# Properties

 Label 3969.1.br.a Level $3969$ Weight $1$ Character orbit 3969.br Analytic conductor $1.981$ Analytic rank $0$ Dimension $12$ Projective image $D_{42}$ CM discriminant -3 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3969 = 3^{4} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3969.br (of order $$42$$, degree $$12$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.98078903514$$ Analytic rank: $$0$$ Dimension: $$12$$ Coefficient field: $$\Q(\zeta_{21})$$ Defining polynomial: $$x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1$$ x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1323) Projective image: $$D_{42}$$ Projective field: Galois closure of $$\mathbb{Q}[x]/(x^{42} - \cdots)$$

## $q$-expansion

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q - \zeta_{42}^{18} q^{4} - \zeta_{42}^{2} q^{7} +O(q^{10})$$ q - z^18 * q^4 - z^2 * q^7 $$q - \zeta_{42}^{18} q^{4} - \zeta_{42}^{2} q^{7} + ( - \zeta_{42}^{8} - \zeta_{42}^{3}) q^{13} - \zeta_{42}^{15} q^{16} + (\zeta_{42}^{19} + \zeta_{42}^{16}) q^{19} - \zeta_{42}^{19} q^{25} + \zeta_{42}^{20} q^{28} + ( - \zeta_{42}^{11} - \zeta_{42}^{10}) q^{31} + ( - \zeta_{42}^{20} - 1) q^{37} + ( - \zeta_{42}^{10} - \zeta_{42}^{6}) q^{43} + \zeta_{42}^{4} q^{49} + ( - \zeta_{42}^{5} - 1) q^{52} + (\zeta_{42}^{20} + \zeta_{42}^{7}) q^{61} - \zeta_{42}^{12} q^{64} + (\zeta_{42}^{20} - \zeta_{42}) q^{67} + ( - \zeta_{42}^{8} + \zeta_{42}^{2}) q^{73} + (\zeta_{42}^{16} + \zeta_{42}^{13}) q^{76} + ( - \zeta_{42}^{17} + \zeta_{42}^{4}) q^{79} + (\zeta_{42}^{10} + \zeta_{42}^{5}) q^{91} + ( - \zeta_{42}^{16} + \zeta_{42}^{12}) q^{97} +O(q^{100})$$ q - z^18 * q^4 - z^2 * q^7 + (-z^8 - z^3) * q^13 - z^15 * q^16 + (z^19 + z^16) * q^19 - z^19 * q^25 + z^20 * q^28 + (-z^11 - z^10) * q^31 + (-z^20 - 1) * q^37 + (-z^10 - z^6) * q^43 + z^4 * q^49 + (-z^5 - 1) * q^52 + (z^20 + z^7) * q^61 - z^12 * q^64 + (z^20 - z) * q^67 + (-z^8 + z^2) * q^73 + (z^16 + z^13) * q^76 + (-z^17 + z^4) * q^79 + (z^10 + z^5) * q^91 + (-z^16 + z^12) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12 q + 2 q^{4} - q^{7}+O(q^{10})$$ 12 * q + 2 * q^4 - q^7 $$12 q + 2 q^{4} - q^{7} - 3 q^{13} - 2 q^{16} + q^{25} + q^{28} - 13 q^{37} + q^{43} + q^{49} - 11 q^{52} + 7 q^{61} + 2 q^{64} + 2 q^{67} + 2 q^{79} - 3 q^{97}+O(q^{100})$$ 12 * q + 2 * q^4 - q^7 - 3 * q^13 - 2 * q^16 + q^25 + q^28 - 13 * q^37 + q^43 + q^49 - 11 * q^52 + 7 * q^61 + 2 * q^64 + 2 * q^67 + 2 * q^79 - 3 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3969\mathbb{Z}\right)^\times$$.

 $$n$$ $$2108$$ $$3727$$ $$\chi(n)$$ $$-\zeta_{42}^{7}$$ $$\zeta_{42}^{19}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
136.1
 −0.988831 − 0.149042i 0.955573 + 0.294755i 0.955573 − 0.294755i 0.826239 − 0.563320i −0.733052 + 0.680173i 0.0747301 − 0.997204i 0.365341 − 0.930874i −0.733052 − 0.680173i 0.0747301 + 0.997204i −0.988831 + 0.149042i 0.826239 + 0.563320i 0.365341 + 0.930874i
0 0 0.900969 0.433884i 0 0 −0.955573 0.294755i 0 0 0
271.1 0 0 −0.623490 + 0.781831i 0 0 −0.826239 0.563320i 0 0 0
703.1 0 0 −0.623490 0.781831i 0 0 −0.826239 + 0.563320i 0 0 0
838.1 0 0 0.222521 0.974928i 0 0 −0.365341 + 0.930874i 0 0 0
1270.1 0 0 −0.623490 + 0.781831i 0 0 −0.0747301 + 0.997204i 0 0 0
1405.1 0 0 0.222521 + 0.974928i 0 0 0.988831 + 0.149042i 0 0 0
1837.1 0 0 0.900969 + 0.433884i 0 0 0.733052 + 0.680173i 0 0 0
1972.1 0 0 −0.623490 0.781831i 0 0 −0.0747301 0.997204i 0 0 0
2404.1 0 0 0.222521 0.974928i 0 0 0.988831 0.149042i 0 0 0
2539.1 0 0 0.900969 + 0.433884i 0 0 −0.955573 + 0.294755i 0 0 0
3538.1 0 0 0.222521 + 0.974928i 0 0 −0.365341 0.930874i 0 0 0
3673.1 0 0 0.900969 0.433884i 0 0 0.733052 0.680173i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 3673.1 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
441.bc odd 42 1 inner
441.bn even 42 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3969.1.br.a 12
3.b odd 2 1 CM 3969.1.br.a 12
9.c even 3 1 1323.1.bv.a 12
9.c even 3 1 3969.1.ca.a 12
9.d odd 6 1 1323.1.bv.a 12
9.d odd 6 1 3969.1.ca.a 12
49.h odd 42 1 3969.1.ca.a 12
147.o even 42 1 3969.1.ca.a 12
441.bc odd 42 1 inner 3969.1.br.a 12
441.bd even 42 1 1323.1.bv.a 12
441.bl odd 42 1 1323.1.bv.a 12
441.bn even 42 1 inner 3969.1.br.a 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1323.1.bv.a 12 9.c even 3 1
1323.1.bv.a 12 9.d odd 6 1
1323.1.bv.a 12 441.bd even 42 1
1323.1.bv.a 12 441.bl odd 42 1
3969.1.br.a 12 1.a even 1 1 trivial
3969.1.br.a 12 3.b odd 2 1 CM
3969.1.br.a 12 441.bc odd 42 1 inner
3969.1.br.a 12 441.bn even 42 1 inner
3969.1.ca.a 12 9.c even 3 1
3969.1.ca.a 12 9.d odd 6 1
3969.1.ca.a 12 49.h odd 42 1
3969.1.ca.a 12 147.o even 42 1

## Hecke kernels

This newform subspace is the entire newspace $$S_{1}^{\mathrm{new}}(3969, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{12}$$
$3$ $$T^{12}$$
$5$ $$T^{12}$$
$7$ $$T^{12} + T^{11} - T^{9} - T^{8} + T^{6} - T^{4} + \cdots + 1$$
$11$ $$T^{12}$$
$13$ $$T^{12} + 3 T^{11} + 6 T^{10} + 2 T^{9} + \cdots + 1$$
$17$ $$T^{12}$$
$19$ $$T^{12} - 7 T^{10} + 35 T^{8} - 84 T^{6} + \cdots + 49$$
$23$ $$T^{12}$$
$29$ $$T^{12}$$
$31$ $$T^{12} + 11 T^{10} + 44 T^{8} + 78 T^{6} + \cdots + 1$$
$37$ $$T^{12} + 13 T^{11} + 77 T^{10} + 274 T^{9} + \cdots + 1$$
$41$ $$T^{12}$$
$43$ $$T^{12} - T^{11} + T^{9} + 6 T^{8} + 21 T^{7} + \cdots + 1$$
$47$ $$T^{12}$$
$53$ $$T^{12}$$
$59$ $$T^{12}$$
$61$ $$T^{12} - 7 T^{11} + 25 T^{10} - 56 T^{9} + \cdots + 1$$
$67$ $$(T^{6} - T^{5} - 6 T^{4} + 6 T^{3} + 8 T^{2} + \cdots + 1)^{2}$$
$71$ $$T^{12}$$
$73$ $$T^{12} - 7 T^{8} - 14 T^{7} + 14 T^{6} + \cdots + 49$$
$79$ $$(T^{6} - T^{5} - 6 T^{4} + 6 T^{3} + 8 T^{2} + \cdots + 1)^{2}$$
$83$ $$T^{12}$$
$89$ $$T^{12}$$
$97$ $$T^{12} + 3 T^{11} - T^{10} - 12 T^{9} + \cdots + 1$$