Properties

Label 3971.2.a.e
Level $3971$
Weight $2$
Character orbit 3971.a
Self dual yes
Analytic conductor $31.709$
Analytic rank $2$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3971,2,Mod(1,3971)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3971, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3971.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3971.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7085946427\)
Analytic rank: \(2\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - 2 q^{3} + (\beta_{2} - 2 \beta_1 + 1) q^{4} + ( - \beta_{2} + \beta_1 - 2) q^{5} + ( - 2 \beta_1 + 2) q^{6} + (\beta_1 - 2) q^{7} + ( - 3 \beta_{2} + 2 \beta_1 - 2) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 1) q^{2} - 2 q^{3} + (\beta_{2} - 2 \beta_1 + 1) q^{4} + ( - \beta_{2} + \beta_1 - 2) q^{5} + ( - 2 \beta_1 + 2) q^{6} + (\beta_1 - 2) q^{7} + ( - 3 \beta_{2} + 2 \beta_1 - 2) q^{8} + q^{9} + (2 \beta_{2} - 4 \beta_1 + 3) q^{10} + q^{11} + ( - 2 \beta_{2} + 4 \beta_1 - 2) q^{12} + (2 \beta_{2} - 3 \beta_1 - 2) q^{13} + (\beta_{2} - 3 \beta_1 + 4) q^{14} + (2 \beta_{2} - 2 \beta_1 + 4) q^{15} + (3 \beta_{2} - 3 \beta_1 + 1) q^{16} + ( - \beta_1 - 5) q^{17} + (\beta_1 - 1) q^{18} + ( - 4 \beta_{2} + 7 \beta_1 - 5) q^{20} + ( - 2 \beta_1 + 4) q^{21} + (\beta_1 - 1) q^{22} + ( - 2 \beta_{2} + \beta_1 - 3) q^{23} + (6 \beta_{2} - 4 \beta_1 + 4) q^{24} + (4 \beta_{2} - 5 \beta_1 + 1) q^{25} + ( - 5 \beta_{2} + 3 \beta_1 - 2) q^{26} + 4 q^{27} + ( - 4 \beta_{2} + 6 \beta_1 - 5) q^{28} + ( - 2 \beta_1 - 4) q^{29} + ( - 4 \beta_{2} + 8 \beta_1 - 6) q^{30} + ( - \beta_{2} - 3 \beta_1 + 1) q^{31} + 3 \beta_1 q^{32} - 2 q^{33} + ( - \beta_{2} - 4 \beta_1 + 3) q^{34} + (3 \beta_{2} - 5 \beta_1 + 5) q^{35} + (\beta_{2} - 2 \beta_1 + 1) q^{36} + (\beta_{2} - 3) q^{37} + ( - 4 \beta_{2} + 6 \beta_1 + 4) q^{39} + (7 \beta_{2} - 8 \beta_1 + 9) q^{40} + ( - \beta_{2} + 2 \beta_1) q^{41} + ( - 2 \beta_{2} + 6 \beta_1 - 8) q^{42} + (\beta_{2} - 3 \beta_1 - 6) q^{43} + (\beta_{2} - 2 \beta_1 + 1) q^{44} + ( - \beta_{2} + \beta_1 - 2) q^{45} + (3 \beta_{2} - 6 \beta_1 + 3) q^{46} + (3 \beta_{2} + 3 \beta_1 - 3) q^{47} + ( - 6 \beta_{2} + 6 \beta_1 - 2) q^{48} + (\beta_{2} - 4 \beta_1 - 1) q^{49} + ( - 9 \beta_{2} + 10 \beta_1 - 7) q^{50} + (2 \beta_1 + 10) q^{51} + (4 \beta_{2} - 4 \beta_1 + 7) q^{52} + ( - 6 \beta_{2} - 3) q^{53} + (4 \beta_1 - 4) q^{54} + ( - \beta_{2} + \beta_1 - 2) q^{55} + (8 \beta_{2} - 9 \beta_1 + 5) q^{56} + ( - 2 \beta_{2} - 2 \beta_1) q^{58} + ( - 4 \beta_{2} + 6 \beta_1 - 1) q^{59} + (8 \beta_{2} - 14 \beta_1 + 10) q^{60} + (3 \beta_{2} - 4 \beta_1 - 6) q^{61} + ( - 2 \beta_{2} + 3 \beta_1 - 8) q^{62} + (\beta_1 - 2) q^{63} + ( - 3 \beta_{2} + 3 \beta_1 + 4) q^{64} + ( - 3 \beta_{2} + 7 \beta_1 - 1) q^{65} + ( - 2 \beta_1 + 2) q^{66} + ( - \beta_{2} + 6 \beta_1 - 5) q^{67} + ( - 3 \beta_{2} + 8 \beta_1 - 2) q^{68} + (4 \beta_{2} - 2 \beta_1 + 6) q^{69} + ( - 8 \beta_{2} + 13 \beta_1 - 12) q^{70} + (7 \beta_{2} - 7 \beta_1 + 2) q^{71} + ( - 3 \beta_{2} + 2 \beta_1 - 2) q^{72} + (\beta_{2} + 2 \beta_1 - 11) q^{73} + ( - \beta_{2} - 2 \beta_1 + 4) q^{74} + ( - 8 \beta_{2} + 10 \beta_1 - 2) q^{75} + (\beta_1 - 2) q^{77} + (10 \beta_{2} - 6 \beta_1 + 4) q^{78} + ( - 3 \beta_{2} + 3 \beta_1 - 4) q^{79} + ( - 7 \beta_{2} + 10 \beta_1 - 8) q^{80} - 11 q^{81} + (3 \beta_{2} - 3 \beta_1 + 3) q^{82} + (7 \beta_{2} - 3 \beta_1 - 2) q^{83} + (8 \beta_{2} - 12 \beta_1 + 10) q^{84} + (4 \beta_{2} - 2 \beta_1 + 9) q^{85} + ( - 4 \beta_{2} - 2 \beta_1 + 1) q^{86} + (4 \beta_1 + 8) q^{87} + ( - 3 \beta_{2} + 2 \beta_1 - 2) q^{88} + ( - 5 \beta_{2} - \beta_1 - 1) q^{89} + (2 \beta_{2} - 4 \beta_1 + 3) q^{90} + ( - 7 \beta_{2} + 6 \beta_1) q^{91} + ( - 5 \beta_{2} + 10 \beta_1 - 6) q^{92} + (2 \beta_{2} + 6 \beta_1 - 2) q^{93} + ( - 3 \beta_1 + 12) q^{94} - 6 \beta_1 q^{96} + (6 \beta_{2} - 3 \beta_1 + 2) q^{97} + ( - 5 \beta_{2} + 4 \beta_1 - 6) q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 6 q^{3} + 3 q^{4} - 6 q^{5} + 6 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} - 6 q^{3} + 3 q^{4} - 6 q^{5} + 6 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9} + 9 q^{10} + 3 q^{11} - 6 q^{12} - 6 q^{13} + 12 q^{14} + 12 q^{15} + 3 q^{16} - 15 q^{17} - 3 q^{18} - 15 q^{20} + 12 q^{21} - 3 q^{22} - 9 q^{23} + 12 q^{24} + 3 q^{25} - 6 q^{26} + 12 q^{27} - 15 q^{28} - 12 q^{29} - 18 q^{30} + 3 q^{31} - 6 q^{33} + 9 q^{34} + 15 q^{35} + 3 q^{36} - 9 q^{37} + 12 q^{39} + 27 q^{40} - 24 q^{42} - 18 q^{43} + 3 q^{44} - 6 q^{45} + 9 q^{46} - 9 q^{47} - 6 q^{48} - 3 q^{49} - 21 q^{50} + 30 q^{51} + 21 q^{52} - 9 q^{53} - 12 q^{54} - 6 q^{55} + 15 q^{56} - 3 q^{59} + 30 q^{60} - 18 q^{61} - 24 q^{62} - 6 q^{63} + 12 q^{64} - 3 q^{65} + 6 q^{66} - 15 q^{67} - 6 q^{68} + 18 q^{69} - 36 q^{70} + 6 q^{71} - 6 q^{72} - 33 q^{73} + 12 q^{74} - 6 q^{75} - 6 q^{77} + 12 q^{78} - 12 q^{79} - 24 q^{80} - 33 q^{81} + 9 q^{82} - 6 q^{83} + 30 q^{84} + 27 q^{85} + 3 q^{86} + 24 q^{87} - 6 q^{88} - 3 q^{89} + 9 q^{90} - 18 q^{92} - 6 q^{93} + 36 q^{94} + 6 q^{97} - 18 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
−2.53209 −2.00000 4.41147 −3.87939 5.06418 −3.53209 −6.10607 1.00000 9.82295
1.2 −1.34730 −2.00000 −0.184793 −0.467911 2.69459 −2.34730 2.94356 1.00000 0.630415
1.3 0.879385 −2.00000 −1.22668 −1.65270 −1.75877 −0.120615 −2.83750 1.00000 −1.45336
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3971.2.a.e 3
19.b odd 2 1 3971.2.a.f 3
19.e even 9 2 209.2.j.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.2.j.a 6 19.e even 9 2
3971.2.a.e 3 1.a even 1 1 trivial
3971.2.a.f 3 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3971))\):

\( T_{2}^{3} + 3T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{3} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$3$ \( (T + 2)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 6 T^{2} + 9 T + 3 \) Copy content Toggle raw display
$7$ \( T^{3} + 6 T^{2} + 9 T + 1 \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 6 T^{2} - 9 T - 71 \) Copy content Toggle raw display
$17$ \( T^{3} + 15 T^{2} + 72 T + 111 \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 9 T^{2} + 18 T - 9 \) Copy content Toggle raw display
$29$ \( T^{3} + 12 T^{2} + 36 T + 24 \) Copy content Toggle raw display
$31$ \( T^{3} - 3 T^{2} - 36 T + 127 \) Copy content Toggle raw display
$37$ \( T^{3} + 9 T^{2} + 24 T + 19 \) Copy content Toggle raw display
$41$ \( T^{3} - 9T + 9 \) Copy content Toggle raw display
$43$ \( T^{3} + 18 T^{2} + 87 T + 73 \) Copy content Toggle raw display
$47$ \( T^{3} + 9 T^{2} - 54 T - 459 \) Copy content Toggle raw display
$53$ \( T^{3} + 9 T^{2} - 81 T - 513 \) Copy content Toggle raw display
$59$ \( T^{3} + 3 T^{2} - 81 T + 213 \) Copy content Toggle raw display
$61$ \( T^{3} + 18 T^{2} + 69 T - 107 \) Copy content Toggle raw display
$67$ \( T^{3} + 15 T^{2} - 18 T - 359 \) Copy content Toggle raw display
$71$ \( T^{3} - 6 T^{2} - 135 T - 57 \) Copy content Toggle raw display
$73$ \( T^{3} + 33 T^{2} + 342 T + 1063 \) Copy content Toggle raw display
$79$ \( T^{3} + 12 T^{2} + 21 T - 17 \) Copy content Toggle raw display
$83$ \( T^{3} + 6 T^{2} - 99 T + 219 \) Copy content Toggle raw display
$89$ \( T^{3} + 3 T^{2} - 90 T - 111 \) Copy content Toggle raw display
$97$ \( T^{3} - 6 T^{2} - 69 T + 397 \) Copy content Toggle raw display
show more
show less