Properties

Label 3969.2.a.v.1.1
Level $3969$
Weight $2$
Character 3969.1
Self dual yes
Analytic conductor $31.693$
Analytic rank $1$
Dimension $4$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3969,2,Mod(1,3969)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3969, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3969.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6926245622\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(0.456850\) of defining polynomial
Character \(\chi\) \(=\) 3969.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18890 q^{2} +2.79129 q^{4} -1.73205 q^{8} +O(q^{10})\) \(q-2.18890 q^{2} +2.79129 q^{4} -1.73205 q^{8} +6.10985 q^{11} -1.79129 q^{16} -13.3739 q^{22} +5.29150 q^{23} -5.00000 q^{25} -10.5830 q^{29} +7.38505 q^{32} -12.1652 q^{37} -10.5826 q^{43} +17.0544 q^{44} -11.5826 q^{46} +10.9445 q^{50} -3.36875 q^{53} +23.1652 q^{58} -12.5826 q^{64} +11.7477 q^{67} -11.2107 q^{71} +26.6283 q^{74} -17.7477 q^{79} +23.1642 q^{86} -10.5826 q^{88} +14.7701 q^{92} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} + 2 q^{16} - 26 q^{22} - 20 q^{25} - 12 q^{37} - 24 q^{43} - 28 q^{46} + 56 q^{58} - 32 q^{64} - 8 q^{67} - 16 q^{79} - 24 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18890 −1.54779 −0.773893 0.633316i \(-0.781693\pi\)
−0.773893 + 0.633316i \(0.781693\pi\)
\(3\) 0 0
\(4\) 2.79129 1.39564
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.73205 −0.612372
\(9\) 0 0
\(10\) 0 0
\(11\) 6.10985 1.84219 0.921095 0.389338i \(-0.127296\pi\)
0.921095 + 0.389338i \(0.127296\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.79129 −0.447822
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −13.3739 −2.85132
\(23\) 5.29150 1.10335 0.551677 0.834058i \(-0.313988\pi\)
0.551677 + 0.834058i \(0.313988\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.5830 −1.96521 −0.982607 0.185695i \(-0.940546\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 7.38505 1.30551
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −12.1652 −1.99994 −0.999969 0.00783774i \(-0.997505\pi\)
−0.999969 + 0.00783774i \(0.997505\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −10.5826 −1.61383 −0.806914 0.590669i \(-0.798864\pi\)
−0.806914 + 0.590669i \(0.798864\pi\)
\(44\) 17.0544 2.57104
\(45\) 0 0
\(46\) −11.5826 −1.70776
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 10.9445 1.54779
\(51\) 0 0
\(52\) 0 0
\(53\) −3.36875 −0.462734 −0.231367 0.972867i \(-0.574320\pi\)
−0.231367 + 0.972867i \(0.574320\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 23.1652 3.04173
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −12.5826 −1.57282
\(65\) 0 0
\(66\) 0 0
\(67\) 11.7477 1.43521 0.717607 0.696449i \(-0.245238\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.2107 −1.33046 −0.665230 0.746639i \(-0.731667\pi\)
−0.665230 + 0.746639i \(0.731667\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 26.6283 3.09548
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −17.7477 −1.99678 −0.998388 0.0567635i \(-0.981922\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 23.1642 2.49786
\(87\) 0 0
\(88\) −10.5826 −1.12811
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 14.7701 1.53989
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −13.9564 −1.39564
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 7.37386 0.716213
\(107\) 19.9663 1.93021 0.965106 0.261861i \(-0.0843362\pi\)
0.965106 + 0.261861i \(0.0843362\pi\)
\(108\) 0 0
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.85095 −0.832628 −0.416314 0.909221i \(-0.636678\pi\)
−0.416314 + 0.909221i \(0.636678\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −29.5402 −2.74274
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 26.3303 2.39366
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.74773 0.510028 0.255014 0.966937i \(-0.417920\pi\)
0.255014 + 0.966937i \(0.417920\pi\)
\(128\) 12.7719 1.12889
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −25.7146 −2.22140
\(135\) 0 0
\(136\) 0 0
\(137\) −1.92275 −0.164272 −0.0821359 0.996621i \(-0.526174\pi\)
−0.0821359 + 0.996621i \(0.526174\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 24.5390 2.05927
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −33.9564 −2.79120
\(149\) −24.3441 −1.99434 −0.997172 0.0751583i \(-0.976054\pi\)
−0.997172 + 0.0751583i \(0.976054\pi\)
\(150\) 0 0
\(151\) −7.41742 −0.603621 −0.301811 0.953368i \(-0.597591\pi\)
−0.301811 + 0.953368i \(0.597591\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 38.8480 3.09058
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 23.7477 1.86007 0.930033 0.367477i \(-0.119778\pi\)
0.930033 + 0.367477i \(0.119778\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −29.5390 −2.25233
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −10.9445 −0.824973
\(177\) 0 0
\(178\) 0 0
\(179\) 26.4575 1.97753 0.988764 0.149487i \(-0.0477622\pi\)
0.988764 + 0.149487i \(0.0477622\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −9.16515 −0.675664
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.30055 0.455892 0.227946 0.973674i \(-0.426799\pi\)
0.227946 + 0.973674i \(0.426799\pi\)
\(192\) 0 0
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −27.8082 −1.98125 −0.990625 0.136611i \(-0.956379\pi\)
−0.990625 + 0.136611i \(0.956379\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 8.66025 0.612372
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 16.9129 1.16433 0.582165 0.813070i \(-0.302206\pi\)
0.582165 + 0.813070i \(0.302206\pi\)
\(212\) −9.40315 −0.645811
\(213\) 0 0
\(214\) −43.7042 −2.98756
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 39.4002 2.66852
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 19.3739 1.28873
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 18.3303 1.20344
\(233\) −21.1660 −1.38663 −0.693316 0.720634i \(-0.743851\pi\)
−0.693316 + 0.720634i \(0.743851\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.627650 0.0405993 0.0202996 0.999794i \(-0.493538\pi\)
0.0202996 + 0.999794i \(0.493538\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −57.6344 −3.70488
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 32.3303 2.03259
\(254\) −12.5812 −0.789415
\(255\) 0 0
\(256\) −2.79129 −0.174455
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 25.0671 1.54570 0.772851 0.634588i \(-0.218830\pi\)
0.772851 + 0.634588i \(0.218830\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 32.7913 2.00305
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 4.20871 0.254258
\(275\) −30.5493 −1.84219
\(276\) 0 0
\(277\) 32.4955 1.95246 0.976231 0.216731i \(-0.0695395\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 33.0997 1.97456 0.987280 0.158990i \(-0.0508236\pi\)
0.987280 + 0.158990i \(0.0508236\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −31.2922 −1.85685
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 21.0707 1.22471
\(297\) 0 0
\(298\) 53.2867 3.08682
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 16.2360 0.934277
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −49.5390 −2.78679
\(317\) −10.5830 −0.594401 −0.297200 0.954815i \(-0.596053\pi\)
−0.297200 + 0.954815i \(0.596053\pi\)
\(318\) 0 0
\(319\) −64.6606 −3.62030
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −51.9814 −2.87898
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −36.0000 −1.97874 −0.989369 0.145424i \(-0.953545\pi\)
−0.989369 + 0.145424i \(0.953545\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 33.3303 1.81562 0.907809 0.419385i \(-0.137754\pi\)
0.907809 + 0.419385i \(0.137754\pi\)
\(338\) 28.4557 1.54779
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 18.3296 0.988264
\(345\) 0 0
\(346\) 0 0
\(347\) 15.0562 0.808257 0.404128 0.914702i \(-0.367575\pi\)
0.404128 + 0.914702i \(0.367575\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 45.1216 2.40499
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −57.9129 −3.06079
\(359\) −11.5921 −0.611805 −0.305903 0.952063i \(-0.598958\pi\)
−0.305903 + 0.952063i \(0.598958\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −9.47860 −0.494106
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.4955 −1.99322 −0.996610 0.0822766i \(-0.973781\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −38.0780 −1.95594 −0.977969 0.208752i \(-0.933060\pi\)
−0.977969 + 0.208752i \(0.933060\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −13.7913 −0.705624
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 39.4002 2.00542
\(387\) 0 0
\(388\) 0 0
\(389\) 10.5830 0.536580 0.268290 0.963338i \(-0.413542\pi\)
0.268290 + 0.963338i \(0.413542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 60.8693 3.06655
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 8.95644 0.447822
\(401\) −40.0279 −1.99890 −0.999448 0.0332161i \(-0.989425\pi\)
−0.999448 + 0.0332161i \(0.989425\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −74.3273 −3.68427
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −14.4955 −0.706465 −0.353233 0.935536i \(-0.614918\pi\)
−0.353233 + 0.935536i \(0.614918\pi\)
\(422\) −37.0206 −1.80214
\(423\) 0 0
\(424\) 5.83485 0.283365
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 55.7316 2.69389
\(429\) 0 0
\(430\) 0 0
\(431\) −26.4575 −1.27441 −0.637207 0.770693i \(-0.719910\pi\)
−0.637207 + 0.770693i \(0.719910\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −50.2432 −2.40621
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −37.0405 −1.75985 −0.879924 0.475114i \(-0.842407\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.4340 0.917145 0.458573 0.888657i \(-0.348361\pi\)
0.458573 + 0.888657i \(0.348361\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −24.7056 −1.16205
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −39.6606 −1.85524 −0.927622 0.373519i \(-0.878151\pi\)
−0.927622 + 0.373519i \(0.878151\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 6.25227 0.290568 0.145284 0.989390i \(-0.453590\pi\)
0.145284 + 0.989390i \(0.453590\pi\)
\(464\) 18.9572 0.880066
\(465\) 0 0
\(466\) 46.3303 2.14621
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −64.6580 −2.97298
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −1.37386 −0.0628391
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 73.4955 3.34070
\(485\) 0 0
\(486\) 0 0
\(487\) 20.0780 0.909822 0.454911 0.890537i \(-0.349671\pi\)
0.454911 + 0.890537i \(0.349671\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.29150 0.238802 0.119401 0.992846i \(-0.461903\pi\)
0.119401 + 0.992846i \(0.461903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −36.0000 −1.61158 −0.805791 0.592200i \(-0.798259\pi\)
−0.805791 + 0.592200i \(0.798259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −70.7678 −3.14601
\(507\) 0 0
\(508\) 16.0436 0.711818
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −19.4340 −0.858868
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −54.8693 −2.39242
\(527\) 0 0
\(528\) 0 0
\(529\) 5.00000 0.217391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −20.3477 −0.878885
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 44.4955 1.91301 0.956504 0.291718i \(-0.0942267\pi\)
0.956504 + 0.291718i \(0.0942267\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.7477 −1.52846 −0.764231 0.644942i \(-0.776881\pi\)
−0.764231 + 0.644942i \(0.776881\pi\)
\(548\) −5.36695 −0.229265
\(549\) 0 0
\(550\) 66.8693 2.85132
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −71.1293 −3.02200
\(555\) 0 0
\(556\) 0 0
\(557\) 34.5457 1.46375 0.731873 0.681441i \(-0.238646\pi\)
0.731873 + 0.681441i \(0.238646\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −72.4519 −3.05620
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 19.4174 0.814737
\(569\) −2.11345 −0.0886005 −0.0443003 0.999018i \(-0.514106\pi\)
−0.0443003 + 0.999018i \(0.514106\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −26.4575 −1.10335
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 37.2113 1.54779
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −20.5826 −0.852443
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 21.7913 0.895616
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −67.9513 −2.78339
\(597\) 0 0
\(598\) 0 0
\(599\) −46.2331 −1.88903 −0.944516 0.328465i \(-0.893469\pi\)
−0.944516 + 0.328465i \(0.893469\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.7042 −0.842441
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −8.49545 −0.343128 −0.171564 0.985173i \(-0.554882\pi\)
−0.171564 + 0.985173i \(0.554882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.3320 1.70422 0.852111 0.523360i \(-0.175322\pi\)
0.852111 + 0.523360i \(0.175322\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 30.7400 1.22277
\(633\) 0 0
\(634\) 23.1652 0.920006
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 141.536 5.60345
\(639\) 0 0
\(640\) 0 0
\(641\) −29.2542 −1.15547 −0.577735 0.816224i \(-0.696063\pi\)
−0.577735 + 0.816224i \(0.696063\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 66.2867 2.59599
\(653\) −38.0098 −1.48744 −0.743719 0.668493i \(-0.766940\pi\)
−0.743719 + 0.668493i \(0.766940\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.8764 −0.969045 −0.484523 0.874779i \(-0.661007\pi\)
−0.484523 + 0.874779i \(0.661007\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 78.8004 3.06267
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −56.0000 −2.16833
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −21.6606 −0.834955 −0.417477 0.908687i \(-0.637086\pi\)
−0.417477 + 0.908687i \(0.637086\pi\)
\(674\) −72.9567 −2.81019
\(675\) 0 0
\(676\) −36.2867 −1.39564
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 42.3876 1.62192 0.810958 0.585105i \(-0.198947\pi\)
0.810958 + 0.585105i \(0.198947\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 18.9564 0.722707
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −32.9564 −1.25101
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28.1896 −1.06471 −0.532353 0.846523i \(-0.678692\pi\)
−0.532353 + 0.846523i \(0.678692\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −76.8777 −2.89744
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 42.8258 1.60836 0.804178 0.594389i \(-0.202606\pi\)
0.804178 + 0.594389i \(0.202606\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 73.8505 2.75992
\(717\) 0 0
\(718\) 25.3739 0.946944
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 41.5891 1.54779
\(723\) 0 0
\(724\) 0 0
\(725\) 52.9150 1.96521
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 39.0780 1.44044
\(737\) 71.7769 2.64394
\(738\) 0 0
\(739\) 12.2523 0.450707 0.225354 0.974277i \(-0.427646\pi\)
0.225354 + 0.974277i \(0.427646\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.1208 0.591413 0.295707 0.955279i \(-0.404445\pi\)
0.295707 + 0.955279i \(0.404445\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 84.2627 3.08508
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.08712 −0.0396696 −0.0198348 0.999803i \(-0.506314\pi\)
−0.0198348 + 0.999803i \(0.506314\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 54.0000 1.96266 0.981332 0.192323i \(-0.0616021\pi\)
0.981332 + 0.192323i \(0.0616021\pi\)
\(758\) 83.3490 3.02737
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 17.5867 0.636263
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −50.2432 −1.80829
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −23.1652 −0.830511
\(779\) 0 0
\(780\) 0 0
\(781\) −68.4955 −2.45096
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −77.6206 −2.76512
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −36.9253 −1.30551
\(801\) 0 0
\(802\) 87.6170 3.09387
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11.7430 0.412860 0.206430 0.978461i \(-0.433815\pi\)
0.206430 + 0.978461i \(0.433815\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 162.695 5.70246
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 45.5101 1.58831 0.794156 0.607714i \(-0.207913\pi\)
0.794156 + 0.607714i \(0.207913\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.5849 0.681032 0.340516 0.940239i \(-0.389398\pi\)
0.340516 + 0.940239i \(0.389398\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 83.0000 2.86207
\(842\) 31.7291 1.09346
\(843\) 0 0
\(844\) 47.2087 1.62499
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 6.03440 0.207222
\(849\) 0 0
\(850\) 0 0
\(851\) −64.3719 −2.20664
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −34.5826 −1.18201
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 57.9129 1.97252
\(863\) 36.0315 1.22653 0.613263 0.789879i \(-0.289857\pi\)
0.613263 + 0.789879i \(0.289857\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −108.436 −3.67844
\(870\) 0 0
\(871\) 0 0
\(872\) 31.1769 1.05578
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.49545 0.0842655 0.0421327 0.999112i \(-0.486585\pi\)
0.0421327 + 0.999112i \(0.486585\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 44.4083 1.49446 0.747230 0.664566i \(-0.231383\pi\)
0.747230 + 0.664566i \(0.231383\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 81.0780 2.72387
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −42.5390 −1.41955
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 15.3303 0.509878
\(905\) 0 0
\(906\) 0 0
\(907\) 25.4174 0.843972 0.421986 0.906602i \(-0.361333\pi\)
0.421986 + 0.906602i \(0.361333\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 58.2065 1.92847 0.964234 0.265052i \(-0.0853891\pi\)
0.964234 + 0.265052i \(0.0853891\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 86.8131 2.87152
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −56.0780 −1.84984 −0.924922 0.380158i \(-0.875870\pi\)
−0.924922 + 0.380158i \(0.875870\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 60.8258 1.99994
\(926\) −13.6856 −0.449737
\(927\) 0 0
\(928\) −78.1561 −2.56560
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −59.0804 −1.93524
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 141.530 4.60153
\(947\) 58.2065 1.89146 0.945729 0.324956i \(-0.105350\pi\)
0.945729 + 0.324956i \(0.105350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.1660 −0.685634 −0.342817 0.939402i \(-0.611381\pi\)
−0.342817 + 0.939402i \(0.611381\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.75195 0.0566622
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) −45.6054 −1.46581
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −43.9488 −1.40821
\(975\) 0 0
\(976\) 0 0
\(977\) 42.3320 1.35432 0.677161 0.735835i \(-0.263210\pi\)
0.677161 + 0.735835i \(0.263210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −11.5826 −0.369615
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −55.9977 −1.78062
\(990\) 0 0
\(991\) −62.4083 −1.98247 −0.991233 0.132125i \(-0.957820\pi\)
−0.991233 + 0.132125i \(0.957820\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 78.8004 2.49438
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3969.2.a.v.1.1 4
3.2 odd 2 inner 3969.2.a.v.1.4 yes 4
7.6 odd 2 CM 3969.2.a.v.1.1 4
21.20 even 2 inner 3969.2.a.v.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3969.2.a.v.1.1 4 1.1 even 1 trivial
3969.2.a.v.1.1 4 7.6 odd 2 CM
3969.2.a.v.1.4 yes 4 3.2 odd 2 inner
3969.2.a.v.1.4 yes 4 21.20 even 2 inner