359\pi\)
\(654\) −15.2664 −0.596964
\(655\) −7.55816 −0.295322
\(656\) 3.03138 0.118355
\(657\) 3.03461 0.118391
\(658\) 9.81952 0.382805
\(659\) 16.4481 0.640727 0.320363 0.947295i \(-0.396195\pi\)
0.320363 + 0.947295i \(0.396195\pi\)
\(660\) 6.79115 0.264345
\(661\) −35.9883 −1.39978 −0.699892 0.714249i \(-0.746769\pi\)
−0.699892 + 0.714249i \(0.746769\pi\)
\(662\) 24.4994 0.952196
\(663\) 25.8950 1.00568
\(664\) 22.2738 0.864393
\(665\) −0.517304 −0.0200602
\(666\) 22.2318 0.861465
\(667\) 47.7900 1.85043
\(668\) −51.2423 −1.98262
\(669\) 14.1626 0.547557
\(670\) −7.81327 −0.301853
\(671\) 20.3968 0.787409
\(672\) 3.98793 0.153838
\(673\) −2.99880 −0.115595 −0.0577977 0.998328i \(-0.518408\pi\)
−0.0577977 + 0.998328i \(0.518408\pi\)
\(674\) 47.9883 1.84844
\(675\) −4.73240 −0.182150
\(676\) 69.8550 2.68673
\(677\) −14.7670 −0.567542 −0.283771 0.958892i \(-0.591586\pi\)
−0.283771 + 0.958892i \(0.591586\pi\)
\(678\) −5.12173 −0.196699
\(679\) −15.3956 −0.590828
\(680\) −8.32839 −0.319379
\(681\) −19.8258 −0.759725
\(682\) 58.7195 2.24849
\(683\) −40.4123 −1.54633 −0.773166 0.634203i \(-0.781328\pi\)
−0.773166 + 0.634203i \(0.781328\pi\)
\(684\) −3.51730 −0.134487
\(685\) 1.75655 0.0671142
\(686\) −2.34889 −0.0896812
\(687\) −18.3610 −0.700515
\(688\) 1.74082 0.0663682
\(689\) 78.2201 2.97995
\(690\) 9.39558 0.357683
\(691\) −27.3264 −1.03954 −0.519772 0.854305i \(-0.673983\pi\)
−0.519772 + 0.854305i \(0.673983\pi\)
\(692\) −13.3714 −0.508305
\(693\) 3.73240 0.141782
\(694\) −35.7807 −1.35822
\(695\) −1.53401 −0.0581883
\(696\) −22.0272 −0.834938
\(697\) 10.2435 0.387999
\(698\) −1.09456 −0.0414298
\(699\) 9.10382 0.344338
\(700\) 16.6453 0.629132
\(701\) 12.4660 0.470834 0.235417 0.971894i \(-0.424354\pi\)
0.235417 + 0.971894i \(0.424354\pi\)
\(702\) 13.4648 0.508196
\(703\) −9.46479 −0.356971
\(704\) 44.9412 1.69379
\(705\) 2.16258 0.0814475
\(706\) 24.8666 0.935867
\(707\) 11.9821 0.450633
\(708\) 21.3473 0.802280
\(709\) −19.4048 −0.728764 −0.364382 0.931250i \(-0.618720\pi\)
−0.364382 + 0.931250i \(0.618720\pi\)
\(710\) −1.15129 −0.0432070
\(711\) 6.06922 0.227613
\(712\) −27.8048 −1.04203
\(713\) 51.7900 1.93955
\(714\) −10.6107 −0.397094
\(715\) 11.0680 0.413920
\(716\) −12.4932 −0.466891
\(717\) −20.2318 −0.755570
\(718\) −53.2306 −1.98655
\(719\) 28.3189 1.05612 0.528059 0.849208i \(-0.322920\pi\)
0.528059 + 0.849208i \(0.322920\pi\)
\(720\) −0.691542 −0.0257723
\(721\) −15.4648 −0.575939
\(722\) 2.34889 0.0874168
\(723\) 7.39558 0.275044
\(724\) 68.2201 2.53538
\(725\) 29.2485 1.08626
\(726\) 6.88410 0.255493
\(727\) 26.6527 0.988495 0.494247 0.869321i \(-0.335444\pi\)
0.494247 + 0.869321i \(0.335444\pi\)
\(728\) −20.4302 −0.757193
\(729\) 1.00000 0.0370370
\(730\) −3.68733 −0.136474
\(731\) 5.88249 0.217572
\(732\) −19.2213 −0.710441
\(733\) −19.7565 −0.729725 −0.364862 0.931061i \(-0.618884\pi\)
−0.364862 + 0.931061i \(0.618884\pi\)
\(734\) −18.3819 −0.678488
\(735\) −0.517304 −0.0190810
\(736\) 30.8362 1.13664
\(737\) −24.0000 −0.884051
\(738\) 5.32636 0.196066
\(739\) 36.0934 1.32772 0.663858 0.747859i \(-0.268918\pi\)
0.663858 + 0.747859i \(0.268918\pi\)
\(740\) −17.2213 −0.633069
\(741\) −5.73240 −0.210585
\(742\) −32.0513 −1.17664
\(743\) −33.1700 −1.21689 −0.608445 0.793596i \(-0.708206\pi\)
−0.608445 + 0.793596i \(0.708206\pi\)
\(744\) −23.8708 −0.875147
\(745\) 5.35977 0.196367
\(746\) −67.6274 −2.47601
\(747\) 6.24970 0.228665
\(748\) −59.3030 −2.16833
\(749\) 14.5173 0.530451
\(750\) 11.8258 0.431816
\(751\) 36.5477 1.33364 0.666822 0.745217i \(-0.267654\pi\)
0.666822 + 0.745217i \(0.267654\pi\)
\(752\) −5.58855 −0.203794
\(753\) 22.7491 0.829023
\(754\) −83.2189 −3.03066
\(755\) −7.18793 −0.261595
\(756\) −3.51730 −0.127923
\(757\) −44.7912 −1.62796 −0.813981 0.580891i \(-0.802704\pi\)
−0.813981 + 0.580891i \(0.802704\pi\)
\(758\) −84.4761 −3.06831
\(759\) 28.8604 1.04757
\(760\) 1.84366 0.0668767
\(761\) −10.7250 −0.388779 −0.194390 0.980924i \(-0.562273\pi\)
−0.194390 + 0.980924i \(0.562273\pi\)
\(762\) 43.2906 1.56825
\(763\) 6.49940 0.235294
\(764\) −34.4753 −1.24727
\(765\) −2.33682 −0.0844879
\(766\) 46.8938 1.69434
\(767\) 34.7912 1.25624
\(768\) −23.6169 −0.852202
\(769\) 16.0692 0.579471 0.289735 0.957107i \(-0.406433\pi\)
0.289735 + 0.957107i \(0.406433\pi\)
\(770\) −4.53521 −0.163438
\(771\) 19.6274 0.706863
\(772\) −52.2684 −1.88118
\(773\) 9.05876 0.325821 0.162910 0.986641i \(-0.447912\pi\)
0.162910 + 0.986641i \(0.447912\pi\)
\(774\) 3.05876 0.109945
\(775\) 31.6966 1.13858
\(776\) 54.8696 1.96970
\(777\) −9.46479 −0.339548
\(778\) −16.5236 −0.592398
\(779\) −2.26760 −0.0812453
\(780\) −10.4302 −0.373461
\(781\) −3.53640 −0.126543
\(782\) −82.0459 −2.93396
\(783\) −6.18048 −0.220872
\(784\) 1.33682 0.0477436
\(785\) 4.17424 0.148985
\(786\) 34.3189 1.22412
\(787\) −37.7658 −1.34621 −0.673103 0.739549i \(-0.735039\pi\)
−0.673103 + 0.739549i \(0.735039\pi\)
\(788\) 32.8036 1.16858
\(789\) −18.6978 −0.665659
\(790\) −7.37466 −0.262379
\(791\) 2.18048 0.0775291
\(792\) −13.3022 −0.472674
\(793\) −31.3264 −1.11243
\(794\) −63.4173 −2.25060
\(795\) −7.05876 −0.250348
\(796\) −29.4081 −1.04234
\(797\) 30.7312 1.08855 0.544277 0.838905i \(-0.316804\pi\)
0.544277 + 0.838905i \(0.316804\pi\)
\(798\) 2.34889 0.0831500
\(799\) −18.8845 −0.668086
\(800\) 18.8724 0.667242
\(801\) −7.80161 −0.275656
\(802\) 46.3073 1.63517
\(803\) −11.3264 −0.399699
\(804\) 22.6169 0.797637
\(805\) −4.00000 −0.140981
\(806\) −90.1843 −3.17661
\(807\) −19.6274 −0.690916
\(808\) −42.7040 −1.50232
\(809\) 40.1175 1.41046 0.705228 0.708980i \(-0.250844\pi\)
0.705228 + 0.708980i \(0.250844\pi\)
\(810\) −1.21509 −0.0426940
\(811\) −40.3252 −1.41601 −0.708004 0.706208i \(-0.750404\pi\)
−0.708004 + 0.706208i \(0.750404\pi\)
\(812\) 21.7386 0.762877
\(813\) −11.4648 −0.402088
\(814\) −82.9779 −2.90837
\(815\) 4.53521 0.158861
\(816\) 6.03882 0.211401
\(817\) −1.30221 −0.0455586
\(818\) −44.9296 −1.57093
\(819\) −5.73240 −0.200306
\(820\) −4.12594 −0.144084
\(821\) 23.3598 0.815262 0.407631 0.913147i \(-0.366355\pi\)
0.407631 + 0.913147i \(0.366355\pi\)
\(822\) −7.97585 −0.278190
\(823\) −14.3010 −0.498502 −0.249251 0.968439i \(-0.580184\pi\)
−0.249251 + 0.968439i \(0.580184\pi\)
\(824\) 55.1163 1.92007
\(825\) 17.6632 0.614953
\(826\) −14.2559 −0.496028
\(827\) 6.73984 0.234367 0.117184 0.993110i \(-0.462613\pi\)
0.117184 + 0.993110i \(0.462613\pi\)
\(828\) −27.1972 −0.945168
\(829\) −28.6044 −0.993473 −0.496736 0.867901i \(-0.665468\pi\)
−0.496736 + 0.867901i \(0.665468\pi\)
\(830\) −7.59396 −0.263590
\(831\) −3.66318 −0.127074
\(832\) −69.0230 −2.39294
\(833\) 4.51730 0.156515
\(834\) 6.96539 0.241192
\(835\) 7.53640 0.260808
\(836\) 13.1280 0.454040
\(837\) −6.69779 −0.231509
\(838\) 30.6316 1.05815
\(839\) 20.1384 0.695256 0.347628 0.937633i \(-0.386987\pi\)
0.347628 + 0.937633i \(0.386987\pi\)
\(840\) 1.84366 0.0636125
\(841\) 9.19839 0.317186
\(842\) −59.0797 −2.03602
\(843\) 23.2151 0.799570
\(844\) −47.6032 −1.63857
\(845\) −10.2738 −0.353431
\(846\) −9.81952 −0.337602
\(847\) −2.93078 −0.100703
\(848\) 18.2413 0.626408
\(849\) 29.8950 1.02599
\(850\) −50.2139 −1.72232
\(851\) −73.1855 −2.50877
\(852\) 3.33261 0.114173
\(853\) 10.3252 0.353527 0.176763 0.984253i \(-0.443437\pi\)
0.176763 + 0.984253i \(0.443437\pi\)
\(854\) 12.8362 0.439246
\(855\) 0.517304 0.0176914
\(856\) −51.7395 −1.76842
\(857\) −15.2664 −0.521490 −0.260745 0.965408i \(-0.583968\pi\)
−0.260745 + 0.965408i \(0.583968\pi\)
\(858\) −50.2559 −1.71571
\(859\) −8.67364 −0.295941 −0.147970 0.988992i \(-0.547274\pi\)
−0.147970 + 0.988992i \(0.547274\pi\)
\(860\) −2.36939 −0.0807957
\(861\) −2.26760 −0.0772797
\(862\) 52.8067 1.79860
\(863\) −6.55311 −0.223070 −0.111535 0.993760i \(-0.535577\pi\)
−0.111535 + 0.993760i \(0.535577\pi\)
\(864\) −3.98793 −0.135672
\(865\) 1.96659 0.0668661
\(866\) 42.2801 1.43674
\(867\) 3.40604 0.115675
\(868\) 23.5582 0.799616
\(869\) −22.6527 −0.768441
\(870\) 7.50986 0.254608
\(871\) 36.8604 1.24897
\(872\) −23.1638 −0.784425
\(873\) 15.3956 0.521061
\(874\) 18.1626 0.614358
\(875\) −5.03461 −0.170201
\(876\) 10.6736 0.360629
\(877\) 30.9988 1.04676 0.523378 0.852101i \(-0.324672\pi\)
0.523378 + 0.852101i \(0.324672\pi\)
\(878\) −78.6620 −2.65471
\(879\) 14.2676 0.481234
\(880\) 2.58111 0.0870092
\(881\) 8.51730 0.286955 0.143478 0.989654i \(-0.454171\pi\)
0.143478 + 0.989654i \(0.454171\pi\)
\(882\) 2.34889 0.0790914
\(883\) 23.3264 0.784995 0.392497 0.919753i \(-0.371611\pi\)
0.392497 + 0.919753i \(0.371611\pi\)
\(884\) 91.0805 3.06337
\(885\) −3.13963 −0.105538
\(886\) 55.6608 1.86996
\(887\) 19.9642 0.670332 0.335166 0.942159i \(-0.391208\pi\)
0.335166 + 0.942159i \(0.391208\pi\)
\(888\) 33.7324 1.13199
\(889\) −18.4302 −0.618129
\(890\) 9.47968 0.317760
\(891\) −3.73240 −0.125040
\(892\) 49.8141 1.66790
\(893\) 4.18048 0.139895
\(894\) −24.3368 −0.813945
\(895\) 1.83742 0.0614181
\(896\) 20.3068 0.678404
\(897\) −44.3252 −1.47997
\(898\) 17.3568 0.579202
\(899\) 41.3956 1.38062
\(900\) −16.6453 −0.554843
\(901\) 61.6399 2.05352
\(902\) −19.8801 −0.661935
\(903\) −1.30221 −0.0433349
\(904\) −7.77122 −0.258467
\(905\) −10.0334 −0.333522
\(906\) 32.6378 1.08432
\(907\) 7.86157 0.261039 0.130520 0.991446i \(-0.458335\pi\)
0.130520 + 0.991446i \(0.458335\pi\)
\(908\) −69.7332 −2.31418
\(909\) −11.9821 −0.397421
\(910\) 6.96539 0.230900
\(911\) −32.4123 −1.07387 −0.536933 0.843625i \(-0.680417\pi\)
−0.536933 + 0.843625i \(0.680417\pi\)
\(912\) −1.33682 −0.0442665
\(913\) −23.3264 −0.771990
\(914\) −42.9087 −1.41929
\(915\) 2.82696 0.0934564
\(916\) −64.5811 −2.13382
\(917\) −14.6107 −0.482487
\(918\) 10.6107 0.350204
\(919\) 53.8592 1.77665 0.888325 0.459215i \(-0.151869\pi\)
0.888325 + 0.459215i \(0.151869\pi\)
\(920\) 14.2559 0.470005
\(921\) −4.76700 −0.157078
\(922\) −77.1435 −2.54059
\(923\) 5.43138 0.178776
\(924\) 13.1280 0.431879
\(925\) −44.7912 −1.47272
\(926\) −32.7219 −1.07531
\(927\) 15.4648 0.507930
\(928\) 24.6473 0.809088
\(929\) 45.7028 1.49946 0.749731 0.661743i \(-0.230183\pi\)
0.749731 + 0.661743i \(0.230183\pi\)
\(930\) 8.13843 0.266870
\(931\) −1.00000 −0.0327737
\(932\) 32.0209 1.04888
\(933\) 11.1459 0.364900
\(934\) −15.9370 −0.521476
\(935\) 8.72194 0.285238
\(936\) 20.4302 0.667781
\(937\) 13.0680 0.426914 0.213457 0.976953i \(-0.431528\pi\)
0.213457 + 0.976953i \(0.431528\pi\)
\(938\) −15.1038 −0.493157
\(939\) −20.7912 −0.678494
\(940\) 7.60646 0.248095
\(941\) 50.6954 1.65262 0.826311 0.563214i \(-0.190435\pi\)
0.826311 + 0.563214i \(0.190435\pi\)
\(942\) −18.9537 −0.617546
\(943\) −17.5340 −0.570986
\(944\) 8.11345 0.264070
\(945\) 0.517304 0.0168279
\(946\) −11.4165 −0.371182
\(947\) −23.7807 −0.772769 −0.386384 0.922338i \(-0.626276\pi\)
−0.386384 + 0.922338i \(0.626276\pi\)
\(948\) 21.3473 0.693327
\(949\) 17.3956 0.564684
\(950\) 11.1159 0.360647
\(951\) −6.71569 −0.217771
\(952\) −16.0996 −0.521791
\(953\) 5.32011 0.172335 0.0861677 0.996281i \(-0.472538\pi\)
0.0861677 + 0.996281i \(0.472538\pi\)
\(954\) 32.0513 1.03770
\(955\) 5.07041 0.164075
\(956\) −71.1614 −2.30152
\(957\) 23.0680 0.745683
\(958\) 7.30523 0.236021
\(959\) 3.39558 0.109649
\(960\) 6.22878 0.201033
\(961\) 13.8604 0.447109
\(962\) 127.441 4.10888
\(963\) −14.5173 −0.467814
\(964\) 26.0125 0.837806
\(965\) 7.68733 0.247464
\(966\) 18.1626 0.584371
\(967\) −3.41973 −0.109971 −0.0549855 0.998487i \(-0.517511\pi\)
−0.0549855 + 0.998487i \(0.517511\pi\)
\(968\) 10.4453 0.335724
\(969\) −4.51730 −0.145117
\(970\) −18.7070 −0.600647
\(971\) 29.1855 0.936608 0.468304 0.883567i \(-0.344865\pi\)
0.468304 + 0.883567i \(0.344865\pi\)
\(972\) 3.51730 0.112818
\(973\) −2.96539 −0.0950661
\(974\) −84.0668 −2.69367
\(975\) −27.1280 −0.868790
\(976\) −7.30544 −0.233842
\(977\) −3.93703 −0.125957 −0.0629784 0.998015i \(-0.520060\pi\)
−0.0629784 + 0.998015i \(0.520060\pi\)
\(978\) −20.5928 −0.658484
\(979\) 29.1187 0.930638
\(980\) −1.81952 −0.0581223
\(981\) −6.49940 −0.207510
\(982\) −35.7807 −1.14181
\(983\) 44.8604 1.43082 0.715412 0.698703i \(-0.246239\pi\)
0.715412 + 0.698703i \(0.246239\pi\)
\(984\) 8.08171 0.257635
\(985\) −4.82456 −0.153723
\(986\) −65.5791 −2.08846
\(987\) 4.18048 0.133066
\(988\) −20.1626 −0.641457
\(989\) −10.0692 −0.320182
\(990\) 4.53521 0.144138
\(991\) −42.7912 −1.35931 −0.679653 0.733534i \(-0.737870\pi\)
−0.679653 + 0.733534i \(0.737870\pi\)
\(992\) 26.7103 0.848052
\(993\) 10.4302 0.330992
\(994\) −2.22555 −0.0705902
\(995\) 4.32516 0.137117
\(996\) 21.9821 0.696529
\(997\) 19.7207 0.624562 0.312281 0.949990i \(-0.398907\pi\)
0.312281 + 0.949990i \(0.398907\pi\)
\(998\) 66.2076 2.09577
\(999\) 9.46479 0.299453
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.a.e.1.3 3
3.2 odd 2 1197.2.a.m.1.1 3
4.3 odd 2 6384.2.a.bu.1.2 3
5.4 even 2 9975.2.a.x.1.1 3
7.6 odd 2 2793.2.a.w.1.3 3
19.18 odd 2 7581.2.a.l.1.1 3
21.20 even 2 8379.2.a.bq.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.e.1.3 3 1.1 even 1 trivial
1197.2.a.m.1.1 3 3.2 odd 2
2793.2.a.w.1.3 3 7.6 odd 2
6384.2.a.bu.1.2 3 4.3 odd 2
7581.2.a.l.1.1 3 19.18 odd 2
8379.2.a.bq.1.1 3 21.20 even 2
9975.2.a.x.1.1 3 5.4 even 2