Properties

Label 3960.2.d.j
Level $3960$
Weight $2$
Character orbit 3960.d
Analytic conductor $31.621$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(3169,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.3169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.6207592004\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 226x^{10} + 1052x^{8} + 2497x^{6} + 2788x^{4} + 1156x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{10} q^{5} + \beta_{5} q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{10} q^{5} + \beta_{5} q^{7} + q^{11} + ( - \beta_{5} + \beta_1) q^{13} + ( - \beta_{5} + \beta_{3} - \beta_{2}) q^{17} + ( - \beta_{11} - \beta_{4}) q^{19} + ( - \beta_{2} - \beta_1) q^{23} + (\beta_{12} - \beta_{11}) q^{25} + ( - \beta_{13} + \beta_{12} + \cdots - \beta_{7}) q^{29}+ \cdots + ( - \beta_{13} - \beta_{12} + \cdots - \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q+O(q^{10}) \) Copy content Toggle raw display \( 14 q + 14 q^{11} - 2 q^{25} - 12 q^{35} + 32 q^{41} - 6 q^{49} + 24 q^{59} + 4 q^{61} + 4 q^{65} - 8 q^{71} - 32 q^{79} + 4 q^{85} - 48 q^{89} + 56 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} + 24x^{12} + 226x^{10} + 1052x^{8} + 2497x^{6} + 2788x^{4} + 1156x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 12\nu^{5} + 41\nu^{3} + 34\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{8} + 12\nu^{6} + 41\nu^{4} + 34\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{9} + 16\nu^{7} + 85\nu^{5} + 162\nu^{3} + 72\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{9} + 16\nu^{7} + 93\nu^{5} + 234\nu^{3} + 200\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{10} + 17\nu^{8} + 101\nu^{6} + 247\nu^{4} + 226\nu^{2} + 48 ) / 8 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -\nu^{12} - 19\nu^{10} - 129\nu^{8} - 361\nu^{6} - 314\nu^{4} + 88\nu^{2} + 16 ) / 16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{11} + \nu^{10} + 19 \nu^{9} + 17 \nu^{8} + 131 \nu^{7} + 101 \nu^{6} + 393 \nu^{5} + \cdots + 164 \nu ) / 16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{11} - \nu^{10} + 19 \nu^{9} - 17 \nu^{8} + 131 \nu^{7} - 101 \nu^{6} + 393 \nu^{5} + \cdots + 164 \nu ) / 16 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{12} + 21\nu^{10} + 167\nu^{8} + 627\nu^{6} + 1132\nu^{4} + 868\nu^{2} + 128 ) / 16 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( \nu^{13} + \nu^{12} + 22 \nu^{11} + 21 \nu^{10} + 186 \nu^{9} + 167 \nu^{8} + 752 \nu^{7} + 619 \nu^{6} + \cdots + 48 ) / 16 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( \nu^{13} - \nu^{12} + 22 \nu^{11} - 21 \nu^{10} + 186 \nu^{9} - 167 \nu^{8} + 752 \nu^{7} - 619 \nu^{6} + \cdots - 48 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{13} - \beta_{12} + \beta_{11} - \beta_{8} + \beta_{7} + \beta_{4} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{2} - 5\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -7\beta_{13} + 7\beta_{12} - 7\beta_{11} + 2\beta_{10} - 2\beta_{9} + 7\beta_{8} - 5\beta_{7} - 7\beta_{4} + 37 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{6} - 2\beta_{5} - 18\beta_{2} + 29\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 47 \beta_{13} - 47 \beta_{12} + 49 \beta_{11} - 20 \beta_{10} + 20 \beta_{9} - 45 \beta_{8} + 25 \beta_{7} + \cdots - 215 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -24\beta_{6} + 24\beta_{5} + 8\beta_{3} + 134\beta_{2} - 177\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 311 \beta_{13} + 311 \beta_{12} - 335 \beta_{11} + 158 \beta_{10} - 158 \beta_{9} + 287 \beta_{8} + \cdots + 1301 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 214\beta_{6} - 198\beta_{5} - 128\beta_{3} - 938\beta_{2} + 1105\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 2043 \beta_{13} - 2043 \beta_{12} + 2249 \beta_{11} - 1160 \beta_{10} + 1160 \beta_{9} - 1837 \beta_{8} + \cdots - 8055 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 16\beta_{10} + 16\beta_{9} - 1708\beta_{6} + 1404\beta_{5} + 1384\beta_{3} + 6390\beta_{2} - 6989\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 13379 \beta_{13} + 13379 \beta_{12} - 14919 \beta_{11} + 8250 \beta_{10} - 8250 \beta_{9} + \cdots + 50629 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 16 \beta_{13} + 16 \beta_{12} - 352 \beta_{10} - 352 \beta_{9} + 12898 \beta_{6} - 9186 \beta_{5} + \cdots + 44613 \beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3169.1
1.31120i
1.31120i
2.47637i
2.47637i
1.91990i
1.91990i
2.21557i
2.21557i
0.254885i
0.254885i
0.876610i
0.876610i
2.59233i
2.59233i
0 0 0 −2.15086 0.611385i 0 4.56390i 0 0 0
3169.2 0 0 0 −2.15086 + 0.611385i 0 4.56390i 0 0 0
3169.3 0 0 0 −1.40211 1.74186i 0 0.169515i 0 0 0
3169.4 0 0 0 −1.40211 + 1.74186i 0 0.169515i 0 0 0
3169.5 0 0 0 −1.26135 1.84634i 0 3.12979i 0 0 0
3169.6 0 0 0 −1.26135 + 1.84634i 0 3.12979i 0 0 0
3169.7 0 0 0 0.101079 2.23378i 0 3.61424i 0 0 0
3169.8 0 0 0 0.101079 + 2.23378i 0 3.61424i 0 0 0
3169.9 0 0 0 0.628932 2.14580i 0 1.96993i 0 0 0
3169.10 0 0 0 0.628932 + 2.14580i 0 1.96993i 0 0 0
3169.11 0 0 0 1.85471 1.24902i 0 1.00883i 0 0 0
3169.12 0 0 0 1.85471 + 1.24902i 0 1.00883i 0 0 0
3169.13 0 0 0 2.22960 0.169899i 0 1.83994i 0 0 0
3169.14 0 0 0 2.22960 + 0.169899i 0 1.83994i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3169.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3960.2.d.j yes 14
3.b odd 2 1 3960.2.d.i 14
5.b even 2 1 inner 3960.2.d.j yes 14
15.d odd 2 1 3960.2.d.i 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3960.2.d.i 14 3.b odd 2 1
3960.2.d.i 14 15.d odd 2 1
3960.2.d.j yes 14 1.a even 1 1 trivial
3960.2.d.j yes 14 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3960, [\chi])\):

\( T_{7}^{14} + 52T_{7}^{12} + 988T_{7}^{10} + 8608T_{7}^{8} + 35312T_{7}^{6} + 63808T_{7}^{4} + 37440T_{7}^{2} + 1024 \) Copy content Toggle raw display
\( T_{29}^{7} - 116T_{29}^{5} - 80T_{29}^{4} + 2528T_{29}^{3} + 6016T_{29}^{2} + 3456T_{29} + 512 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} \) Copy content Toggle raw display
$3$ \( T^{14} \) Copy content Toggle raw display
$5$ \( T^{14} + T^{12} + \cdots + 78125 \) Copy content Toggle raw display
$7$ \( T^{14} + 52 T^{12} + \cdots + 1024 \) Copy content Toggle raw display
$11$ \( (T - 1)^{14} \) Copy content Toggle raw display
$13$ \( T^{14} + 100 T^{12} + \cdots + 82944 \) Copy content Toggle raw display
$17$ \( T^{14} + 92 T^{12} + \cdots + 4096 \) Copy content Toggle raw display
$19$ \( (T^{7} - 68 T^{5} + \cdots + 256)^{2} \) Copy content Toggle raw display
$23$ \( T^{14} + 148 T^{12} + \cdots + 9437184 \) Copy content Toggle raw display
$29$ \( (T^{7} - 116 T^{5} + \cdots + 512)^{2} \) Copy content Toggle raw display
$31$ \( (T^{7} - 128 T^{5} + \cdots + 65536)^{2} \) Copy content Toggle raw display
$37$ \( T^{14} + \cdots + 17994612736 \) Copy content Toggle raw display
$41$ \( (T^{7} - 16 T^{6} + \cdots - 6144)^{2} \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots + 764411904 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots + 220463104 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots + 19323224064 \) Copy content Toggle raw display
$59$ \( (T^{7} - 12 T^{6} + \cdots + 52736)^{2} \) Copy content Toggle raw display
$61$ \( (T^{7} - 2 T^{6} + \cdots + 1157056)^{2} \) Copy content Toggle raw display
$67$ \( T^{14} + 136 T^{12} + \cdots + 16777216 \) Copy content Toggle raw display
$71$ \( (T^{7} + 4 T^{6} + \cdots - 128768)^{2} \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots + 212572635136 \) Copy content Toggle raw display
$79$ \( (T^{7} + 16 T^{6} + \cdots + 7424)^{2} \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 140847087616 \) Copy content Toggle raw display
$89$ \( (T^{7} + 24 T^{6} + \cdots - 65536)^{2} \) Copy content Toggle raw display
$97$ \( T^{14} + 904 T^{12} + \cdots + 16777216 \) Copy content Toggle raw display
show more
show less