Defining parameters
Level: | \( N \) | \(=\) | \( 3969 = 3^{4} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3969.k (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(504\) | ||
Trace bound: | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3969, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 20 | 92 |
Cusp forms | 16 | 12 | 4 |
Eisenstein series | 96 | 8 | 88 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3969, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3969.1.k.a | $2$ | $1.981$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-7}) \) | None | \(-1\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{6}^{2}q^{2}-q^{8}+q^{11}-\zeta_{6}^{2}q^{16}+\cdots\) |
3969.1.k.b | $2$ | $1.981$ | \(\Q(\sqrt{-3}) \) | $D_{2}$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \) | \(\Q(\sqrt{21}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{6}q^{4}+\zeta_{6}^{2}q^{16}+q^{25}+\zeta_{6}q^{37}+\cdots\) |
3969.1.k.c | $2$ | $1.981$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{6}q^{4}+(1+\zeta_{6})q^{13}+\zeta_{6}^{2}q^{16}+\cdots\) |
3969.1.k.d | $2$ | $1.981$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-7}) \) | None | \(1\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{6}^{2}q^{2}+q^{8}-q^{11}-\zeta_{6}^{2}q^{16}+\cdots\) |
3969.1.k.e | $4$ | $1.981$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-7}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{12}+\zeta_{12}^{3})q^{2}+(-1+\zeta_{12}^{2}+\zeta_{12}^{4}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3969, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3969, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 2}\)