Properties

Label 399.2.a.e.1.1
Level $399$
Weight $2$
Character 399.1
Self dual yes
Analytic conductor $3.186$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(1,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.210756\) of defining polynomial
Character \(\chi\) \(=\) 399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.74483 q^{2} +1.00000 q^{3} +5.53407 q^{4} -2.53407 q^{5} -2.74483 q^{6} -1.00000 q^{7} -9.70041 q^{8} +1.00000 q^{9} +6.95558 q^{10} +2.42151 q^{11} +5.53407 q^{12} -0.421512 q^{13} +2.74483 q^{14} -2.53407 q^{15} +15.5578 q^{16} +6.53407 q^{17} -2.74483 q^{18} -1.00000 q^{19} -14.0237 q^{20} -1.00000 q^{21} -6.64663 q^{22} -1.57849 q^{23} -9.70041 q^{24} +1.42151 q^{25} +1.15698 q^{26} +1.00000 q^{27} -5.53407 q^{28} +6.02372 q^{29} +6.95558 q^{30} +3.48965 q^{31} -23.3026 q^{32} +2.42151 q^{33} -17.9349 q^{34} +2.53407 q^{35} +5.53407 q^{36} -2.84302 q^{37} +2.74483 q^{38} -0.421512 q^{39} +24.5815 q^{40} +8.42151 q^{41} +2.74483 q^{42} +11.4897 q^{43} +13.4008 q^{44} -2.53407 q^{45} +4.33268 q^{46} +8.02372 q^{47} +15.5578 q^{48} +1.00000 q^{49} -3.90180 q^{50} +6.53407 q^{51} -2.33268 q^{52} -10.8667 q^{53} -2.74483 q^{54} -6.13628 q^{55} +9.70041 q^{56} -1.00000 q^{57} -16.5341 q^{58} +14.1363 q^{59} -14.0237 q^{60} +6.84302 q^{61} -9.57849 q^{62} -1.00000 q^{63} +32.8461 q^{64} +1.06814 q^{65} -6.64663 q^{66} -9.91116 q^{67} +36.1600 q^{68} -1.57849 q^{69} -6.95558 q^{70} -13.3771 q^{71} -9.70041 q^{72} +7.06814 q^{73} +7.80361 q^{74} +1.42151 q^{75} -5.53407 q^{76} -2.42151 q^{77} +1.15698 q^{78} +14.1363 q^{79} -39.4245 q^{80} +1.00000 q^{81} -23.1156 q^{82} +2.11256 q^{83} -5.53407 q^{84} -16.5578 q^{85} -31.5371 q^{86} +6.02372 q^{87} -23.4897 q^{88} -9.71477 q^{89} +6.95558 q^{90} +0.421512 q^{91} -8.73546 q^{92} +3.48965 q^{93} -22.0237 q^{94} +2.53407 q^{95} -23.3026 q^{96} -4.97930 q^{97} -2.74483 q^{98} +2.42151 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 3 q^{3} + 9 q^{4} + q^{6} - 3 q^{7} - 9 q^{8} + 3 q^{9} + 10 q^{10} + 4 q^{11} + 9 q^{12} + 2 q^{13} - q^{14} + 13 q^{16} + 12 q^{17} + q^{18} - 3 q^{19} - 16 q^{20} - 3 q^{21} - 8 q^{22}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.74483 −1.94089 −0.970443 0.241332i \(-0.922416\pi\)
−0.970443 + 0.241332i \(0.922416\pi\)
\(3\) 1.00000 0.577350
\(4\) 5.53407 2.76704
\(5\) −2.53407 −1.13327 −0.566635 0.823969i \(-0.691755\pi\)
−0.566635 + 0.823969i \(0.691755\pi\)
\(6\) −2.74483 −1.12057
\(7\) −1.00000 −0.377964
\(8\) −9.70041 −3.42961
\(9\) 1.00000 0.333333
\(10\) 6.95558 2.19955
\(11\) 2.42151 0.730113 0.365057 0.930985i \(-0.381050\pi\)
0.365057 + 0.930985i \(0.381050\pi\)
\(12\) 5.53407 1.59755
\(13\) −0.421512 −0.116906 −0.0584532 0.998290i \(-0.518617\pi\)
−0.0584532 + 0.998290i \(0.518617\pi\)
\(14\) 2.74483 0.733586
\(15\) −2.53407 −0.654294
\(16\) 15.5578 3.88945
\(17\) 6.53407 1.58474 0.792372 0.610038i \(-0.208846\pi\)
0.792372 + 0.610038i \(0.208846\pi\)
\(18\) −2.74483 −0.646962
\(19\) −1.00000 −0.229416
\(20\) −14.0237 −3.13580
\(21\) −1.00000 −0.218218
\(22\) −6.64663 −1.41707
\(23\) −1.57849 −0.329138 −0.164569 0.986366i \(-0.552623\pi\)
−0.164569 + 0.986366i \(0.552623\pi\)
\(24\) −9.70041 −1.98009
\(25\) 1.42151 0.284302
\(26\) 1.15698 0.226902
\(27\) 1.00000 0.192450
\(28\) −5.53407 −1.04584
\(29\) 6.02372 1.11858 0.559289 0.828973i \(-0.311074\pi\)
0.559289 + 0.828973i \(0.311074\pi\)
\(30\) 6.95558 1.26991
\(31\) 3.48965 0.626760 0.313380 0.949628i \(-0.398539\pi\)
0.313380 + 0.949628i \(0.398539\pi\)
\(32\) −23.3026 −4.11936
\(33\) 2.42151 0.421531
\(34\) −17.9349 −3.07581
\(35\) 2.53407 0.428336
\(36\) 5.53407 0.922345
\(37\) −2.84302 −0.467390 −0.233695 0.972310i \(-0.575082\pi\)
−0.233695 + 0.972310i \(0.575082\pi\)
\(38\) 2.74483 0.445270
\(39\) −0.421512 −0.0674959
\(40\) 24.5815 3.88668
\(41\) 8.42151 1.31522 0.657610 0.753359i \(-0.271568\pi\)
0.657610 + 0.753359i \(0.271568\pi\)
\(42\) 2.74483 0.423536
\(43\) 11.4897 1.75216 0.876078 0.482170i \(-0.160151\pi\)
0.876078 + 0.482170i \(0.160151\pi\)
\(44\) 13.4008 2.02025
\(45\) −2.53407 −0.377757
\(46\) 4.33268 0.638818
\(47\) 8.02372 1.17038 0.585190 0.810896i \(-0.301020\pi\)
0.585190 + 0.810896i \(0.301020\pi\)
\(48\) 15.5578 2.24557
\(49\) 1.00000 0.142857
\(50\) −3.90180 −0.551798
\(51\) 6.53407 0.914953
\(52\) −2.33268 −0.323484
\(53\) −10.8667 −1.49266 −0.746331 0.665575i \(-0.768186\pi\)
−0.746331 + 0.665575i \(0.768186\pi\)
\(54\) −2.74483 −0.373524
\(55\) −6.13628 −0.827416
\(56\) 9.70041 1.29627
\(57\) −1.00000 −0.132453
\(58\) −16.5341 −2.17103
\(59\) 14.1363 1.84039 0.920194 0.391464i \(-0.128031\pi\)
0.920194 + 0.391464i \(0.128031\pi\)
\(60\) −14.0237 −1.81045
\(61\) 6.84302 0.876159 0.438080 0.898936i \(-0.355659\pi\)
0.438080 + 0.898936i \(0.355659\pi\)
\(62\) −9.57849 −1.21647
\(63\) −1.00000 −0.125988
\(64\) 32.8461 4.10576
\(65\) 1.06814 0.132487
\(66\) −6.64663 −0.818143
\(67\) −9.91116 −1.21084 −0.605421 0.795906i \(-0.706995\pi\)
−0.605421 + 0.795906i \(0.706995\pi\)
\(68\) 36.1600 4.38504
\(69\) −1.57849 −0.190028
\(70\) −6.95558 −0.831351
\(71\) −13.3771 −1.58757 −0.793784 0.608199i \(-0.791892\pi\)
−0.793784 + 0.608199i \(0.791892\pi\)
\(72\) −9.70041 −1.14320
\(73\) 7.06814 0.827263 0.413632 0.910444i \(-0.364260\pi\)
0.413632 + 0.910444i \(0.364260\pi\)
\(74\) 7.80361 0.907151
\(75\) 1.42151 0.164142
\(76\) −5.53407 −0.634801
\(77\) −2.42151 −0.275957
\(78\) 1.15698 0.131002
\(79\) 14.1363 1.59046 0.795228 0.606311i \(-0.207351\pi\)
0.795228 + 0.606311i \(0.207351\pi\)
\(80\) −39.4245 −4.40780
\(81\) 1.00000 0.111111
\(82\) −23.1156 −2.55269
\(83\) 2.11256 0.231883 0.115942 0.993256i \(-0.463011\pi\)
0.115942 + 0.993256i \(0.463011\pi\)
\(84\) −5.53407 −0.603817
\(85\) −16.5578 −1.79594
\(86\) −31.5371 −3.40073
\(87\) 6.02372 0.645811
\(88\) −23.4897 −2.50401
\(89\) −9.71477 −1.02976 −0.514882 0.857261i \(-0.672164\pi\)
−0.514882 + 0.857261i \(0.672164\pi\)
\(90\) 6.95558 0.733183
\(91\) 0.421512 0.0441864
\(92\) −8.73546 −0.910735
\(93\) 3.48965 0.361860
\(94\) −22.0237 −2.27157
\(95\) 2.53407 0.259990
\(96\) −23.3026 −2.37831
\(97\) −4.97930 −0.505572 −0.252786 0.967522i \(-0.581347\pi\)
−0.252786 + 0.967522i \(0.581347\pi\)
\(98\) −2.74483 −0.277269
\(99\) 2.42151 0.243371
\(100\) 7.86675 0.786675
\(101\) −1.69105 −0.168265 −0.0841327 0.996455i \(-0.526812\pi\)
−0.0841327 + 0.996455i \(0.526812\pi\)
\(102\) −17.9349 −1.77582
\(103\) 3.15698 0.311066 0.155533 0.987831i \(-0.450290\pi\)
0.155533 + 0.987831i \(0.450290\pi\)
\(104\) 4.08884 0.400943
\(105\) 2.53407 0.247300
\(106\) 29.8273 2.89709
\(107\) −16.5341 −1.59841 −0.799204 0.601059i \(-0.794746\pi\)
−0.799204 + 0.601059i \(0.794746\pi\)
\(108\) 5.53407 0.532516
\(109\) 1.77488 0.170003 0.0850015 0.996381i \(-0.472910\pi\)
0.0850015 + 0.996381i \(0.472910\pi\)
\(110\) 16.8430 1.60592
\(111\) −2.84302 −0.269848
\(112\) −15.5578 −1.47007
\(113\) 10.0237 0.942952 0.471476 0.881879i \(-0.343721\pi\)
0.471476 + 0.881879i \(0.343721\pi\)
\(114\) 2.74483 0.257077
\(115\) 4.00000 0.373002
\(116\) 33.3357 3.09514
\(117\) −0.421512 −0.0389688
\(118\) −38.8016 −3.57198
\(119\) −6.53407 −0.598977
\(120\) 24.5815 2.24398
\(121\) −5.13628 −0.466935
\(122\) −18.7829 −1.70052
\(123\) 8.42151 0.759342
\(124\) 19.3120 1.73427
\(125\) 9.06814 0.811079
\(126\) 2.74483 0.244529
\(127\) 2.08884 0.185354 0.0926771 0.995696i \(-0.470458\pi\)
0.0926771 + 0.995696i \(0.470458\pi\)
\(128\) −43.5515 −3.84944
\(129\) 11.4897 1.01161
\(130\) −2.93186 −0.257141
\(131\) −13.9349 −1.21750 −0.608748 0.793363i \(-0.708328\pi\)
−0.608748 + 0.793363i \(0.708328\pi\)
\(132\) 13.4008 1.16639
\(133\) 1.00000 0.0867110
\(134\) 27.2044 2.35010
\(135\) −2.53407 −0.218098
\(136\) −63.3831 −5.43506
\(137\) 16.9793 1.45064 0.725320 0.688412i \(-0.241692\pi\)
0.725320 + 0.688412i \(0.241692\pi\)
\(138\) 4.33268 0.368822
\(139\) −1.06814 −0.0905985 −0.0452992 0.998973i \(-0.514424\pi\)
−0.0452992 + 0.998973i \(0.514424\pi\)
\(140\) 14.0237 1.18522
\(141\) 8.02372 0.675719
\(142\) 36.7178 3.08129
\(143\) −1.02070 −0.0853549
\(144\) 15.5578 1.29648
\(145\) −15.2645 −1.26765
\(146\) −19.4008 −1.60562
\(147\) 1.00000 0.0824786
\(148\) −15.7335 −1.29329
\(149\) 14.0474 1.15081 0.575406 0.817868i \(-0.304844\pi\)
0.575406 + 0.817868i \(0.304844\pi\)
\(150\) −3.90180 −0.318581
\(151\) −14.7542 −1.20068 −0.600339 0.799745i \(-0.704968\pi\)
−0.600339 + 0.799745i \(0.704968\pi\)
\(152\) 9.70041 0.786807
\(153\) 6.53407 0.528248
\(154\) 6.64663 0.535601
\(155\) −8.84302 −0.710289
\(156\) −2.33268 −0.186764
\(157\) −16.1363 −1.28782 −0.643908 0.765103i \(-0.722688\pi\)
−0.643908 + 0.765103i \(0.722688\pi\)
\(158\) −38.8016 −3.08689
\(159\) −10.8667 −0.861789
\(160\) 59.0505 4.66835
\(161\) 1.57849 0.124402
\(162\) −2.74483 −0.215654
\(163\) −6.64663 −0.520604 −0.260302 0.965527i \(-0.583822\pi\)
−0.260302 + 0.965527i \(0.583822\pi\)
\(164\) 46.6052 3.63926
\(165\) −6.13628 −0.477709
\(166\) −5.79861 −0.450059
\(167\) −14.3614 −1.11132 −0.555659 0.831410i \(-0.687534\pi\)
−0.555659 + 0.831410i \(0.687534\pi\)
\(168\) 9.70041 0.748403
\(169\) −12.8223 −0.986333
\(170\) 45.4483 3.48572
\(171\) −1.00000 −0.0764719
\(172\) 63.5845 4.84828
\(173\) −5.71477 −0.434486 −0.217243 0.976118i \(-0.569706\pi\)
−0.217243 + 0.976118i \(0.569706\pi\)
\(174\) −16.5341 −1.25344
\(175\) −1.42151 −0.107456
\(176\) 37.6734 2.83974
\(177\) 14.1363 1.06255
\(178\) 26.6654 1.99865
\(179\) −9.60221 −0.717703 −0.358851 0.933395i \(-0.616832\pi\)
−0.358851 + 0.933395i \(0.616832\pi\)
\(180\) −14.0237 −1.04527
\(181\) −0.979304 −0.0727911 −0.0363956 0.999337i \(-0.511588\pi\)
−0.0363956 + 0.999337i \(0.511588\pi\)
\(182\) −1.15698 −0.0857608
\(183\) 6.84302 0.505851
\(184\) 15.3120 1.12881
\(185\) 7.20442 0.529680
\(186\) −9.57849 −0.702329
\(187\) 15.8223 1.15704
\(188\) 44.4038 3.23848
\(189\) −1.00000 −0.0727393
\(190\) −6.95558 −0.504611
\(191\) −11.7148 −0.847651 −0.423825 0.905744i \(-0.639313\pi\)
−0.423825 + 0.905744i \(0.639313\pi\)
\(192\) 32.8461 2.37046
\(193\) 17.8223 1.28288 0.641440 0.767174i \(-0.278337\pi\)
0.641440 + 0.767174i \(0.278337\pi\)
\(194\) 13.6673 0.981257
\(195\) 1.06814 0.0764911
\(196\) 5.53407 0.395291
\(197\) −19.1156 −1.36193 −0.680965 0.732316i \(-0.738439\pi\)
−0.680965 + 0.732316i \(0.738439\pi\)
\(198\) −6.64663 −0.472355
\(199\) 16.0474 1.13757 0.568787 0.822485i \(-0.307413\pi\)
0.568787 + 0.822485i \(0.307413\pi\)
\(200\) −13.7892 −0.975047
\(201\) −9.91116 −0.699080
\(202\) 4.64163 0.326584
\(203\) −6.02372 −0.422782
\(204\) 36.1600 2.53171
\(205\) −21.3407 −1.49050
\(206\) −8.66535 −0.603744
\(207\) −1.57849 −0.109713
\(208\) −6.55779 −0.454701
\(209\) −2.42151 −0.167499
\(210\) −6.95558 −0.479981
\(211\) −9.29326 −0.639774 −0.319887 0.947456i \(-0.603645\pi\)
−0.319887 + 0.947456i \(0.603645\pi\)
\(212\) −60.1373 −4.13025
\(213\) −13.3771 −0.916583
\(214\) 45.3831 3.10233
\(215\) −29.1156 −1.98567
\(216\) −9.70041 −0.660029
\(217\) −3.48965 −0.236893
\(218\) −4.87175 −0.329956
\(219\) 7.06814 0.477621
\(220\) −33.9586 −2.28949
\(221\) −2.75419 −0.185267
\(222\) 7.80361 0.523744
\(223\) −8.33268 −0.557997 −0.278999 0.960292i \(-0.590002\pi\)
−0.278999 + 0.960292i \(0.590002\pi\)
\(224\) 23.3026 1.55697
\(225\) 1.42151 0.0947675
\(226\) −27.5134 −1.83016
\(227\) 16.8905 1.12106 0.560530 0.828134i \(-0.310597\pi\)
0.560530 + 0.828134i \(0.310597\pi\)
\(228\) −5.53407 −0.366503
\(229\) 6.04744 0.399626 0.199813 0.979834i \(-0.435966\pi\)
0.199813 + 0.979834i \(0.435966\pi\)
\(230\) −10.9793 −0.723954
\(231\) −2.42151 −0.159324
\(232\) −58.4326 −3.83629
\(233\) 21.2044 1.38915 0.694574 0.719421i \(-0.255593\pi\)
0.694574 + 0.719421i \(0.255593\pi\)
\(234\) 1.15698 0.0756339
\(235\) −20.3327 −1.32636
\(236\) 78.2312 5.09242
\(237\) 14.1363 0.918250
\(238\) 17.9349 1.16255
\(239\) −5.80361 −0.375404 −0.187702 0.982226i \(-0.560104\pi\)
−0.187702 + 0.982226i \(0.560104\pi\)
\(240\) −39.4245 −2.54484
\(241\) −12.9793 −0.836070 −0.418035 0.908431i \(-0.637281\pi\)
−0.418035 + 0.908431i \(0.637281\pi\)
\(242\) 14.0982 0.906266
\(243\) 1.00000 0.0641500
\(244\) 37.8698 2.42436
\(245\) −2.53407 −0.161896
\(246\) −23.1156 −1.47380
\(247\) 0.421512 0.0268202
\(248\) −33.8510 −2.14954
\(249\) 2.11256 0.133878
\(250\) −24.8905 −1.57421
\(251\) 10.3377 0.652508 0.326254 0.945282i \(-0.394213\pi\)
0.326254 + 0.945282i \(0.394213\pi\)
\(252\) −5.53407 −0.348614
\(253\) −3.82233 −0.240308
\(254\) −5.73349 −0.359751
\(255\) −16.5578 −1.03689
\(256\) 53.8491 3.36557
\(257\) −15.1757 −0.946634 −0.473317 0.880892i \(-0.656944\pi\)
−0.473317 + 0.880892i \(0.656944\pi\)
\(258\) −31.5371 −1.96341
\(259\) 2.84302 0.176657
\(260\) 5.91116 0.366595
\(261\) 6.02372 0.372859
\(262\) 38.2488 2.36302
\(263\) −8.51035 −0.524771 −0.262385 0.964963i \(-0.584509\pi\)
−0.262385 + 0.964963i \(0.584509\pi\)
\(264\) −23.4897 −1.44569
\(265\) 27.5371 1.69159
\(266\) −2.74483 −0.168296
\(267\) −9.71477 −0.594534
\(268\) −54.8491 −3.35044
\(269\) 15.1757 0.925279 0.462639 0.886547i \(-0.346902\pi\)
0.462639 + 0.886547i \(0.346902\pi\)
\(270\) 6.95558 0.423303
\(271\) 0.843024 0.0512100 0.0256050 0.999672i \(-0.491849\pi\)
0.0256050 + 0.999672i \(0.491849\pi\)
\(272\) 101.656 6.16378
\(273\) 0.421512 0.0255111
\(274\) −46.6052 −2.81553
\(275\) 3.44221 0.207573
\(276\) −8.73546 −0.525813
\(277\) 10.5578 0.634356 0.317178 0.948366i \(-0.397265\pi\)
0.317178 + 0.948366i \(0.397265\pi\)
\(278\) 2.93186 0.175841
\(279\) 3.48965 0.208920
\(280\) −24.5815 −1.46903
\(281\) 15.0444 0.897475 0.448737 0.893664i \(-0.351874\pi\)
0.448737 + 0.893664i \(0.351874\pi\)
\(282\) −22.0237 −1.31149
\(283\) 1.24581 0.0740559 0.0370279 0.999314i \(-0.488211\pi\)
0.0370279 + 0.999314i \(0.488211\pi\)
\(284\) −74.0298 −4.39286
\(285\) 2.53407 0.150105
\(286\) 2.80163 0.165664
\(287\) −8.42151 −0.497106
\(288\) −23.3026 −1.37312
\(289\) 25.6941 1.51142
\(290\) 41.8985 2.46036
\(291\) −4.97930 −0.291892
\(292\) 39.1156 2.28907
\(293\) 20.4215 1.19304 0.596519 0.802599i \(-0.296550\pi\)
0.596519 + 0.802599i \(0.296550\pi\)
\(294\) −2.74483 −0.160082
\(295\) −35.8223 −2.08566
\(296\) 27.5785 1.60297
\(297\) 2.42151 0.140510
\(298\) −38.5578 −2.23359
\(299\) 0.665351 0.0384783
\(300\) 7.86675 0.454187
\(301\) −11.4897 −0.662253
\(302\) 40.4977 2.33038
\(303\) −1.69105 −0.0971481
\(304\) −15.5578 −0.892301
\(305\) −17.3407 −0.992926
\(306\) −17.9349 −1.02527
\(307\) −2.64663 −0.151051 −0.0755255 0.997144i \(-0.524063\pi\)
−0.0755255 + 0.997144i \(0.524063\pi\)
\(308\) −13.4008 −0.763582
\(309\) 3.15698 0.179594
\(310\) 24.2726 1.37859
\(311\) −5.09186 −0.288733 −0.144367 0.989524i \(-0.546114\pi\)
−0.144367 + 0.989524i \(0.546114\pi\)
\(312\) 4.08884 0.231485
\(313\) 19.9586 1.12813 0.564064 0.825731i \(-0.309237\pi\)
0.564064 + 0.825731i \(0.309237\pi\)
\(314\) 44.2913 2.49950
\(315\) 2.53407 0.142779
\(316\) 78.2312 4.40085
\(317\) −6.81930 −0.383010 −0.191505 0.981492i \(-0.561337\pi\)
−0.191505 + 0.981492i \(0.561337\pi\)
\(318\) 29.8273 1.67263
\(319\) 14.5865 0.816688
\(320\) −83.2342 −4.65293
\(321\) −16.5341 −0.922842
\(322\) −4.33268 −0.241451
\(323\) −6.53407 −0.363565
\(324\) 5.53407 0.307448
\(325\) −0.599184 −0.0332367
\(326\) 18.2438 1.01043
\(327\) 1.77488 0.0981513
\(328\) −81.6921 −4.51069
\(329\) −8.02372 −0.442362
\(330\) 16.8430 0.927178
\(331\) −5.91116 −0.324907 −0.162453 0.986716i \(-0.551941\pi\)
−0.162453 + 0.986716i \(0.551941\pi\)
\(332\) 11.6910 0.641630
\(333\) −2.84302 −0.155797
\(334\) 39.4195 2.15694
\(335\) 25.1156 1.37221
\(336\) −15.5578 −0.848747
\(337\) 4.08884 0.222733 0.111367 0.993779i \(-0.464477\pi\)
0.111367 + 0.993779i \(0.464477\pi\)
\(338\) 35.1951 1.91436
\(339\) 10.0237 0.544414
\(340\) −91.6320 −4.96944
\(341\) 8.45023 0.457606
\(342\) 2.74483 0.148423
\(343\) −1.00000 −0.0539949
\(344\) −111.454 −6.00921
\(345\) 4.00000 0.215353
\(346\) 15.6860 0.843287
\(347\) −17.3534 −0.931578 −0.465789 0.884896i \(-0.654229\pi\)
−0.465789 + 0.884896i \(0.654229\pi\)
\(348\) 33.3357 1.78698
\(349\) −4.70674 −0.251946 −0.125973 0.992034i \(-0.540205\pi\)
−0.125973 + 0.992034i \(0.540205\pi\)
\(350\) 3.90180 0.208560
\(351\) −0.421512 −0.0224986
\(352\) −56.4276 −3.00760
\(353\) 20.6704 1.10017 0.550086 0.835108i \(-0.314595\pi\)
0.550086 + 0.835108i \(0.314595\pi\)
\(354\) −38.8016 −2.06228
\(355\) 33.8985 1.79915
\(356\) −53.7622 −2.84939
\(357\) −6.53407 −0.345820
\(358\) 26.3564 1.39298
\(359\) 8.10756 0.427901 0.213950 0.976845i \(-0.431367\pi\)
0.213950 + 0.976845i \(0.431367\pi\)
\(360\) 24.5815 1.29556
\(361\) 1.00000 0.0526316
\(362\) 2.68802 0.141279
\(363\) −5.13628 −0.269585
\(364\) 2.33268 0.122265
\(365\) −17.9112 −0.937513
\(366\) −18.7829 −0.981798
\(367\) 28.8905 1.50807 0.754035 0.656834i \(-0.228105\pi\)
0.754035 + 0.656834i \(0.228105\pi\)
\(368\) −24.5578 −1.28016
\(369\) 8.42151 0.438406
\(370\) −19.7749 −1.02805
\(371\) 10.8667 0.564173
\(372\) 19.3120 1.00128
\(373\) 11.9586 0.619193 0.309597 0.950868i \(-0.399806\pi\)
0.309597 + 0.950868i \(0.399806\pi\)
\(374\) −43.4295 −2.24569
\(375\) 9.06814 0.468277
\(376\) −77.8334 −4.01395
\(377\) −2.53907 −0.130769
\(378\) 2.74483 0.141179
\(379\) −15.3821 −0.790125 −0.395063 0.918654i \(-0.629277\pi\)
−0.395063 + 0.918654i \(0.629277\pi\)
\(380\) 14.0237 0.719402
\(381\) 2.08884 0.107014
\(382\) 32.1550 1.64519
\(383\) −0.617907 −0.0315736 −0.0157868 0.999875i \(-0.505025\pi\)
−0.0157868 + 0.999875i \(0.505025\pi\)
\(384\) −43.5515 −2.22248
\(385\) 6.13628 0.312734
\(386\) −48.9192 −2.48992
\(387\) 11.4897 0.584052
\(388\) −27.5558 −1.39893
\(389\) −11.0681 −0.561177 −0.280588 0.959828i \(-0.590530\pi\)
−0.280588 + 0.959828i \(0.590530\pi\)
\(390\) −2.93186 −0.148460
\(391\) −10.3140 −0.521599
\(392\) −9.70041 −0.489945
\(393\) −13.9349 −0.702922
\(394\) 52.4690 2.64335
\(395\) −35.8223 −1.80242
\(396\) 13.4008 0.673416
\(397\) −10.4502 −0.524482 −0.262241 0.965002i \(-0.584462\pi\)
−0.262241 + 0.965002i \(0.584462\pi\)
\(398\) −44.0474 −2.20790
\(399\) 1.00000 0.0500626
\(400\) 22.1156 1.10578
\(401\) 3.26953 0.163273 0.0816364 0.996662i \(-0.473985\pi\)
0.0816364 + 0.996662i \(0.473985\pi\)
\(402\) 27.2044 1.35683
\(403\) −1.47093 −0.0732722
\(404\) −9.35837 −0.465596
\(405\) −2.53407 −0.125919
\(406\) 16.5341 0.820572
\(407\) −6.88441 −0.341248
\(408\) −63.3831 −3.13793
\(409\) 7.40082 0.365947 0.182973 0.983118i \(-0.441428\pi\)
0.182973 + 0.983118i \(0.441428\pi\)
\(410\) 58.5765 2.89289
\(411\) 16.9793 0.837527
\(412\) 17.4709 0.860731
\(413\) −14.1363 −0.695601
\(414\) 4.33268 0.212939
\(415\) −5.35337 −0.262787
\(416\) 9.82233 0.481579
\(417\) −1.06814 −0.0523071
\(418\) 6.64663 0.325097
\(419\) −31.8461 −1.55578 −0.777891 0.628400i \(-0.783710\pi\)
−0.777891 + 0.628400i \(0.783710\pi\)
\(420\) 14.0237 0.684288
\(421\) 40.0061 1.94978 0.974888 0.222696i \(-0.0714858\pi\)
0.974888 + 0.222696i \(0.0714858\pi\)
\(422\) 25.5084 1.24173
\(423\) 8.02372 0.390127
\(424\) 105.412 5.11925
\(425\) 9.28826 0.450547
\(426\) 36.7178 1.77898
\(427\) −6.84302 −0.331157
\(428\) −91.5007 −4.42285
\(429\) −1.02070 −0.0492797
\(430\) 79.9172 3.85395
\(431\) 3.91616 0.188635 0.0943175 0.995542i \(-0.469933\pi\)
0.0943175 + 0.995542i \(0.469933\pi\)
\(432\) 15.5578 0.748525
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 9.57849 0.459782
\(435\) −15.2645 −0.731878
\(436\) 9.82233 0.470404
\(437\) 1.57849 0.0755093
\(438\) −19.4008 −0.927007
\(439\) 17.4483 0.832760 0.416380 0.909191i \(-0.363299\pi\)
0.416380 + 0.909191i \(0.363299\pi\)
\(440\) 59.5244 2.83772
\(441\) 1.00000 0.0476190
\(442\) 7.55977 0.359581
\(443\) −3.03942 −0.144407 −0.0722036 0.997390i \(-0.523003\pi\)
−0.0722036 + 0.997390i \(0.523003\pi\)
\(444\) −15.7335 −0.746678
\(445\) 24.6179 1.16700
\(446\) 22.8717 1.08301
\(447\) 14.0474 0.664421
\(448\) −32.8461 −1.55183
\(449\) 35.9349 1.69587 0.847936 0.530099i \(-0.177845\pi\)
0.847936 + 0.530099i \(0.177845\pi\)
\(450\) −3.90180 −0.183933
\(451\) 20.3928 0.960259
\(452\) 55.4720 2.60918
\(453\) −14.7542 −0.693212
\(454\) −46.3614 −2.17585
\(455\) −1.06814 −0.0500752
\(456\) 9.70041 0.454263
\(457\) −24.4215 −1.14239 −0.571195 0.820814i \(-0.693520\pi\)
−0.571195 + 0.820814i \(0.693520\pi\)
\(458\) −16.5992 −0.775629
\(459\) 6.53407 0.304984
\(460\) 22.1363 1.03211
\(461\) 10.1313 0.471861 0.235930 0.971770i \(-0.424186\pi\)
0.235930 + 0.971770i \(0.424186\pi\)
\(462\) 6.64663 0.309229
\(463\) −5.86372 −0.272510 −0.136255 0.990674i \(-0.543507\pi\)
−0.136255 + 0.990674i \(0.543507\pi\)
\(464\) 93.7158 4.35065
\(465\) −8.84302 −0.410085
\(466\) −58.2024 −2.69618
\(467\) −14.9556 −0.692062 −0.346031 0.938223i \(-0.612471\pi\)
−0.346031 + 0.938223i \(0.612471\pi\)
\(468\) −2.33268 −0.107828
\(469\) 9.91116 0.457655
\(470\) 55.8097 2.57431
\(471\) −16.1363 −0.743521
\(472\) −137.128 −6.31181
\(473\) 27.8223 1.27927
\(474\) −38.8016 −1.78222
\(475\) −1.42151 −0.0652234
\(476\) −36.1600 −1.65739
\(477\) −10.8667 −0.497554
\(478\) 15.9299 0.728616
\(479\) −33.7098 −1.54024 −0.770119 0.637900i \(-0.779803\pi\)
−0.770119 + 0.637900i \(0.779803\pi\)
\(480\) 59.0505 2.69527
\(481\) 1.19837 0.0546409
\(482\) 35.6259 1.62272
\(483\) 1.57849 0.0718237
\(484\) −28.4245 −1.29202
\(485\) 12.6179 0.572950
\(486\) −2.74483 −0.124508
\(487\) 21.5084 0.974637 0.487319 0.873224i \(-0.337975\pi\)
0.487319 + 0.873224i \(0.337975\pi\)
\(488\) −66.3801 −3.00489
\(489\) −6.64663 −0.300571
\(490\) 6.95558 0.314221
\(491\) −17.3534 −0.783147 −0.391573 0.920147i \(-0.628069\pi\)
−0.391573 + 0.920147i \(0.628069\pi\)
\(492\) 46.6052 2.10113
\(493\) 39.3594 1.77266
\(494\) −1.15698 −0.0520548
\(495\) −6.13628 −0.275805
\(496\) 54.2913 2.43775
\(497\) 13.3771 0.600045
\(498\) −5.79861 −0.259842
\(499\) −32.9379 −1.47450 −0.737252 0.675618i \(-0.763877\pi\)
−0.737252 + 0.675618i \(0.763877\pi\)
\(500\) 50.1837 2.24428
\(501\) −14.3614 −0.641620
\(502\) −28.3751 −1.26644
\(503\) −38.2074 −1.70359 −0.851793 0.523879i \(-0.824485\pi\)
−0.851793 + 0.523879i \(0.824485\pi\)
\(504\) 9.70041 0.432091
\(505\) 4.28523 0.190690
\(506\) 10.4916 0.466410
\(507\) −12.8223 −0.569460
\(508\) 11.5598 0.512882
\(509\) −8.82430 −0.391130 −0.195565 0.980691i \(-0.562654\pi\)
−0.195565 + 0.980691i \(0.562654\pi\)
\(510\) 45.4483 2.01248
\(511\) −7.06814 −0.312676
\(512\) −60.7034 −2.68274
\(513\) −1.00000 −0.0441511
\(514\) 41.6547 1.83731
\(515\) −8.00000 −0.352522
\(516\) 63.5845 2.79915
\(517\) 19.4295 0.854510
\(518\) −7.80361 −0.342871
\(519\) −5.71477 −0.250851
\(520\) −10.3614 −0.454377
\(521\) −24.2913 −1.06422 −0.532110 0.846675i \(-0.678601\pi\)
−0.532110 + 0.846675i \(0.678601\pi\)
\(522\) −16.5341 −0.723677
\(523\) 19.0969 0.835047 0.417524 0.908666i \(-0.362898\pi\)
0.417524 + 0.908666i \(0.362898\pi\)
\(524\) −77.1166 −3.36886
\(525\) −1.42151 −0.0620399
\(526\) 23.3594 1.01852
\(527\) 22.8016 0.993255
\(528\) 37.6734 1.63952
\(529\) −20.5084 −0.891668
\(530\) −75.5845 −3.28318
\(531\) 14.1363 0.613462
\(532\) 5.53407 0.239932
\(533\) −3.54977 −0.153757
\(534\) 26.6654 1.15392
\(535\) 41.8985 1.81143
\(536\) 96.1423 4.15272
\(537\) −9.60221 −0.414366
\(538\) −41.6547 −1.79586
\(539\) 2.42151 0.104302
\(540\) −14.0237 −0.603485
\(541\) −36.2312 −1.55770 −0.778850 0.627210i \(-0.784197\pi\)
−0.778850 + 0.627210i \(0.784197\pi\)
\(542\) −2.31395 −0.0993928
\(543\) −0.979304 −0.0420260
\(544\) −152.261 −6.52813
\(545\) −4.49768 −0.192659
\(546\) −1.15698 −0.0495140
\(547\) −29.9586 −1.28094 −0.640469 0.767984i \(-0.721260\pi\)
−0.640469 + 0.767984i \(0.721260\pi\)
\(548\) 93.9647 4.01397
\(549\) 6.84302 0.292053
\(550\) −9.44826 −0.402875
\(551\) −6.02372 −0.256619
\(552\) 15.3120 0.651721
\(553\) −14.1363 −0.601136
\(554\) −28.9793 −1.23121
\(555\) 7.20442 0.305811
\(556\) −5.91116 −0.250689
\(557\) −14.4402 −0.611852 −0.305926 0.952055i \(-0.598966\pi\)
−0.305926 + 0.952055i \(0.598966\pi\)
\(558\) −9.57849 −0.405490
\(559\) −4.84302 −0.204838
\(560\) 39.4245 1.66599
\(561\) 15.8223 0.668019
\(562\) −41.2943 −1.74190
\(563\) −17.9112 −0.754866 −0.377433 0.926037i \(-0.623193\pi\)
−0.377433 + 0.926037i \(0.623193\pi\)
\(564\) 44.4038 1.86974
\(565\) −25.4008 −1.06862
\(566\) −3.41954 −0.143734
\(567\) −1.00000 −0.0419961
\(568\) 129.763 5.44475
\(569\) −8.50535 −0.356563 −0.178281 0.983980i \(-0.557054\pi\)
−0.178281 + 0.983980i \(0.557054\pi\)
\(570\) −6.95558 −0.291337
\(571\) −6.80163 −0.284639 −0.142320 0.989821i \(-0.545456\pi\)
−0.142320 + 0.989821i \(0.545456\pi\)
\(572\) −5.64860 −0.236180
\(573\) −11.7148 −0.489391
\(574\) 23.1156 0.964826
\(575\) −2.24384 −0.0935746
\(576\) 32.8461 1.36859
\(577\) −14.2726 −0.594175 −0.297087 0.954850i \(-0.596015\pi\)
−0.297087 + 0.954850i \(0.596015\pi\)
\(578\) −70.5258 −2.93348
\(579\) 17.8223 0.740671
\(580\) −84.4750 −3.50763
\(581\) −2.11256 −0.0876437
\(582\) 13.6673 0.566529
\(583\) −26.3140 −1.08981
\(584\) −68.5638 −2.83719
\(585\) 1.06814 0.0441622
\(586\) −56.0535 −2.31555
\(587\) 40.2963 1.66321 0.831603 0.555371i \(-0.187424\pi\)
0.831603 + 0.555371i \(0.187424\pi\)
\(588\) 5.53407 0.228221
\(589\) −3.48965 −0.143789
\(590\) 98.3261 4.04802
\(591\) −19.1156 −0.786310
\(592\) −44.2312 −1.81789
\(593\) 26.1313 1.07308 0.536542 0.843874i \(-0.319730\pi\)
0.536542 + 0.843874i \(0.319730\pi\)
\(594\) −6.64663 −0.272714
\(595\) 16.5578 0.678803
\(596\) 77.7395 3.18434
\(597\) 16.0474 0.656778
\(598\) −1.82627 −0.0746819
\(599\) 3.06314 0.125157 0.0625783 0.998040i \(-0.480068\pi\)
0.0625783 + 0.998040i \(0.480068\pi\)
\(600\) −13.7892 −0.562944
\(601\) 28.1363 1.14770 0.573851 0.818959i \(-0.305449\pi\)
0.573851 + 0.818959i \(0.305449\pi\)
\(602\) 31.5371 1.28536
\(603\) −9.91116 −0.403614
\(604\) −81.6507 −3.32232
\(605\) 13.0157 0.529163
\(606\) 4.64163 0.188553
\(607\) 28.8430 1.17070 0.585351 0.810780i \(-0.300957\pi\)
0.585351 + 0.810780i \(0.300957\pi\)
\(608\) 23.3026 0.945046
\(609\) −6.02372 −0.244094
\(610\) 47.5972 1.92715
\(611\) −3.38209 −0.136825
\(612\) 36.1600 1.46168
\(613\) 22.2852 0.900092 0.450046 0.893005i \(-0.351408\pi\)
0.450046 + 0.893005i \(0.351408\pi\)
\(614\) 7.26454 0.293173
\(615\) −21.3407 −0.860540
\(616\) 23.4897 0.946425
\(617\) 4.13628 0.166520 0.0832602 0.996528i \(-0.473467\pi\)
0.0832602 + 0.996528i \(0.473467\pi\)
\(618\) −8.66535 −0.348572
\(619\) −9.06814 −0.364479 −0.182240 0.983254i \(-0.558335\pi\)
−0.182240 + 0.983254i \(0.558335\pi\)
\(620\) −48.9379 −1.96539
\(621\) −1.57849 −0.0633426
\(622\) 13.9763 0.560398
\(623\) 9.71477 0.389214
\(624\) −6.55779 −0.262522
\(625\) −30.0869 −1.20347
\(626\) −54.7829 −2.18957
\(627\) −2.42151 −0.0967059
\(628\) −89.2993 −3.56343
\(629\) −18.5765 −0.740694
\(630\) −6.95558 −0.277117
\(631\) −41.6259 −1.65710 −0.828551 0.559913i \(-0.810834\pi\)
−0.828551 + 0.559913i \(0.810834\pi\)
\(632\) −137.128 −5.45465
\(633\) −9.29326 −0.369374
\(634\) 18.7178 0.743379
\(635\) −5.29326 −0.210057
\(636\) −60.1373 −2.38460
\(637\) −0.421512 −0.0167009
\(638\) −40.0374 −1.58510
\(639\) −13.3771 −0.529190
\(640\) 110.362 4.36246
\(641\) 3.09186 0.122121 0.0610606 0.998134i \(-0.480552\pi\)
0.0610606 + 0.998134i \(0.480552\pi\)
\(642\) 45.3831 1.79113
\(643\) 2.93186 0.115621 0.0578106 0.998328i \(-0.481588\pi\)
0.0578106 + 0.998328i \(0.481588\pi\)
\(644\) 8.73546 0.344226
\(645\) −29.1156 −1.14643
\(646\) 17.9349 0.705639
\(647\) −5.93489 −0.233324 −0.116662 0.993172i \(-0.537219\pi\)
−0.116662 + 0.993172i \(0.537219\pi\)
\(648\) −9.70041 −0.381068
\(649\) 34.2312 1.34369
\(650\) 1.64466 0.0645087
\(651\) −3.48965 −0.136770
\(652\) −36.7829 −1.44053
\(653\) 1.82233 0.0713132 0.0356566 0.999364i \(-0.488648\pi\)
0.0356566 + 0.999364i \(0.488648\pi\)
\(654\) −4.87175 −0.190500
\(655\) 35.3120 1.37975
\(656\) 131.020 5.11548
\(657\) 7.06814 0.275754
\(658\) 22.0237 0.858574
\(659\) 10.3978 0.405040 0.202520 0.979278i \(-0.435087\pi\)
0.202520 + 0.979278i \(0.435087\pi\)
\(660\) −33.9586 −1.32184
\(661\) 23.2231 0.903276 0.451638 0.892201i \(-0.350840\pi\)
0.451638 + 0.892201i \(0.350840\pi\)
\(662\) 16.2251 0.630607
\(663\) −2.75419 −0.106964
\(664\) −20.4927 −0.795270
\(665\) −2.53407 −0.0982670
\(666\) 7.80361 0.302384
\(667\) −9.50837 −0.368166
\(668\) −79.4770 −3.07506
\(669\) −8.33268 −0.322160
\(670\) −68.9379 −2.66330
\(671\) 16.5705 0.639696
\(672\) 23.3026 0.898918
\(673\) 13.5498 0.522305 0.261153 0.965298i \(-0.415897\pi\)
0.261153 + 0.965298i \(0.415897\pi\)
\(674\) −11.2231 −0.432299
\(675\) 1.42151 0.0547140
\(676\) −70.9597 −2.72922
\(677\) −12.6466 −0.486049 −0.243025 0.970020i \(-0.578140\pi\)
−0.243025 + 0.970020i \(0.578140\pi\)
\(678\) −27.5134 −1.05664
\(679\) 4.97930 0.191088
\(680\) 160.617 6.15939
\(681\) 16.8905 0.647244
\(682\) −23.1944 −0.888160
\(683\) −13.7799 −0.527273 −0.263636 0.964622i \(-0.584922\pi\)
−0.263636 + 0.964622i \(0.584922\pi\)
\(684\) −5.53407 −0.211600
\(685\) −43.0267 −1.64397
\(686\) 2.74483 0.104798
\(687\) 6.04744 0.230724
\(688\) 178.754 6.81492
\(689\) 4.58046 0.174502
\(690\) −10.9793 −0.417975
\(691\) 1.11559 0.0424389 0.0212194 0.999775i \(-0.493245\pi\)
0.0212194 + 0.999775i \(0.493245\pi\)
\(692\) −31.6259 −1.20224
\(693\) −2.42151 −0.0919856
\(694\) 47.6320 1.80809
\(695\) 2.70674 0.102673
\(696\) −58.4326 −2.21488
\(697\) 55.0267 2.08429
\(698\) 12.9192 0.488999
\(699\) 21.2044 0.802025
\(700\) −7.86675 −0.297335
\(701\) 16.7067 0.631005 0.315502 0.948925i \(-0.397827\pi\)
0.315502 + 0.948925i \(0.397827\pi\)
\(702\) 1.15698 0.0436673
\(703\) 2.84302 0.107227
\(704\) 79.5371 2.99767
\(705\) −20.3327 −0.765773
\(706\) −56.7365 −2.13531
\(707\) 1.69105 0.0635984
\(708\) 78.2312 2.94011
\(709\) −25.1443 −0.944314 −0.472157 0.881514i \(-0.656525\pi\)
−0.472157 + 0.881514i \(0.656525\pi\)
\(710\) −93.0455 −3.49193
\(711\) 14.1363 0.530152
\(712\) 94.2372 3.53169
\(713\) −5.50837 −0.206290
\(714\) 17.9349 0.671196
\(715\) 2.58651 0.0967302
\(716\) −53.1393 −1.98591
\(717\) −5.80361 −0.216740
\(718\) −22.2538 −0.830506
\(719\) 32.2488 1.20268 0.601339 0.798994i \(-0.294634\pi\)
0.601339 + 0.798994i \(0.294634\pi\)
\(720\) −39.4245 −1.46927
\(721\) −3.15698 −0.117572
\(722\) −2.74483 −0.102152
\(723\) −12.9793 −0.482706
\(724\) −5.41954 −0.201416
\(725\) 8.56279 0.318014
\(726\) 14.0982 0.523233
\(727\) −30.2312 −1.12121 −0.560606 0.828083i \(-0.689432\pi\)
−0.560606 + 0.828083i \(0.689432\pi\)
\(728\) −4.08884 −0.151542
\(729\) 1.00000 0.0370370
\(730\) 49.1630 1.81961
\(731\) 75.0742 2.77672
\(732\) 37.8698 1.39971
\(733\) 25.0267 0.924384 0.462192 0.886780i \(-0.347063\pi\)
0.462192 + 0.886780i \(0.347063\pi\)
\(734\) −79.2993 −2.92699
\(735\) −2.53407 −0.0934706
\(736\) 36.7829 1.35584
\(737\) −24.0000 −0.884051
\(738\) −23.1156 −0.850896
\(739\) 5.53104 0.203463 0.101731 0.994812i \(-0.467562\pi\)
0.101731 + 0.994812i \(0.467562\pi\)
\(740\) 39.8698 1.46564
\(741\) 0.421512 0.0154846
\(742\) −29.8273 −1.09500
\(743\) 21.6971 0.795989 0.397995 0.917388i \(-0.369706\pi\)
0.397995 + 0.917388i \(0.369706\pi\)
\(744\) −33.8510 −1.24104
\(745\) −35.5972 −1.30418
\(746\) −32.8243 −1.20178
\(747\) 2.11256 0.0772945
\(748\) 87.5619 3.20158
\(749\) 16.5341 0.604142
\(750\) −24.8905 −0.908871
\(751\) −48.9854 −1.78750 −0.893751 0.448564i \(-0.851935\pi\)
−0.893751 + 0.448564i \(0.851935\pi\)
\(752\) 124.831 4.55213
\(753\) 10.3377 0.376726
\(754\) 6.96931 0.253807
\(755\) 37.3881 1.36069
\(756\) −5.53407 −0.201272
\(757\) −4.04139 −0.146887 −0.0734434 0.997299i \(-0.523399\pi\)
−0.0734434 + 0.997299i \(0.523399\pi\)
\(758\) 42.2212 1.53354
\(759\) −3.82233 −0.138742
\(760\) −24.5815 −0.891665
\(761\) −36.9429 −1.33918 −0.669590 0.742731i \(-0.733530\pi\)
−0.669590 + 0.742731i \(0.733530\pi\)
\(762\) −5.73349 −0.207702
\(763\) −1.77488 −0.0642551
\(764\) −64.8304 −2.34548
\(765\) −16.5578 −0.598648
\(766\) 1.69605 0.0612806
\(767\) −5.95861 −0.215153
\(768\) 53.8491 1.94311
\(769\) 24.1363 0.870377 0.435188 0.900339i \(-0.356682\pi\)
0.435188 + 0.900339i \(0.356682\pi\)
\(770\) −16.8430 −0.606980
\(771\) −15.1757 −0.546539
\(772\) 98.6300 3.54977
\(773\) −25.5371 −0.918506 −0.459253 0.888306i \(-0.651883\pi\)
−0.459253 + 0.888306i \(0.651883\pi\)
\(774\) −31.5371 −1.13358
\(775\) 4.96058 0.178189
\(776\) 48.3013 1.73392
\(777\) 2.84302 0.101993
\(778\) 30.3801 1.08918
\(779\) −8.42151 −0.301732
\(780\) 5.91116 0.211654
\(781\) −32.3928 −1.15911
\(782\) 28.3100 1.01236
\(783\) 6.02372 0.215270
\(784\) 15.5578 0.555635
\(785\) 40.8905 1.45944
\(786\) 38.2488 1.36429
\(787\) −19.0969 −0.680730 −0.340365 0.940293i \(-0.610551\pi\)
−0.340365 + 0.940293i \(0.610551\pi\)
\(788\) −105.787 −3.76851
\(789\) −8.51035 −0.302976
\(790\) 98.3261 3.49828
\(791\) −10.0237 −0.356403
\(792\) −23.4897 −0.834668
\(793\) −2.88441 −0.102429
\(794\) 28.6841 1.01796
\(795\) 27.5371 0.976640
\(796\) 88.8077 3.14770
\(797\) 8.02872 0.284392 0.142196 0.989839i \(-0.454584\pi\)
0.142196 + 0.989839i \(0.454584\pi\)
\(798\) −2.74483 −0.0971658
\(799\) 52.4276 1.85475
\(800\) −33.1249 −1.17114
\(801\) −9.71477 −0.343254
\(802\) −8.97430 −0.316894
\(803\) 17.1156 0.603996
\(804\) −54.8491 −1.93438
\(805\) −4.00000 −0.140981
\(806\) 4.03745 0.142213
\(807\) 15.1757 0.534210
\(808\) 16.4038 0.577085
\(809\) −29.0742 −1.02219 −0.511097 0.859523i \(-0.670761\pi\)
−0.511097 + 0.859523i \(0.670761\pi\)
\(810\) 6.95558 0.244394
\(811\) 4.66535 0.163823 0.0819113 0.996640i \(-0.473898\pi\)
0.0819113 + 0.996640i \(0.473898\pi\)
\(812\) −33.3357 −1.16985
\(813\) 0.843024 0.0295661
\(814\) 18.8965 0.662323
\(815\) 16.8430 0.589985
\(816\) 101.656 3.55866
\(817\) −11.4897 −0.401972
\(818\) −20.3140 −0.710261
\(819\) 0.421512 0.0147288
\(820\) −118.101 −4.12426
\(821\) −17.5972 −0.614147 −0.307073 0.951686i \(-0.599350\pi\)
−0.307073 + 0.951686i \(0.599350\pi\)
\(822\) −46.6052 −1.62554
\(823\) −7.93989 −0.276767 −0.138384 0.990379i \(-0.544191\pi\)
−0.138384 + 0.990379i \(0.544191\pi\)
\(824\) −30.6240 −1.06684
\(825\) 3.44221 0.119842
\(826\) 38.8016 1.35008
\(827\) −31.7859 −1.10531 −0.552653 0.833412i \(-0.686384\pi\)
−0.552653 + 0.833412i \(0.686384\pi\)
\(828\) −8.73546 −0.303578
\(829\) −48.9793 −1.70112 −0.850561 0.525877i \(-0.823737\pi\)
−0.850561 + 0.525877i \(0.823737\pi\)
\(830\) 14.6941 0.510039
\(831\) 10.5578 0.366246
\(832\) −13.8450 −0.479989
\(833\) 6.53407 0.226392
\(834\) 2.93186 0.101522
\(835\) 36.3928 1.25942
\(836\) −13.4008 −0.463477
\(837\) 3.48965 0.120620
\(838\) 87.4119 3.01959
\(839\) 36.2726 1.25227 0.626134 0.779716i \(-0.284636\pi\)
0.626134 + 0.779716i \(0.284636\pi\)
\(840\) −24.5815 −0.848143
\(841\) 7.28523 0.251215
\(842\) −109.810 −3.78429
\(843\) 15.0444 0.518157
\(844\) −51.4295 −1.77028
\(845\) 32.4927 1.11778
\(846\) −22.0237 −0.757191
\(847\) 5.13628 0.176485
\(848\) −169.063 −5.80563
\(849\) 1.24581 0.0427562
\(850\) −25.4947 −0.874459
\(851\) 4.48768 0.153836
\(852\) −74.0298 −2.53622
\(853\) −34.6654 −1.18692 −0.593460 0.804864i \(-0.702238\pi\)
−0.593460 + 0.804864i \(0.702238\pi\)
\(854\) 18.7829 0.642738
\(855\) 2.53407 0.0866634
\(856\) 160.387 5.48192
\(857\) −4.87175 −0.166416 −0.0832078 0.996532i \(-0.526517\pi\)
−0.0832078 + 0.996532i \(0.526517\pi\)
\(858\) 2.80163 0.0956461
\(859\) −37.1156 −1.26637 −0.633184 0.774002i \(-0.718252\pi\)
−0.633184 + 0.774002i \(0.718252\pi\)
\(860\) −161.128 −5.49441
\(861\) −8.42151 −0.287004
\(862\) −10.7492 −0.366119
\(863\) −29.1520 −0.992345 −0.496172 0.868224i \(-0.665262\pi\)
−0.496172 + 0.868224i \(0.665262\pi\)
\(864\) −23.3026 −0.792771
\(865\) 14.4816 0.492390
\(866\) −49.4069 −1.67891
\(867\) 25.6941 0.872616
\(868\) −19.3120 −0.655491
\(869\) 34.2312 1.16121
\(870\) 41.8985 1.42049
\(871\) 4.17767 0.141555
\(872\) −17.2171 −0.583044
\(873\) −4.97930 −0.168524
\(874\) −4.33268 −0.146555
\(875\) −9.06814 −0.306559
\(876\) 39.1156 1.32159
\(877\) 14.4502 0.487950 0.243975 0.969782i \(-0.421549\pi\)
0.243975 + 0.969782i \(0.421549\pi\)
\(878\) −47.8924 −1.61629
\(879\) 20.4215 0.688800
\(880\) −95.4670 −3.21819
\(881\) 10.5341 0.354902 0.177451 0.984130i \(-0.443215\pi\)
0.177451 + 0.984130i \(0.443215\pi\)
\(882\) −2.74483 −0.0924231
\(883\) −5.11559 −0.172153 −0.0860766 0.996289i \(-0.527433\pi\)
−0.0860766 + 0.996289i \(0.527433\pi\)
\(884\) −15.2419 −0.512639
\(885\) −35.8223 −1.20415
\(886\) 8.34267 0.280278
\(887\) −0.617907 −0.0207473 −0.0103736 0.999946i \(-0.503302\pi\)
−0.0103736 + 0.999946i \(0.503302\pi\)
\(888\) 27.5785 0.925473
\(889\) −2.08884 −0.0700573
\(890\) −67.5719 −2.26501
\(891\) 2.42151 0.0811237
\(892\) −46.1136 −1.54400
\(893\) −8.02372 −0.268504
\(894\) −38.5578 −1.28957
\(895\) 24.3327 0.813352
\(896\) 43.5515 1.45495
\(897\) 0.665351 0.0222154
\(898\) −98.6350 −3.29149
\(899\) 21.0207 0.701079
\(900\) 7.86675 0.262225
\(901\) −71.0041 −2.36549
\(902\) −55.9747 −1.86375
\(903\) −11.4897 −0.382352
\(904\) −97.2342 −3.23396
\(905\) 2.48163 0.0824920
\(906\) 40.4977 1.34545
\(907\) −8.27256 −0.274686 −0.137343 0.990524i \(-0.543856\pi\)
−0.137343 + 0.990524i \(0.543856\pi\)
\(908\) 93.4730 3.10201
\(909\) −1.69105 −0.0560885
\(910\) 2.93186 0.0971902
\(911\) −5.77988 −0.191496 −0.0957480 0.995406i \(-0.530524\pi\)
−0.0957480 + 0.995406i \(0.530524\pi\)
\(912\) −15.5578 −0.515170
\(913\) 5.11559 0.169301
\(914\) 67.0328 2.21725
\(915\) −17.3407 −0.573266
\(916\) 33.4670 1.10578
\(917\) 13.9349 0.460170
\(918\) −17.9349 −0.591939
\(919\) 4.62791 0.152661 0.0763303 0.997083i \(-0.475680\pi\)
0.0763303 + 0.997083i \(0.475680\pi\)
\(920\) −38.8016 −1.27925
\(921\) −2.64663 −0.0872094
\(922\) −27.8086 −0.915828
\(923\) 5.63860 0.185597
\(924\) −13.4008 −0.440854
\(925\) −4.04139 −0.132880
\(926\) 16.0949 0.528911
\(927\) 3.15698 0.103689
\(928\) −140.369 −4.60782
\(929\) −29.9536 −0.982746 −0.491373 0.870949i \(-0.663505\pi\)
−0.491373 + 0.870949i \(0.663505\pi\)
\(930\) 24.2726 0.795929
\(931\) −1.00000 −0.0327737
\(932\) 117.347 3.84382
\(933\) −5.09186 −0.166700
\(934\) 41.0505 1.34321
\(935\) −40.0949 −1.31124
\(936\) 4.08884 0.133648
\(937\) 4.58651 0.149835 0.0749174 0.997190i \(-0.476131\pi\)
0.0749174 + 0.997190i \(0.476131\pi\)
\(938\) −27.2044 −0.888256
\(939\) 19.9586 0.651325
\(940\) −112.522 −3.67008
\(941\) 7.41082 0.241586 0.120793 0.992678i \(-0.461456\pi\)
0.120793 + 0.992678i \(0.461456\pi\)
\(942\) 44.2913 1.44309
\(943\) −13.2933 −0.432888
\(944\) 219.929 7.15809
\(945\) 2.53407 0.0824333
\(946\) −76.3675 −2.48292
\(947\) 59.6320 1.93778 0.968890 0.247493i \(-0.0796068\pi\)
0.968890 + 0.247493i \(0.0796068\pi\)
\(948\) 78.2312 2.54083
\(949\) −2.97930 −0.0967123
\(950\) 3.90180 0.126591
\(951\) −6.81930 −0.221131
\(952\) 63.3831 2.05426
\(953\) 25.7986 0.835699 0.417849 0.908516i \(-0.362784\pi\)
0.417849 + 0.908516i \(0.362784\pi\)
\(954\) 29.8273 0.965695
\(955\) 29.6860 0.960618
\(956\) −32.1176 −1.03876
\(957\) 14.5865 0.471515
\(958\) 92.5275 2.98943
\(959\) −16.9793 −0.548290
\(960\) −83.2342 −2.68637
\(961\) −18.8223 −0.607172
\(962\) −3.28931 −0.106052
\(963\) −16.5341 −0.532803
\(964\) −71.8284 −2.31344
\(965\) −45.1630 −1.45385
\(966\) −4.33268 −0.139402
\(967\) 55.5845 1.78748 0.893739 0.448587i \(-0.148073\pi\)
0.893739 + 0.448587i \(0.148073\pi\)
\(968\) 49.8240 1.60140
\(969\) −6.53407 −0.209905
\(970\) −34.6340 −1.11203
\(971\) −48.4877 −1.55604 −0.778022 0.628237i \(-0.783777\pi\)
−0.778022 + 0.628237i \(0.783777\pi\)
\(972\) 5.53407 0.177505
\(973\) 1.06814 0.0342430
\(974\) −59.0367 −1.89166
\(975\) −0.599184 −0.0191892
\(976\) 106.462 3.40778
\(977\) 53.0505 1.69723 0.848617 0.529007i \(-0.177435\pi\)
0.848617 + 0.529007i \(0.177435\pi\)
\(978\) 18.2438 0.583374
\(979\) −23.5244 −0.751844
\(980\) −14.0237 −0.447971
\(981\) 1.77488 0.0566677
\(982\) 47.6320 1.52000
\(983\) 12.1777 0.388407 0.194204 0.980961i \(-0.437788\pi\)
0.194204 + 0.980961i \(0.437788\pi\)
\(984\) −81.6921 −2.60425
\(985\) 48.4402 1.54343
\(986\) −108.035 −3.44053
\(987\) −8.02372 −0.255398
\(988\) 2.33268 0.0742123
\(989\) −18.1363 −0.576700
\(990\) 16.8430 0.535306
\(991\) −2.04139 −0.0648469 −0.0324235 0.999474i \(-0.510323\pi\)
−0.0324235 + 0.999474i \(0.510323\pi\)
\(992\) −81.3180 −2.58185
\(993\) −5.91116 −0.187585
\(994\) −36.7178 −1.16462
\(995\) −40.6654 −1.28918
\(996\) 11.6910 0.370445
\(997\) −45.6447 −1.44558 −0.722790 0.691067i \(-0.757141\pi\)
−0.722790 + 0.691067i \(0.757141\pi\)
\(998\) 90.4088 2.86184
\(999\) −2.84302 −0.0899493
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.a.e.1.1 3
3.2 odd 2 1197.2.a.m.1.3 3
4.3 odd 2 6384.2.a.bu.1.1 3
5.4 even 2 9975.2.a.x.1.3 3
7.6 odd 2 2793.2.a.w.1.1 3
19.18 odd 2 7581.2.a.l.1.3 3
21.20 even 2 8379.2.a.bq.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.e.1.1 3 1.1 even 1 trivial
1197.2.a.m.1.3 3 3.2 odd 2
2793.2.a.w.1.1 3 7.6 odd 2
6384.2.a.bu.1.1 3 4.3 odd 2
7581.2.a.l.1.3 3 19.18 odd 2
8379.2.a.bq.1.3 3 21.20 even 2
9975.2.a.x.1.3 3 5.4 even 2