Properties

Label 3969.1.n.b
Level $3969$
Weight $1$
Character orbit 3969.n
Analytic conductor $1.981$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3969.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.98078903514\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 441)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.189.1
Artin image: $C_3\times \SD_{16}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_1) q^{2} + ( - \beta_{2} + 1) q^{4}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} + \beta_1) q^{2} + ( - \beta_{2} + 1) q^{4} + \beta_{3} q^{11} + \beta_{2} q^{16} + 2 \beta_{2} q^{22} - \beta_{3} q^{23} + q^{25} + \beta_1 q^{29} + \beta_1 q^{32} + \beta_1 q^{44} - 2 \beta_{2} q^{46} + ( - \beta_{3} + \beta_1) q^{50} + (\beta_{3} - \beta_1) q^{53} + 2 q^{58} + q^{64} + ( - 2 \beta_{2} + 2) q^{67} + \beta_{3} q^{71} - 2 \beta_{2} q^{79} - \beta_1 q^{92}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} + 2 q^{16} + 4 q^{22} + 4 q^{25} - 4 q^{46} + 8 q^{58} + 4 q^{64} + 4 q^{67} - 4 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3969\mathbb{Z}\right)^\times\).

\(n\) \(2108\) \(3727\)
\(\chi(n)\) \(\beta_{2}\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2321.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i 0 0.500000 + 0.866025i 0 0 0 0 0 0
2321.2 1.22474 + 0.707107i 0 0.500000 + 0.866025i 0 0 0 0 0 0
3509.1 −1.22474 + 0.707107i 0 0.500000 0.866025i 0 0 0 0 0 0
3509.2 1.22474 0.707107i 0 0.500000 0.866025i 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
3.b odd 2 1 inner
21.c even 2 1 inner
63.g even 3 1 inner
63.k odd 6 1 inner
63.n odd 6 1 inner
63.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3969.1.n.b 4
3.b odd 2 1 inner 3969.1.n.b 4
7.b odd 2 1 CM 3969.1.n.b 4
7.c even 3 1 3969.1.j.b 4
7.c even 3 1 3969.1.r.c 4
7.d odd 6 1 3969.1.j.b 4
7.d odd 6 1 3969.1.r.c 4
9.c even 3 1 441.1.q.a 4
9.c even 3 1 3969.1.j.b 4
9.d odd 6 1 441.1.q.a 4
9.d odd 6 1 3969.1.j.b 4
21.c even 2 1 inner 3969.1.n.b 4
21.g even 6 1 3969.1.j.b 4
21.g even 6 1 3969.1.r.c 4
21.h odd 6 1 3969.1.j.b 4
21.h odd 6 1 3969.1.r.c 4
63.g even 3 1 441.1.b.a 2
63.g even 3 1 inner 3969.1.n.b 4
63.h even 3 1 441.1.q.a 4
63.h even 3 1 3969.1.r.c 4
63.i even 6 1 441.1.q.a 4
63.i even 6 1 3969.1.r.c 4
63.j odd 6 1 441.1.q.a 4
63.j odd 6 1 3969.1.r.c 4
63.k odd 6 1 441.1.b.a 2
63.k odd 6 1 inner 3969.1.n.b 4
63.l odd 6 1 441.1.q.a 4
63.l odd 6 1 3969.1.j.b 4
63.n odd 6 1 441.1.b.a 2
63.n odd 6 1 inner 3969.1.n.b 4
63.o even 6 1 441.1.q.a 4
63.o even 6 1 3969.1.j.b 4
63.s even 6 1 441.1.b.a 2
63.s even 6 1 inner 3969.1.n.b 4
63.t odd 6 1 441.1.q.a 4
63.t odd 6 1 3969.1.r.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
441.1.b.a 2 63.g even 3 1
441.1.b.a 2 63.k odd 6 1
441.1.b.a 2 63.n odd 6 1
441.1.b.a 2 63.s even 6 1
441.1.q.a 4 9.c even 3 1
441.1.q.a 4 9.d odd 6 1
441.1.q.a 4 63.h even 3 1
441.1.q.a 4 63.i even 6 1
441.1.q.a 4 63.j odd 6 1
441.1.q.a 4 63.l odd 6 1
441.1.q.a 4 63.o even 6 1
441.1.q.a 4 63.t odd 6 1
3969.1.j.b 4 7.c even 3 1
3969.1.j.b 4 7.d odd 6 1
3969.1.j.b 4 9.c even 3 1
3969.1.j.b 4 9.d odd 6 1
3969.1.j.b 4 21.g even 6 1
3969.1.j.b 4 21.h odd 6 1
3969.1.j.b 4 63.l odd 6 1
3969.1.j.b 4 63.o even 6 1
3969.1.n.b 4 1.a even 1 1 trivial
3969.1.n.b 4 3.b odd 2 1 inner
3969.1.n.b 4 7.b odd 2 1 CM
3969.1.n.b 4 21.c even 2 1 inner
3969.1.n.b 4 63.g even 3 1 inner
3969.1.n.b 4 63.k odd 6 1 inner
3969.1.n.b 4 63.n odd 6 1 inner
3969.1.n.b 4 63.s even 6 1 inner
3969.1.r.c 4 7.c even 3 1
3969.1.r.c 4 7.d odd 6 1
3969.1.r.c 4 21.g even 6 1
3969.1.r.c 4 21.h odd 6 1
3969.1.r.c 4 63.h even 3 1
3969.1.r.c 4 63.i even 6 1
3969.1.r.c 4 63.j odd 6 1
3969.1.r.c 4 63.t odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 2T_{2}^{2} + 4 \) acting on \(S_{1}^{\mathrm{new}}(3969, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less