Properties

Label 3969.2.a.bg.1.4
Level $3969$
Weight $2$
Character 3969.1
Self dual yes
Analytic conductor $31.693$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3969,2,Mod(1,3969)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3969.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3969, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,6,0,0,0,0,0,14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6926245622\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.114612039936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 34x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 567)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.597336\) of defining polynomial
Character \(\chi\) \(=\) 3969.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.597336 q^{2} -1.64319 q^{4} +2.09557 q^{5} +2.17621 q^{8} -1.25176 q^{10} +1.65141 q^{11} -0.426044 q^{13} +1.98645 q^{16} +6.07638 q^{17} +5.41249 q^{19} -3.44342 q^{20} -0.986450 q^{22} +7.63457 q^{23} -0.608573 q^{25} +0.254492 q^{26} +3.65377 q^{29} -5.30745 q^{31} -5.53900 q^{32} -3.62964 q^{34} -4.67781 q^{37} -3.23308 q^{38} +4.56041 q^{40} -1.48565 q^{41} +8.48997 q^{43} -2.71359 q^{44} -4.56041 q^{46} -11.3325 q^{47} +0.363522 q^{50} +0.700071 q^{52} -5.48992 q^{53} +3.46066 q^{55} -2.18253 q^{58} +1.55820 q^{59} +5.04817 q^{61} +3.17033 q^{62} -0.664256 q^{64} -0.892807 q^{65} -5.22997 q^{67} -9.98464 q^{68} +12.5604 q^{71} +1.58751 q^{73} +2.79422 q^{74} -8.89375 q^{76} -7.62964 q^{79} +4.16275 q^{80} +0.887434 q^{82} -5.25611 q^{83} +12.7335 q^{85} -5.07137 q^{86} +3.59382 q^{88} +18.5562 q^{89} -12.5450 q^{92} +6.76930 q^{94} +11.3423 q^{95} +13.7546 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} + 14 q^{10} + 6 q^{13} + 6 q^{16} + 24 q^{19} + 2 q^{22} + 20 q^{31} - 4 q^{37} + 36 q^{40} + 10 q^{43} - 36 q^{46} + 34 q^{52} + 4 q^{55} - 22 q^{58} + 36 q^{61} + 38 q^{64} - 18 q^{67} + 32 q^{73}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.597336 −0.422381 −0.211190 0.977445i \(-0.567734\pi\)
−0.211190 + 0.977445i \(0.567734\pi\)
\(3\) 0 0
\(4\) −1.64319 −0.821595
\(5\) 2.09557 0.937169 0.468584 0.883419i \(-0.344764\pi\)
0.468584 + 0.883419i \(0.344764\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.17621 0.769406
\(9\) 0 0
\(10\) −1.25176 −0.395842
\(11\) 1.65141 0.497920 0.248960 0.968514i \(-0.419911\pi\)
0.248960 + 0.968514i \(0.419911\pi\)
\(12\) 0 0
\(13\) −0.426044 −0.118163 −0.0590817 0.998253i \(-0.518817\pi\)
−0.0590817 + 0.998253i \(0.518817\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.98645 0.496613
\(17\) 6.07638 1.47374 0.736869 0.676036i \(-0.236304\pi\)
0.736869 + 0.676036i \(0.236304\pi\)
\(18\) 0 0
\(19\) 5.41249 1.24171 0.620856 0.783925i \(-0.286785\pi\)
0.620856 + 0.783925i \(0.286785\pi\)
\(20\) −3.44342 −0.769973
\(21\) 0 0
\(22\) −0.986450 −0.210312
\(23\) 7.63457 1.59192 0.795959 0.605351i \(-0.206967\pi\)
0.795959 + 0.605351i \(0.206967\pi\)
\(24\) 0 0
\(25\) −0.608573 −0.121715
\(26\) 0.254492 0.0499099
\(27\) 0 0
\(28\) 0 0
\(29\) 3.65377 0.678488 0.339244 0.940698i \(-0.389829\pi\)
0.339244 + 0.940698i \(0.389829\pi\)
\(30\) 0 0
\(31\) −5.30745 −0.953245 −0.476623 0.879108i \(-0.658139\pi\)
−0.476623 + 0.879108i \(0.658139\pi\)
\(32\) −5.53900 −0.979166
\(33\) 0 0
\(34\) −3.62964 −0.622478
\(35\) 0 0
\(36\) 0 0
\(37\) −4.67781 −0.769027 −0.384513 0.923119i \(-0.625631\pi\)
−0.384513 + 0.923119i \(0.625631\pi\)
\(38\) −3.23308 −0.524475
\(39\) 0 0
\(40\) 4.56041 0.721063
\(41\) −1.48565 −0.232020 −0.116010 0.993248i \(-0.537010\pi\)
−0.116010 + 0.993248i \(0.537010\pi\)
\(42\) 0 0
\(43\) 8.48997 1.29471 0.647354 0.762189i \(-0.275875\pi\)
0.647354 + 0.762189i \(0.275875\pi\)
\(44\) −2.71359 −0.409089
\(45\) 0 0
\(46\) −4.56041 −0.672395
\(47\) −11.3325 −1.65301 −0.826506 0.562927i \(-0.809675\pi\)
−0.826506 + 0.562927i \(0.809675\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.363522 0.0514098
\(51\) 0 0
\(52\) 0.700071 0.0970824
\(53\) −5.48992 −0.754099 −0.377050 0.926193i \(-0.623061\pi\)
−0.377050 + 0.926193i \(0.623061\pi\)
\(54\) 0 0
\(55\) 3.46066 0.466635
\(56\) 0 0
\(57\) 0 0
\(58\) −2.18253 −0.286580
\(59\) 1.55820 0.202860 0.101430 0.994843i \(-0.467658\pi\)
0.101430 + 0.994843i \(0.467658\pi\)
\(60\) 0 0
\(61\) 5.04817 0.646352 0.323176 0.946339i \(-0.395249\pi\)
0.323176 + 0.946339i \(0.395249\pi\)
\(62\) 3.17033 0.402632
\(63\) 0 0
\(64\) −0.664256 −0.0830320
\(65\) −0.892807 −0.110739
\(66\) 0 0
\(67\) −5.22997 −0.638942 −0.319471 0.947596i \(-0.603505\pi\)
−0.319471 + 0.947596i \(0.603505\pi\)
\(68\) −9.98464 −1.21081
\(69\) 0 0
\(70\) 0 0
\(71\) 12.5604 1.49065 0.745324 0.666703i \(-0.232295\pi\)
0.745324 + 0.666703i \(0.232295\pi\)
\(72\) 0 0
\(73\) 1.58751 0.185803 0.0929017 0.995675i \(-0.470386\pi\)
0.0929017 + 0.995675i \(0.470386\pi\)
\(74\) 2.79422 0.324822
\(75\) 0 0
\(76\) −8.89375 −1.02018
\(77\) 0 0
\(78\) 0 0
\(79\) −7.62964 −0.858401 −0.429201 0.903209i \(-0.641205\pi\)
−0.429201 + 0.903209i \(0.641205\pi\)
\(80\) 4.16275 0.465410
\(81\) 0 0
\(82\) 0.887434 0.0980007
\(83\) −5.25611 −0.576933 −0.288467 0.957490i \(-0.593145\pi\)
−0.288467 + 0.957490i \(0.593145\pi\)
\(84\) 0 0
\(85\) 12.7335 1.38114
\(86\) −5.07137 −0.546860
\(87\) 0 0
\(88\) 3.59382 0.383103
\(89\) 18.5562 1.96695 0.983474 0.181047i \(-0.0579485\pi\)
0.983474 + 0.181047i \(0.0579485\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −12.5450 −1.30791
\(93\) 0 0
\(94\) 6.76930 0.698200
\(95\) 11.3423 1.16369
\(96\) 0 0
\(97\) 13.7546 1.39656 0.698282 0.715823i \(-0.253948\pi\)
0.698282 + 0.715823i \(0.253948\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −15.9885 −1.59091 −0.795456 0.606011i \(-0.792769\pi\)
−0.795456 + 0.606011i \(0.792769\pi\)
\(102\) 0 0
\(103\) −2.36313 −0.232846 −0.116423 0.993200i \(-0.537143\pi\)
−0.116423 + 0.993200i \(0.537143\pi\)
\(104\) −0.927161 −0.0909156
\(105\) 0 0
\(106\) 3.27933 0.318517
\(107\) 4.54209 0.439100 0.219550 0.975601i \(-0.429541\pi\)
0.219550 + 0.975601i \(0.429541\pi\)
\(108\) 0 0
\(109\) 17.2445 1.65173 0.825863 0.563870i \(-0.190688\pi\)
0.825863 + 0.563870i \(0.190688\pi\)
\(110\) −2.06718 −0.197098
\(111\) 0 0
\(112\) 0 0
\(113\) −10.6752 −1.00424 −0.502119 0.864799i \(-0.667446\pi\)
−0.502119 + 0.864799i \(0.667446\pi\)
\(114\) 0 0
\(115\) 15.9988 1.49190
\(116\) −6.00383 −0.557442
\(117\) 0 0
\(118\) −0.930766 −0.0856840
\(119\) 0 0
\(120\) 0 0
\(121\) −8.27283 −0.752075
\(122\) −3.01545 −0.273006
\(123\) 0 0
\(124\) 8.72114 0.783181
\(125\) −11.7532 −1.05124
\(126\) 0 0
\(127\) 14.4060 1.27833 0.639163 0.769072i \(-0.279281\pi\)
0.639163 + 0.769072i \(0.279281\pi\)
\(128\) 11.4748 1.01424
\(129\) 0 0
\(130\) 0.533306 0.0467740
\(131\) −10.1852 −0.889884 −0.444942 0.895559i \(-0.646776\pi\)
−0.444942 + 0.895559i \(0.646776\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.12405 0.269877
\(135\) 0 0
\(136\) 13.2235 1.13390
\(137\) −2.06231 −0.176195 −0.0880976 0.996112i \(-0.528079\pi\)
−0.0880976 + 0.996112i \(0.528079\pi\)
\(138\) 0 0
\(139\) 6.63789 0.563018 0.281509 0.959559i \(-0.409165\pi\)
0.281509 + 0.959559i \(0.409165\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.50279 −0.629621
\(143\) −0.703576 −0.0588360
\(144\) 0 0
\(145\) 7.65674 0.635858
\(146\) −0.948275 −0.0784798
\(147\) 0 0
\(148\) 7.68652 0.631828
\(149\) −9.51701 −0.779664 −0.389832 0.920886i \(-0.627467\pi\)
−0.389832 + 0.920886i \(0.627467\pi\)
\(150\) 0 0
\(151\) −11.0978 −0.903128 −0.451564 0.892239i \(-0.649134\pi\)
−0.451564 + 0.892239i \(0.649134\pi\)
\(152\) 11.7787 0.955380
\(153\) 0 0
\(154\) 0 0
\(155\) −11.1221 −0.893352
\(156\) 0 0
\(157\) 24.2528 1.93558 0.967791 0.251754i \(-0.0810075\pi\)
0.967791 + 0.251754i \(0.0810075\pi\)
\(158\) 4.55746 0.362572
\(159\) 0 0
\(160\) −11.6074 −0.917644
\(161\) 0 0
\(162\) 0 0
\(163\) −11.0903 −0.868659 −0.434330 0.900754i \(-0.643015\pi\)
−0.434330 + 0.900754i \(0.643015\pi\)
\(164\) 2.44121 0.190626
\(165\) 0 0
\(166\) 3.13967 0.243685
\(167\) −2.45100 −0.189664 −0.0948321 0.995493i \(-0.530231\pi\)
−0.0948321 + 0.995493i \(0.530231\pi\)
\(168\) 0 0
\(169\) −12.8185 −0.986037
\(170\) −7.60618 −0.583367
\(171\) 0 0
\(172\) −13.9506 −1.06373
\(173\) −9.28106 −0.705626 −0.352813 0.935694i \(-0.614775\pi\)
−0.352813 + 0.935694i \(0.614775\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.28045 0.247273
\(177\) 0 0
\(178\) −11.0843 −0.830801
\(179\) −18.5562 −1.38695 −0.693476 0.720479i \(-0.743922\pi\)
−0.693476 + 0.720479i \(0.743922\pi\)
\(180\) 0 0
\(181\) 13.2382 0.983989 0.491994 0.870598i \(-0.336268\pi\)
0.491994 + 0.870598i \(0.336268\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 16.6144 1.22483
\(185\) −9.80269 −0.720708
\(186\) 0 0
\(187\) 10.0346 0.733804
\(188\) 18.6214 1.35811
\(189\) 0 0
\(190\) −6.77515 −0.491521
\(191\) 10.5973 0.766797 0.383399 0.923583i \(-0.374754\pi\)
0.383399 + 0.923583i \(0.374754\pi\)
\(192\) 0 0
\(193\) −8.11961 −0.584463 −0.292231 0.956348i \(-0.594398\pi\)
−0.292231 + 0.956348i \(0.594398\pi\)
\(194\) −8.21610 −0.589881
\(195\) 0 0
\(196\) 0 0
\(197\) 9.05534 0.645166 0.322583 0.946541i \(-0.395449\pi\)
0.322583 + 0.946541i \(0.395449\pi\)
\(198\) 0 0
\(199\) 7.42604 0.526418 0.263209 0.964739i \(-0.415219\pi\)
0.263209 + 0.964739i \(0.415219\pi\)
\(200\) −1.32438 −0.0936479
\(201\) 0 0
\(202\) 9.55049 0.671970
\(203\) 0 0
\(204\) 0 0
\(205\) −3.11329 −0.217442
\(206\) 1.41158 0.0983496
\(207\) 0 0
\(208\) −0.846316 −0.0586814
\(209\) 8.93827 0.618273
\(210\) 0 0
\(211\) 2.67781 0.184348 0.0921739 0.995743i \(-0.470618\pi\)
0.0921739 + 0.995743i \(0.470618\pi\)
\(212\) 9.02099 0.619564
\(213\) 0 0
\(214\) −2.71315 −0.185467
\(215\) 17.7914 1.21336
\(216\) 0 0
\(217\) 0 0
\(218\) −10.3008 −0.697657
\(219\) 0 0
\(220\) −5.68652 −0.383385
\(221\) −2.58880 −0.174142
\(222\) 0 0
\(223\) 21.5369 1.44222 0.721110 0.692820i \(-0.243632\pi\)
0.721110 + 0.692820i \(0.243632\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6.37668 0.424170
\(227\) 13.1010 0.869546 0.434773 0.900540i \(-0.356829\pi\)
0.434773 + 0.900540i \(0.356829\pi\)
\(228\) 0 0
\(229\) 16.8245 1.11180 0.555898 0.831251i \(-0.312375\pi\)
0.555898 + 0.831251i \(0.312375\pi\)
\(230\) −9.55666 −0.630148
\(231\) 0 0
\(232\) 7.95136 0.522033
\(233\) −22.7684 −1.49161 −0.745804 0.666165i \(-0.767935\pi\)
−0.745804 + 0.666165i \(0.767935\pi\)
\(234\) 0 0
\(235\) −23.7481 −1.54915
\(236\) −2.56041 −0.166668
\(237\) 0 0
\(238\) 0 0
\(239\) −9.51810 −0.615675 −0.307837 0.951439i \(-0.599605\pi\)
−0.307837 + 0.951439i \(0.599605\pi\)
\(240\) 0 0
\(241\) 1.17308 0.0755650 0.0377825 0.999286i \(-0.487971\pi\)
0.0377825 + 0.999286i \(0.487971\pi\)
\(242\) 4.94166 0.317662
\(243\) 0 0
\(244\) −8.29509 −0.531039
\(245\) 0 0
\(246\) 0 0
\(247\) −2.30596 −0.146725
\(248\) −11.5501 −0.733433
\(249\) 0 0
\(250\) 7.02060 0.444022
\(251\) 7.59042 0.479103 0.239552 0.970884i \(-0.423000\pi\)
0.239552 + 0.970884i \(0.423000\pi\)
\(252\) 0 0
\(253\) 12.6078 0.792648
\(254\) −8.60522 −0.539940
\(255\) 0 0
\(256\) −5.52579 −0.345362
\(257\) 23.2862 1.45255 0.726277 0.687402i \(-0.241249\pi\)
0.726277 + 0.687402i \(0.241249\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.46705 0.0909826
\(261\) 0 0
\(262\) 6.08398 0.375870
\(263\) 10.4446 0.644042 0.322021 0.946733i \(-0.395638\pi\)
0.322021 + 0.946733i \(0.395638\pi\)
\(264\) 0 0
\(265\) −11.5045 −0.706718
\(266\) 0 0
\(267\) 0 0
\(268\) 8.59382 0.524951
\(269\) 28.4698 1.73583 0.867917 0.496710i \(-0.165459\pi\)
0.867917 + 0.496710i \(0.165459\pi\)
\(270\) 0 0
\(271\) 27.3924 1.66397 0.831986 0.554796i \(-0.187204\pi\)
0.831986 + 0.554796i \(0.187204\pi\)
\(272\) 12.0704 0.731876
\(273\) 0 0
\(274\) 1.23189 0.0744214
\(275\) −1.00501 −0.0606041
\(276\) 0 0
\(277\) 4.11257 0.247100 0.123550 0.992338i \(-0.460572\pi\)
0.123550 + 0.992338i \(0.460572\pi\)
\(278\) −3.96505 −0.237808
\(279\) 0 0
\(280\) 0 0
\(281\) −7.26126 −0.433170 −0.216585 0.976264i \(-0.569492\pi\)
−0.216585 + 0.976264i \(0.569492\pi\)
\(282\) 0 0
\(283\) −1.28035 −0.0761086 −0.0380543 0.999276i \(-0.512116\pi\)
−0.0380543 + 0.999276i \(0.512116\pi\)
\(284\) −20.6391 −1.22471
\(285\) 0 0
\(286\) 0.420271 0.0248512
\(287\) 0 0
\(288\) 0 0
\(289\) 19.9223 1.17190
\(290\) −4.57365 −0.268574
\(291\) 0 0
\(292\) −2.60857 −0.152655
\(293\) 20.0134 1.16920 0.584598 0.811323i \(-0.301252\pi\)
0.584598 + 0.811323i \(0.301252\pi\)
\(294\) 0 0
\(295\) 3.26531 0.190114
\(296\) −10.1799 −0.591694
\(297\) 0 0
\(298\) 5.68485 0.329315
\(299\) −3.25266 −0.188106
\(300\) 0 0
\(301\) 0 0
\(302\) 6.62913 0.381464
\(303\) 0 0
\(304\) 10.7516 0.616649
\(305\) 10.5788 0.605741
\(306\) 0 0
\(307\) −2.19415 −0.125227 −0.0626134 0.998038i \(-0.519944\pi\)
−0.0626134 + 0.998038i \(0.519944\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.64366 0.377334
\(311\) −8.50877 −0.482488 −0.241244 0.970464i \(-0.577555\pi\)
−0.241244 + 0.970464i \(0.577555\pi\)
\(312\) 0 0
\(313\) 3.03462 0.171527 0.0857633 0.996316i \(-0.472667\pi\)
0.0857633 + 0.996316i \(0.472667\pi\)
\(314\) −14.4871 −0.817552
\(315\) 0 0
\(316\) 12.5369 0.705258
\(317\) 5.28451 0.296807 0.148404 0.988927i \(-0.452587\pi\)
0.148404 + 0.988927i \(0.452587\pi\)
\(318\) 0 0
\(319\) 6.03389 0.337833
\(320\) −1.39200 −0.0778150
\(321\) 0 0
\(322\) 0 0
\(323\) 32.8883 1.82996
\(324\) 0 0
\(325\) 0.259279 0.0143822
\(326\) 6.62464 0.366905
\(327\) 0 0
\(328\) −3.23309 −0.178518
\(329\) 0 0
\(330\) 0 0
\(331\) 21.2017 1.16535 0.582675 0.812706i \(-0.302006\pi\)
0.582675 + 0.812706i \(0.302006\pi\)
\(332\) 8.63678 0.474005
\(333\) 0 0
\(334\) 1.46407 0.0801105
\(335\) −10.9598 −0.598797
\(336\) 0 0
\(337\) −14.0497 −0.765333 −0.382667 0.923886i \(-0.624994\pi\)
−0.382667 + 0.923886i \(0.624994\pi\)
\(338\) 7.65695 0.416483
\(339\) 0 0
\(340\) −20.9235 −1.13474
\(341\) −8.76479 −0.474640
\(342\) 0 0
\(343\) 0 0
\(344\) 18.4760 0.996157
\(345\) 0 0
\(346\) 5.54391 0.298043
\(347\) 20.0580 1.07677 0.538385 0.842699i \(-0.319035\pi\)
0.538385 + 0.842699i \(0.319035\pi\)
\(348\) 0 0
\(349\) −27.9294 −1.49503 −0.747513 0.664247i \(-0.768752\pi\)
−0.747513 + 0.664247i \(0.768752\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9.14718 −0.487546
\(353\) −5.99251 −0.318949 −0.159475 0.987202i \(-0.550980\pi\)
−0.159475 + 0.987202i \(0.550980\pi\)
\(354\) 0 0
\(355\) 26.3213 1.39699
\(356\) −30.4913 −1.61603
\(357\) 0 0
\(358\) 11.0843 0.585822
\(359\) 16.6142 0.876864 0.438432 0.898764i \(-0.355534\pi\)
0.438432 + 0.898764i \(0.355534\pi\)
\(360\) 0 0
\(361\) 10.2951 0.541847
\(362\) −7.90766 −0.415618
\(363\) 0 0
\(364\) 0 0
\(365\) 3.32673 0.174129
\(366\) 0 0
\(367\) 6.49528 0.339051 0.169525 0.985526i \(-0.445777\pi\)
0.169525 + 0.985526i \(0.445777\pi\)
\(368\) 15.1657 0.790566
\(369\) 0 0
\(370\) 5.85550 0.304413
\(371\) 0 0
\(372\) 0 0
\(373\) −20.1610 −1.04390 −0.521949 0.852977i \(-0.674795\pi\)
−0.521949 + 0.852977i \(0.674795\pi\)
\(374\) −5.99404 −0.309944
\(375\) 0 0
\(376\) −24.6619 −1.27184
\(377\) −1.55667 −0.0801724
\(378\) 0 0
\(379\) −15.3014 −0.785981 −0.392990 0.919543i \(-0.628559\pi\)
−0.392990 + 0.919543i \(0.628559\pi\)
\(380\) −18.6375 −0.956084
\(381\) 0 0
\(382\) −6.33018 −0.323880
\(383\) 6.78591 0.346744 0.173372 0.984856i \(-0.444534\pi\)
0.173372 + 0.984856i \(0.444534\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.85014 0.246866
\(387\) 0 0
\(388\) −22.6013 −1.14741
\(389\) −5.75913 −0.292000 −0.146000 0.989285i \(-0.546640\pi\)
−0.146000 + 0.989285i \(0.546640\pi\)
\(390\) 0 0
\(391\) 46.3905 2.34607
\(392\) 0 0
\(393\) 0 0
\(394\) −5.40908 −0.272506
\(395\) −15.9885 −0.804467
\(396\) 0 0
\(397\) −0.495747 −0.0248808 −0.0124404 0.999923i \(-0.503960\pi\)
−0.0124404 + 0.999923i \(0.503960\pi\)
\(398\) −4.43585 −0.222349
\(399\) 0 0
\(400\) −1.20890 −0.0604450
\(401\) 10.3829 0.518500 0.259250 0.965810i \(-0.416525\pi\)
0.259250 + 0.965810i \(0.416525\pi\)
\(402\) 0 0
\(403\) 2.26121 0.112639
\(404\) 26.2721 1.30708
\(405\) 0 0
\(406\) 0 0
\(407\) −7.72500 −0.382914
\(408\) 0 0
\(409\) −30.0194 −1.48436 −0.742182 0.670199i \(-0.766209\pi\)
−0.742182 + 0.670199i \(0.766209\pi\)
\(410\) 1.85968 0.0918432
\(411\) 0 0
\(412\) 3.88307 0.191305
\(413\) 0 0
\(414\) 0 0
\(415\) −11.0146 −0.540684
\(416\) 2.35986 0.115702
\(417\) 0 0
\(418\) −5.33916 −0.261147
\(419\) 27.6495 1.35077 0.675384 0.737467i \(-0.263978\pi\)
0.675384 + 0.737467i \(0.263978\pi\)
\(420\) 0 0
\(421\) 12.4621 0.607368 0.303684 0.952773i \(-0.401783\pi\)
0.303684 + 0.952773i \(0.401783\pi\)
\(422\) −1.59955 −0.0778649
\(423\) 0 0
\(424\) −11.9472 −0.580208
\(425\) −3.69792 −0.179375
\(426\) 0 0
\(427\) 0 0
\(428\) −7.46351 −0.360762
\(429\) 0 0
\(430\) −10.6274 −0.512500
\(431\) −14.1032 −0.679329 −0.339665 0.940547i \(-0.610314\pi\)
−0.339665 + 0.940547i \(0.610314\pi\)
\(432\) 0 0
\(433\) −15.3684 −0.738560 −0.369280 0.929318i \(-0.620396\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −28.3360 −1.35705
\(437\) 41.3221 1.97670
\(438\) 0 0
\(439\) 19.2457 0.918549 0.459274 0.888295i \(-0.348110\pi\)
0.459274 + 0.888295i \(0.348110\pi\)
\(440\) 7.53112 0.359032
\(441\) 0 0
\(442\) 1.54639 0.0735541
\(443\) 24.5698 1.16735 0.583673 0.811989i \(-0.301615\pi\)
0.583673 + 0.811989i \(0.301615\pi\)
\(444\) 0 0
\(445\) 38.8858 1.84336
\(446\) −12.8648 −0.609166
\(447\) 0 0
\(448\) 0 0
\(449\) −40.0045 −1.88793 −0.943965 0.330046i \(-0.892936\pi\)
−0.943965 + 0.330046i \(0.892936\pi\)
\(450\) 0 0
\(451\) −2.45343 −0.115527
\(452\) 17.5414 0.825076
\(453\) 0 0
\(454\) −7.82572 −0.367279
\(455\) 0 0
\(456\) 0 0
\(457\) −10.6361 −0.497538 −0.248769 0.968563i \(-0.580026\pi\)
−0.248769 + 0.968563i \(0.580026\pi\)
\(458\) −10.0499 −0.469601
\(459\) 0 0
\(460\) −26.2891 −1.22573
\(461\) −16.4092 −0.764251 −0.382125 0.924111i \(-0.624808\pi\)
−0.382125 + 0.924111i \(0.624808\pi\)
\(462\) 0 0
\(463\) 6.06393 0.281815 0.140907 0.990023i \(-0.454998\pi\)
0.140907 + 0.990023i \(0.454998\pi\)
\(464\) 7.25803 0.336946
\(465\) 0 0
\(466\) 13.6004 0.630027
\(467\) −25.2866 −1.17012 −0.585062 0.810988i \(-0.698930\pi\)
−0.585062 + 0.810988i \(0.698930\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 14.1856 0.654332
\(471\) 0 0
\(472\) 3.39096 0.156082
\(473\) 14.0205 0.644662
\(474\) 0 0
\(475\) −3.29390 −0.151134
\(476\) 0 0
\(477\) 0 0
\(478\) 5.68551 0.260049
\(479\) 3.34249 0.152722 0.0763611 0.997080i \(-0.475670\pi\)
0.0763611 + 0.997080i \(0.475670\pi\)
\(480\) 0 0
\(481\) 1.99295 0.0908708
\(482\) −0.700726 −0.0319172
\(483\) 0 0
\(484\) 13.5938 0.617901
\(485\) 28.8237 1.30882
\(486\) 0 0
\(487\) 7.27886 0.329837 0.164918 0.986307i \(-0.447264\pi\)
0.164918 + 0.986307i \(0.447264\pi\)
\(488\) 10.9859 0.497307
\(489\) 0 0
\(490\) 0 0
\(491\) 2.97131 0.134093 0.0670466 0.997750i \(-0.478642\pi\)
0.0670466 + 0.997750i \(0.478642\pi\)
\(492\) 0 0
\(493\) 22.2017 0.999913
\(494\) 1.37743 0.0619737
\(495\) 0 0
\(496\) −10.5430 −0.473394
\(497\) 0 0
\(498\) 0 0
\(499\) 12.4859 0.558944 0.279472 0.960154i \(-0.409841\pi\)
0.279472 + 0.960154i \(0.409841\pi\)
\(500\) 19.3127 0.863690
\(501\) 0 0
\(502\) −4.53404 −0.202364
\(503\) 17.4657 0.778755 0.389377 0.921078i \(-0.372690\pi\)
0.389377 + 0.921078i \(0.372690\pi\)
\(504\) 0 0
\(505\) −33.5050 −1.49095
\(506\) −7.53112 −0.334799
\(507\) 0 0
\(508\) −23.6718 −1.05027
\(509\) −27.5341 −1.22043 −0.610215 0.792236i \(-0.708917\pi\)
−0.610215 + 0.792236i \(0.708917\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −19.6488 −0.868363
\(513\) 0 0
\(514\) −13.9097 −0.613531
\(515\) −4.95211 −0.218216
\(516\) 0 0
\(517\) −18.7146 −0.823069
\(518\) 0 0
\(519\) 0 0
\(520\) −1.94293 −0.0852033
\(521\) 6.92504 0.303391 0.151696 0.988427i \(-0.451527\pi\)
0.151696 + 0.988427i \(0.451527\pi\)
\(522\) 0 0
\(523\) −41.5936 −1.81876 −0.909381 0.415963i \(-0.863445\pi\)
−0.909381 + 0.415963i \(0.863445\pi\)
\(524\) 16.7362 0.731124
\(525\) 0 0
\(526\) −6.23894 −0.272031
\(527\) −32.2500 −1.40483
\(528\) 0 0
\(529\) 35.2867 1.53420
\(530\) 6.87208 0.298504
\(531\) 0 0
\(532\) 0 0
\(533\) 0.632954 0.0274163
\(534\) 0 0
\(535\) 9.51827 0.411511
\(536\) −11.3815 −0.491606
\(537\) 0 0
\(538\) −17.0060 −0.733182
\(539\) 0 0
\(540\) 0 0
\(541\) −33.7887 −1.45269 −0.726345 0.687330i \(-0.758782\pi\)
−0.726345 + 0.687330i \(0.758782\pi\)
\(542\) −16.3625 −0.702830
\(543\) 0 0
\(544\) −33.6570 −1.44303
\(545\) 36.1372 1.54795
\(546\) 0 0
\(547\) −14.1310 −0.604196 −0.302098 0.953277i \(-0.597687\pi\)
−0.302098 + 0.953277i \(0.597687\pi\)
\(548\) 3.38877 0.144761
\(549\) 0 0
\(550\) 0.600326 0.0255980
\(551\) 19.7760 0.842486
\(552\) 0 0
\(553\) 0 0
\(554\) −2.45658 −0.104370
\(555\) 0 0
\(556\) −10.9073 −0.462573
\(557\) −7.49568 −0.317602 −0.158801 0.987311i \(-0.550763\pi\)
−0.158801 + 0.987311i \(0.550763\pi\)
\(558\) 0 0
\(559\) −3.61710 −0.152987
\(560\) 0 0
\(561\) 0 0
\(562\) 4.33741 0.182963
\(563\) 10.4224 0.439252 0.219626 0.975584i \(-0.429516\pi\)
0.219626 + 0.975584i \(0.429516\pi\)
\(564\) 0 0
\(565\) −22.3706 −0.941140
\(566\) 0.764797 0.0321468
\(567\) 0 0
\(568\) 27.3341 1.14691
\(569\) −29.9665 −1.25626 −0.628130 0.778108i \(-0.716180\pi\)
−0.628130 + 0.778108i \(0.716180\pi\)
\(570\) 0 0
\(571\) 31.4336 1.31545 0.657727 0.753257i \(-0.271518\pi\)
0.657727 + 0.753257i \(0.271518\pi\)
\(572\) 1.15611 0.0483393
\(573\) 0 0
\(574\) 0 0
\(575\) −4.64619 −0.193760
\(576\) 0 0
\(577\) −2.71141 −0.112877 −0.0564387 0.998406i \(-0.517975\pi\)
−0.0564387 + 0.998406i \(0.517975\pi\)
\(578\) −11.9003 −0.494989
\(579\) 0 0
\(580\) −12.5815 −0.522417
\(581\) 0 0
\(582\) 0 0
\(583\) −9.06614 −0.375481
\(584\) 3.45474 0.142958
\(585\) 0 0
\(586\) −11.9547 −0.493846
\(587\) 10.7040 0.441800 0.220900 0.975296i \(-0.429101\pi\)
0.220900 + 0.975296i \(0.429101\pi\)
\(588\) 0 0
\(589\) −28.7265 −1.18366
\(590\) −1.95049 −0.0803004
\(591\) 0 0
\(592\) −9.29223 −0.381908
\(593\) −29.6979 −1.21955 −0.609773 0.792576i \(-0.708739\pi\)
−0.609773 + 0.792576i \(0.708739\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.6382 0.640568
\(597\) 0 0
\(598\) 1.94293 0.0794525
\(599\) 14.3983 0.588298 0.294149 0.955760i \(-0.404964\pi\)
0.294149 + 0.955760i \(0.404964\pi\)
\(600\) 0 0
\(601\) 17.7120 0.722486 0.361243 0.932472i \(-0.382353\pi\)
0.361243 + 0.932472i \(0.382353\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 18.2358 0.742005
\(605\) −17.3363 −0.704822
\(606\) 0 0
\(607\) −5.15543 −0.209252 −0.104626 0.994512i \(-0.533365\pi\)
−0.104626 + 0.994512i \(0.533365\pi\)
\(608\) −29.9798 −1.21584
\(609\) 0 0
\(610\) −6.31910 −0.255853
\(611\) 4.82814 0.195326
\(612\) 0 0
\(613\) 11.2588 0.454739 0.227370 0.973809i \(-0.426987\pi\)
0.227370 + 0.973809i \(0.426987\pi\)
\(614\) 1.31065 0.0528934
\(615\) 0 0
\(616\) 0 0
\(617\) −0.520304 −0.0209467 −0.0104733 0.999945i \(-0.503334\pi\)
−0.0104733 + 0.999945i \(0.503334\pi\)
\(618\) 0 0
\(619\) −37.4740 −1.50621 −0.753104 0.657901i \(-0.771444\pi\)
−0.753104 + 0.657901i \(0.771444\pi\)
\(620\) 18.2758 0.733973
\(621\) 0 0
\(622\) 5.08260 0.203794
\(623\) 0 0
\(624\) 0 0
\(625\) −21.5868 −0.863471
\(626\) −1.81269 −0.0724495
\(627\) 0 0
\(628\) −39.8519 −1.59026
\(629\) −28.4241 −1.13334
\(630\) 0 0
\(631\) 0.502795 0.0200159 0.0100080 0.999950i \(-0.496814\pi\)
0.0100080 + 0.999950i \(0.496814\pi\)
\(632\) −16.6037 −0.660459
\(633\) 0 0
\(634\) −3.15663 −0.125366
\(635\) 30.1888 1.19801
\(636\) 0 0
\(637\) 0 0
\(638\) −3.60426 −0.142694
\(639\) 0 0
\(640\) 24.0462 0.950511
\(641\) −9.96117 −0.393442 −0.196721 0.980459i \(-0.563029\pi\)
−0.196721 + 0.980459i \(0.563029\pi\)
\(642\) 0 0
\(643\) 21.6236 0.852752 0.426376 0.904546i \(-0.359790\pi\)
0.426376 + 0.904546i \(0.359790\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −19.6454 −0.772938
\(647\) −38.7358 −1.52286 −0.761430 0.648247i \(-0.775502\pi\)
−0.761430 + 0.648247i \(0.775502\pi\)
\(648\) 0 0
\(649\) 2.57323 0.101008
\(650\) −0.154877 −0.00607476
\(651\) 0 0
\(652\) 18.2235 0.713686
\(653\) −21.7978 −0.853013 −0.426506 0.904485i \(-0.640256\pi\)
−0.426506 + 0.904485i \(0.640256\pi\)
\(654\) 0 0
\(655\) −21.3438 −0.833972
\(656\) −2.95118 −0.115224
\(657\) 0 0
\(658\) 0 0
\(659\) 5.13619 0.200078 0.100039 0.994984i \(-0.468103\pi\)
0.100039 + 0.994984i \(0.468103\pi\)
\(660\) 0 0
\(661\) 13.1617 0.511933 0.255966 0.966686i \(-0.417606\pi\)
0.255966 + 0.966686i \(0.417606\pi\)
\(662\) −12.6645 −0.492221
\(663\) 0 0
\(664\) −11.4384 −0.443896
\(665\) 0 0
\(666\) 0 0
\(667\) 27.8950 1.08010
\(668\) 4.02746 0.155827
\(669\) 0 0
\(670\) 6.54667 0.252920
\(671\) 8.33662 0.321832
\(672\) 0 0
\(673\) −7.01209 −0.270296 −0.135148 0.990825i \(-0.543151\pi\)
−0.135148 + 0.990825i \(0.543151\pi\)
\(674\) 8.39237 0.323262
\(675\) 0 0
\(676\) 21.0632 0.810123
\(677\) 36.8962 1.41804 0.709018 0.705190i \(-0.249138\pi\)
0.709018 + 0.705190i \(0.249138\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 27.7107 1.06266
\(681\) 0 0
\(682\) 5.23553 0.200479
\(683\) −5.59939 −0.214255 −0.107127 0.994245i \(-0.534165\pi\)
−0.107127 + 0.994245i \(0.534165\pi\)
\(684\) 0 0
\(685\) −4.32172 −0.165125
\(686\) 0 0
\(687\) 0 0
\(688\) 16.8649 0.642969
\(689\) 2.33895 0.0891069
\(690\) 0 0
\(691\) −6.38438 −0.242873 −0.121437 0.992599i \(-0.538750\pi\)
−0.121437 + 0.992599i \(0.538750\pi\)
\(692\) 15.2505 0.579738
\(693\) 0 0
\(694\) −11.9814 −0.454807
\(695\) 13.9102 0.527643
\(696\) 0 0
\(697\) −9.02739 −0.341937
\(698\) 16.6832 0.631470
\(699\) 0 0
\(700\) 0 0
\(701\) −10.9860 −0.414937 −0.207468 0.978242i \(-0.566522\pi\)
−0.207468 + 0.978242i \(0.566522\pi\)
\(702\) 0 0
\(703\) −25.3186 −0.954909
\(704\) −1.09696 −0.0413433
\(705\) 0 0
\(706\) 3.57955 0.134718
\(707\) 0 0
\(708\) 0 0
\(709\) 26.5316 0.996417 0.498208 0.867057i \(-0.333991\pi\)
0.498208 + 0.867057i \(0.333991\pi\)
\(710\) −15.7227 −0.590061
\(711\) 0 0
\(712\) 40.3821 1.51338
\(713\) −40.5201 −1.51749
\(714\) 0 0
\(715\) −1.47439 −0.0551392
\(716\) 30.4913 1.13951
\(717\) 0 0
\(718\) −9.92426 −0.370370
\(719\) −20.9960 −0.783020 −0.391510 0.920174i \(-0.628047\pi\)
−0.391510 + 0.920174i \(0.628047\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.14963 −0.228866
\(723\) 0 0
\(724\) −21.7529 −0.808440
\(725\) −2.22358 −0.0825818
\(726\) 0 0
\(727\) 17.0632 0.632839 0.316420 0.948619i \(-0.397519\pi\)
0.316420 + 0.948619i \(0.397519\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.98718 −0.0735488
\(731\) 51.5883 1.90806
\(732\) 0 0
\(733\) −34.4805 −1.27357 −0.636784 0.771042i \(-0.719736\pi\)
−0.636784 + 0.771042i \(0.719736\pi\)
\(734\) −3.87987 −0.143208
\(735\) 0 0
\(736\) −42.2879 −1.55875
\(737\) −8.63684 −0.318142
\(738\) 0 0
\(739\) −1.37184 −0.0504641 −0.0252321 0.999682i \(-0.508032\pi\)
−0.0252321 + 0.999682i \(0.508032\pi\)
\(740\) 16.1077 0.592130
\(741\) 0 0
\(742\) 0 0
\(743\) −8.94248 −0.328068 −0.164034 0.986455i \(-0.552451\pi\)
−0.164034 + 0.986455i \(0.552451\pi\)
\(744\) 0 0
\(745\) −19.9436 −0.730676
\(746\) 12.0429 0.440922
\(747\) 0 0
\(748\) −16.4888 −0.602889
\(749\) 0 0
\(750\) 0 0
\(751\) 50.5711 1.84537 0.922683 0.385559i \(-0.125991\pi\)
0.922683 + 0.385559i \(0.125991\pi\)
\(752\) −22.5114 −0.820907
\(753\) 0 0
\(754\) 0.929854 0.0338633
\(755\) −23.2563 −0.846383
\(756\) 0 0
\(757\) 9.56041 0.347479 0.173739 0.984792i \(-0.444415\pi\)
0.173739 + 0.984792i \(0.444415\pi\)
\(758\) 9.14009 0.331983
\(759\) 0 0
\(760\) 24.6832 0.895353
\(761\) 37.8812 1.37319 0.686595 0.727040i \(-0.259104\pi\)
0.686595 + 0.727040i \(0.259104\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −17.4134 −0.629996
\(765\) 0 0
\(766\) −4.05347 −0.146458
\(767\) −0.663860 −0.0239706
\(768\) 0 0
\(769\) −28.5588 −1.02986 −0.514928 0.857234i \(-0.672181\pi\)
−0.514928 + 0.857234i \(0.672181\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 13.3421 0.480191
\(773\) −10.7030 −0.384959 −0.192480 0.981301i \(-0.561653\pi\)
−0.192480 + 0.981301i \(0.561653\pi\)
\(774\) 0 0
\(775\) 3.22997 0.116024
\(776\) 29.9328 1.07452
\(777\) 0 0
\(778\) 3.44014 0.123335
\(779\) −8.04109 −0.288102
\(780\) 0 0
\(781\) 20.7425 0.742224
\(782\) −27.7107 −0.990934
\(783\) 0 0
\(784\) 0 0
\(785\) 50.8235 1.81397
\(786\) 0 0
\(787\) −36.6367 −1.30596 −0.652978 0.757377i \(-0.726481\pi\)
−0.652978 + 0.757377i \(0.726481\pi\)
\(788\) −14.8796 −0.530065
\(789\) 0 0
\(790\) 9.55049 0.339791
\(791\) 0 0
\(792\) 0 0
\(793\) −2.15074 −0.0763751
\(794\) 0.296128 0.0105092
\(795\) 0 0
\(796\) −12.2024 −0.432502
\(797\) 19.0481 0.674717 0.337359 0.941376i \(-0.390467\pi\)
0.337359 + 0.941376i \(0.390467\pi\)
\(798\) 0 0
\(799\) −68.8604 −2.43611
\(800\) 3.37088 0.119179
\(801\) 0 0
\(802\) −6.20211 −0.219004
\(803\) 2.62163 0.0925153
\(804\) 0 0
\(805\) 0 0
\(806\) −1.35070 −0.0475764
\(807\) 0 0
\(808\) −34.7943 −1.22406
\(809\) 18.4913 0.650121 0.325060 0.945693i \(-0.394615\pi\)
0.325060 + 0.945693i \(0.394615\pi\)
\(810\) 0 0
\(811\) 41.5033 1.45738 0.728690 0.684844i \(-0.240130\pi\)
0.728690 + 0.684844i \(0.240130\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.61442 0.161735
\(815\) −23.2405 −0.814081
\(816\) 0 0
\(817\) 45.9519 1.60765
\(818\) 17.9317 0.626966
\(819\) 0 0
\(820\) 5.11573 0.178649
\(821\) −32.4887 −1.13386 −0.566932 0.823765i \(-0.691870\pi\)
−0.566932 + 0.823765i \(0.691870\pi\)
\(822\) 0 0
\(823\) −15.7393 −0.548636 −0.274318 0.961639i \(-0.588452\pi\)
−0.274318 + 0.961639i \(0.588452\pi\)
\(824\) −5.14266 −0.179153
\(825\) 0 0
\(826\) 0 0
\(827\) −40.6095 −1.41213 −0.706066 0.708146i \(-0.749532\pi\)
−0.706066 + 0.708146i \(0.749532\pi\)
\(828\) 0 0
\(829\) 25.4580 0.884193 0.442097 0.896967i \(-0.354235\pi\)
0.442097 + 0.896967i \(0.354235\pi\)
\(830\) 6.57940 0.228374
\(831\) 0 0
\(832\) 0.283003 0.00981135
\(833\) 0 0
\(834\) 0 0
\(835\) −5.13625 −0.177747
\(836\) −14.6873 −0.507970
\(837\) 0 0
\(838\) −16.5161 −0.570538
\(839\) 48.3492 1.66920 0.834600 0.550856i \(-0.185699\pi\)
0.834600 + 0.550856i \(0.185699\pi\)
\(840\) 0 0
\(841\) −15.6500 −0.539654
\(842\) −7.44409 −0.256540
\(843\) 0 0
\(844\) −4.40014 −0.151459
\(845\) −26.8621 −0.924084
\(846\) 0 0
\(847\) 0 0
\(848\) −10.9055 −0.374495
\(849\) 0 0
\(850\) 2.20890 0.0757646
\(851\) −35.7130 −1.22423
\(852\) 0 0
\(853\) −2.65867 −0.0910310 −0.0455155 0.998964i \(-0.514493\pi\)
−0.0455155 + 0.998964i \(0.514493\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.88453 0.337846
\(857\) 14.0664 0.480498 0.240249 0.970711i \(-0.422771\pi\)
0.240249 + 0.970711i \(0.422771\pi\)
\(858\) 0 0
\(859\) −19.2927 −0.658258 −0.329129 0.944285i \(-0.606755\pi\)
−0.329129 + 0.944285i \(0.606755\pi\)
\(860\) −29.2346 −0.996891
\(861\) 0 0
\(862\) 8.42438 0.286935
\(863\) −42.3384 −1.44122 −0.720608 0.693343i \(-0.756137\pi\)
−0.720608 + 0.693343i \(0.756137\pi\)
\(864\) 0 0
\(865\) −19.4491 −0.661291
\(866\) 9.18012 0.311953
\(867\) 0 0
\(868\) 0 0
\(869\) −12.5997 −0.427416
\(870\) 0 0
\(871\) 2.22820 0.0754996
\(872\) 37.5277 1.27085
\(873\) 0 0
\(874\) −24.6832 −0.834921
\(875\) 0 0
\(876\) 0 0
\(877\) −10.0508 −0.339393 −0.169697 0.985496i \(-0.554279\pi\)
−0.169697 + 0.985496i \(0.554279\pi\)
\(878\) −11.4962 −0.387977
\(879\) 0 0
\(880\) 6.87443 0.231737
\(881\) −25.7602 −0.867885 −0.433942 0.900941i \(-0.642878\pi\)
−0.433942 + 0.900941i \(0.642878\pi\)
\(882\) 0 0
\(883\) −53.1876 −1.78991 −0.894953 0.446160i \(-0.852791\pi\)
−0.894953 + 0.446160i \(0.852791\pi\)
\(884\) 4.25390 0.143074
\(885\) 0 0
\(886\) −14.6764 −0.493064
\(887\) 20.9517 0.703489 0.351745 0.936096i \(-0.385589\pi\)
0.351745 + 0.936096i \(0.385589\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −23.2279 −0.778601
\(891\) 0 0
\(892\) −35.3893 −1.18492
\(893\) −61.3370 −2.05256
\(894\) 0 0
\(895\) −38.8858 −1.29981
\(896\) 0 0
\(897\) 0 0
\(898\) 23.8961 0.797425
\(899\) −19.3922 −0.646765
\(900\) 0 0
\(901\) −33.3588 −1.11134
\(902\) 1.46552 0.0487966
\(903\) 0 0
\(904\) −23.2314 −0.772667
\(905\) 27.7416 0.922163
\(906\) 0 0
\(907\) 47.5854 1.58005 0.790024 0.613077i \(-0.210068\pi\)
0.790024 + 0.613077i \(0.210068\pi\)
\(908\) −21.5275 −0.714414
\(909\) 0 0
\(910\) 0 0
\(911\) −29.7720 −0.986389 −0.493194 0.869919i \(-0.664171\pi\)
−0.493194 + 0.869919i \(0.664171\pi\)
\(912\) 0 0
\(913\) −8.68002 −0.287267
\(914\) 6.35335 0.210150
\(915\) 0 0
\(916\) −27.6459 −0.913445
\(917\) 0 0
\(918\) 0 0
\(919\) 30.4585 1.00473 0.502367 0.864654i \(-0.332462\pi\)
0.502367 + 0.864654i \(0.332462\pi\)
\(920\) 34.8167 1.14787
\(921\) 0 0
\(922\) 9.80179 0.322805
\(923\) −5.35129 −0.176140
\(924\) 0 0
\(925\) 2.84678 0.0936017
\(926\) −3.62221 −0.119033
\(927\) 0 0
\(928\) −20.2382 −0.664352
\(929\) −21.1661 −0.694436 −0.347218 0.937784i \(-0.612874\pi\)
−0.347218 + 0.937784i \(0.612874\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 37.4128 1.22550
\(933\) 0 0
\(934\) 15.1046 0.494238
\(935\) 21.0283 0.687698
\(936\) 0 0
\(937\) 40.2779 1.31582 0.657912 0.753095i \(-0.271440\pi\)
0.657912 + 0.753095i \(0.271440\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 39.0226 1.27278
\(941\) 1.82095 0.0593613 0.0296807 0.999559i \(-0.490551\pi\)
0.0296807 + 0.999559i \(0.490551\pi\)
\(942\) 0 0
\(943\) −11.3423 −0.369357
\(944\) 3.09528 0.100743
\(945\) 0 0
\(946\) −8.37494 −0.272293
\(947\) 13.4918 0.438424 0.219212 0.975677i \(-0.429651\pi\)
0.219212 + 0.975677i \(0.429651\pi\)
\(948\) 0 0
\(949\) −0.676348 −0.0219552
\(950\) 1.96756 0.0638362
\(951\) 0 0
\(952\) 0 0
\(953\) −4.95309 −0.160446 −0.0802232 0.996777i \(-0.525563\pi\)
−0.0802232 + 0.996777i \(0.525563\pi\)
\(954\) 0 0
\(955\) 22.2075 0.718618
\(956\) 15.6400 0.505835
\(957\) 0 0
\(958\) −1.99659 −0.0645069
\(959\) 0 0
\(960\) 0 0
\(961\) −2.83102 −0.0913233
\(962\) −1.19046 −0.0383821
\(963\) 0 0
\(964\) −1.92760 −0.0620838
\(965\) −17.0152 −0.547740
\(966\) 0 0
\(967\) 17.2566 0.554936 0.277468 0.960735i \(-0.410505\pi\)
0.277468 + 0.960735i \(0.410505\pi\)
\(968\) −18.0034 −0.578651
\(969\) 0 0
\(970\) −17.2174 −0.552818
\(971\) −46.9064 −1.50530 −0.752649 0.658422i \(-0.771224\pi\)
−0.752649 + 0.658422i \(0.771224\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −4.34793 −0.139317
\(975\) 0 0
\(976\) 10.0279 0.320986
\(977\) −35.1634 −1.12498 −0.562488 0.826806i \(-0.690156\pi\)
−0.562488 + 0.826806i \(0.690156\pi\)
\(978\) 0 0
\(979\) 30.6439 0.979384
\(980\) 0 0
\(981\) 0 0
\(982\) −1.77487 −0.0566383
\(983\) 12.0860 0.385482 0.192741 0.981250i \(-0.438262\pi\)
0.192741 + 0.981250i \(0.438262\pi\)
\(984\) 0 0
\(985\) 18.9761 0.604630
\(986\) −13.2619 −0.422344
\(987\) 0 0
\(988\) 3.78913 0.120548
\(989\) 64.8173 2.06107
\(990\) 0 0
\(991\) 32.3748 1.02842 0.514209 0.857665i \(-0.328086\pi\)
0.514209 + 0.857665i \(0.328086\pi\)
\(992\) 29.3979 0.933385
\(993\) 0 0
\(994\) 0 0
\(995\) 15.5618 0.493343
\(996\) 0 0
\(997\) −14.7332 −0.466605 −0.233303 0.972404i \(-0.574953\pi\)
−0.233303 + 0.972404i \(0.574953\pi\)
\(998\) −7.45826 −0.236087
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3969.2.a.bg.1.4 8
3.2 odd 2 inner 3969.2.a.bg.1.5 8
7.2 even 3 567.2.e.g.487.5 yes 16
7.4 even 3 567.2.e.g.163.5 yes 16
7.6 odd 2 3969.2.a.bf.1.4 8
21.2 odd 6 567.2.e.g.487.4 yes 16
21.11 odd 6 567.2.e.g.163.4 16
21.20 even 2 3969.2.a.bf.1.5 8
63.2 odd 6 567.2.g.l.109.4 16
63.4 even 3 567.2.g.l.541.5 16
63.11 odd 6 567.2.h.l.352.5 16
63.16 even 3 567.2.g.l.109.5 16
63.23 odd 6 567.2.h.l.298.5 16
63.25 even 3 567.2.h.l.352.4 16
63.32 odd 6 567.2.g.l.541.4 16
63.58 even 3 567.2.h.l.298.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.4 16 21.11 odd 6
567.2.e.g.163.5 yes 16 7.4 even 3
567.2.e.g.487.4 yes 16 21.2 odd 6
567.2.e.g.487.5 yes 16 7.2 even 3
567.2.g.l.109.4 16 63.2 odd 6
567.2.g.l.109.5 16 63.16 even 3
567.2.g.l.541.4 16 63.32 odd 6
567.2.g.l.541.5 16 63.4 even 3
567.2.h.l.298.4 16 63.58 even 3
567.2.h.l.298.5 16 63.23 odd 6
567.2.h.l.352.4 16 63.25 even 3
567.2.h.l.352.5 16 63.11 odd 6
3969.2.a.bf.1.4 8 7.6 odd 2
3969.2.a.bf.1.5 8 21.20 even 2
3969.2.a.bg.1.4 8 1.1 even 1 trivial
3969.2.a.bg.1.5 8 3.2 odd 2 inner