Properties

Label 3960.2.d.f.3169.8
Level $3960$
Weight $2$
Character 3960.3169
Analytic conductor $31.621$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(3169,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.3169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.6207592004\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.47985531136.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 19x^{6} + 91x^{4} + 45x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3169.8
Root \(-0.655762i\) of defining polynomial
Character \(\chi\) \(=\) 3960.3169
Dual form 3960.2.d.f.3169.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.23285 + 0.119978i) q^{5} -0.415806i q^{7} +O(q^{10})\) \(q+(2.23285 + 0.119978i) q^{5} -0.415806i q^{7} -1.00000 q^{11} -4.00000i q^{13} +6.51558i q^{17} -5.20406 q^{19} +8.54830i q^{23} +(4.97121 + 0.535784i) q^{25} +0.895717 q^{29} -6.73836 q^{31} +(0.0498875 - 0.928432i) q^{35} +8.96410i q^{37} -10.0998 q^{41} +4.78825i q^{43} -5.61986i q^{47} +6.82711 q^{49} +10.0357i q^{53} +(-2.23285 - 0.119978i) q^{55} -1.63408 q^{59} +7.10428 q^{61} +(0.479911 - 8.93139i) q^{65} +10.6914i q^{67} +6.19302 q^{71} -3.16839i q^{73} +0.415806i q^{77} +11.2682 q^{79} +16.2429i q^{83} +(-0.781725 + 14.5483i) q^{85} +9.56998 q^{89} -1.66323 q^{91} +(-11.6199 - 0.624371i) q^{95} +0.591657i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{11} + 18 q^{19} - 2 q^{25} + 6 q^{29} - 30 q^{31} - 30 q^{35} - 20 q^{41} - 18 q^{49} + 12 q^{59} + 58 q^{61} + 8 q^{65} + 2 q^{71} + 40 q^{79} - 26 q^{85} + 42 q^{89} + 8 q^{91} - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.23285 + 0.119978i 0.998559 + 0.0536557i
\(6\) 0 0
\(7\) 0.415806i 0.157160i −0.996908 0.0785800i \(-0.974961\pi\)
0.996908 0.0785800i \(-0.0250386\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.51558i 1.58026i 0.612939 + 0.790130i \(0.289987\pi\)
−0.612939 + 0.790130i \(0.710013\pi\)
\(18\) 0 0
\(19\) −5.20406 −1.19389 −0.596946 0.802281i \(-0.703619\pi\)
−0.596946 + 0.802281i \(0.703619\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.54830i 1.78244i 0.453568 + 0.891221i \(0.350151\pi\)
−0.453568 + 0.891221i \(0.649849\pi\)
\(24\) 0 0
\(25\) 4.97121 + 0.535784i 0.994242 + 0.107157i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.895717 0.166331 0.0831653 0.996536i \(-0.473497\pi\)
0.0831653 + 0.996536i \(0.473497\pi\)
\(30\) 0 0
\(31\) −6.73836 −1.21025 −0.605123 0.796132i \(-0.706876\pi\)
−0.605123 + 0.796132i \(0.706876\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.0498875 0.928432i 0.00843253 0.156934i
\(36\) 0 0
\(37\) 8.96410i 1.47369i 0.676062 + 0.736845i \(0.263685\pi\)
−0.676062 + 0.736845i \(0.736315\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.0998 −1.57732 −0.788660 0.614830i \(-0.789225\pi\)
−0.788660 + 0.614830i \(0.789225\pi\)
\(42\) 0 0
\(43\) 4.78825i 0.730201i 0.930968 + 0.365101i \(0.118965\pi\)
−0.930968 + 0.365101i \(0.881035\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.61986i 0.819741i −0.912144 0.409871i \(-0.865574\pi\)
0.912144 0.409871i \(-0.134426\pi\)
\(48\) 0 0
\(49\) 6.82711 0.975301
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0357i 1.37851i 0.724521 + 0.689253i \(0.242061\pi\)
−0.724521 + 0.689253i \(0.757939\pi\)
\(54\) 0 0
\(55\) −2.23285 0.119978i −0.301077 0.0161778i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.63408 −0.212739 −0.106370 0.994327i \(-0.533923\pi\)
−0.106370 + 0.994327i \(0.533923\pi\)
\(60\) 0 0
\(61\) 7.10428 0.909610 0.454805 0.890591i \(-0.349709\pi\)
0.454805 + 0.890591i \(0.349709\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.479911 8.93139i 0.0595257 1.10780i
\(66\) 0 0
\(67\) 10.6914i 1.30617i 0.757286 + 0.653083i \(0.226525\pi\)
−0.757286 + 0.653083i \(0.773475\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.19302 0.734977 0.367488 0.930028i \(-0.380218\pi\)
0.367488 + 0.930028i \(0.380218\pi\)
\(72\) 0 0
\(73\) 3.16839i 0.370832i −0.982660 0.185416i \(-0.940637\pi\)
0.982660 0.185416i \(-0.0593632\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.415806i 0.0473855i
\(78\) 0 0
\(79\) 11.2682 1.26777 0.633884 0.773428i \(-0.281460\pi\)
0.633884 + 0.773428i \(0.281460\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 16.2429i 1.78289i 0.453128 + 0.891446i \(0.350308\pi\)
−0.453128 + 0.891446i \(0.649692\pi\)
\(84\) 0 0
\(85\) −0.781725 + 14.5483i −0.0847900 + 1.57798i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.56998 1.01442 0.507208 0.861824i \(-0.330678\pi\)
0.507208 + 0.861824i \(0.330678\pi\)
\(90\) 0 0
\(91\) −1.66323 −0.174353
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11.6199 0.624371i −1.19217 0.0640591i
\(96\) 0 0
\(97\) 0.591657i 0.0600737i 0.999549 + 0.0300368i \(0.00956246\pi\)
−0.999549 + 0.0300368i \(0.990438\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.62305 0.460010 0.230005 0.973189i \(-0.426126\pi\)
0.230005 + 0.973189i \(0.426126\pi\)
\(102\) 0 0
\(103\) 8.24291i 0.812198i 0.913829 + 0.406099i \(0.133111\pi\)
−0.913829 + 0.406099i \(0.866889\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.6199i 1.70338i −0.524049 0.851688i \(-0.675579\pi\)
0.524049 0.851688i \(-0.324421\pi\)
\(108\) 0 0
\(109\) −3.66323 −0.350873 −0.175437 0.984491i \(-0.556134\pi\)
−0.175437 + 0.984491i \(0.556134\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.4797i 1.07992i −0.841691 0.539959i \(-0.818440\pi\)
0.841691 0.539959i \(-0.181560\pi\)
\(114\) 0 0
\(115\) −1.02561 + 19.0870i −0.0956382 + 1.77988i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.70922 0.248354
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0357 + 1.79276i 0.987060 + 0.160349i
\(126\) 0 0
\(127\) 9.13995i 0.811040i −0.914086 0.405520i \(-0.867091\pi\)
0.914086 0.405520i \(-0.132909\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.48123 0.216787 0.108393 0.994108i \(-0.465429\pi\)
0.108393 + 0.994108i \(0.465429\pi\)
\(132\) 0 0
\(133\) 2.16388i 0.187632i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.40834i 0.632937i −0.948603 0.316469i \(-0.897503\pi\)
0.948603 0.316469i \(-0.102497\pi\)
\(138\) 0 0
\(139\) 1.69166 0.143485 0.0717424 0.997423i \(-0.477144\pi\)
0.0717424 + 0.997423i \(0.477144\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 2.00000 + 0.107466i 0.166091 + 0.00892458i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.74940 0.307163 0.153581 0.988136i \(-0.450919\pi\)
0.153581 + 0.988136i \(0.450919\pi\)
\(150\) 0 0
\(151\) −15.1400 −1.23207 −0.616036 0.787718i \(-0.711262\pi\)
−0.616036 + 0.787718i \(0.711262\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −15.0457 0.808454i −1.20850 0.0649366i
\(156\) 0 0
\(157\) 11.5871i 0.924755i 0.886683 + 0.462378i \(0.153004\pi\)
−0.886683 + 0.462378i \(0.846996\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.55444 0.280129
\(162\) 0 0
\(163\) 6.82392i 0.534491i −0.963629 0.267245i \(-0.913887\pi\)
0.963629 0.267245i \(-0.0861134\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.10428i 0.549746i −0.961481 0.274873i \(-0.911364\pi\)
0.961481 0.274873i \(-0.0886358\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.31152i 0.707942i 0.935256 + 0.353971i \(0.115169\pi\)
−0.935256 + 0.353971i \(0.884831\pi\)
\(174\) 0 0
\(175\) 0.222782 2.06706i 0.0168408 0.156255i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −26.6368 −1.99093 −0.995464 0.0951359i \(-0.969671\pi\)
−0.995464 + 0.0951359i \(0.969671\pi\)
\(180\) 0 0
\(181\) 1.01103 0.0751495 0.0375748 0.999294i \(-0.488037\pi\)
0.0375748 + 0.999294i \(0.488037\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.07549 + 20.0155i −0.0790718 + 1.47157i
\(186\) 0 0
\(187\) 6.51558i 0.476466i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.5655 −0.764490 −0.382245 0.924061i \(-0.624849\pi\)
−0.382245 + 0.924061i \(0.624849\pi\)
\(192\) 0 0
\(193\) 11.8271i 0.851334i −0.904880 0.425667i \(-0.860040\pi\)
0.904880 0.425667i \(-0.139960\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.31152i 0.0934422i 0.998908 + 0.0467211i \(0.0148772\pi\)
−0.998908 + 0.0467211i \(0.985123\pi\)
\(198\) 0 0
\(199\) 11.8271 0.838401 0.419201 0.907894i \(-0.362310\pi\)
0.419201 + 0.907894i \(0.362310\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.372445i 0.0261405i
\(204\) 0 0
\(205\) −22.5513 1.21175i −1.57505 0.0846322i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.20406 0.359972
\(210\) 0 0
\(211\) −8.37244 −0.576383 −0.288191 0.957573i \(-0.593054\pi\)
−0.288191 + 0.957573i \(0.593054\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.574484 + 10.6914i −0.0391795 + 0.729150i
\(216\) 0 0
\(217\) 2.80185i 0.190202i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 26.0623 1.75314
\(222\) 0 0
\(223\) 22.1461i 1.48301i 0.670946 + 0.741506i \(0.265888\pi\)
−0.670946 + 0.741506i \(0.734112\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.8194i 1.44821i 0.689692 + 0.724103i \(0.257746\pi\)
−0.689692 + 0.724103i \(0.742254\pi\)
\(228\) 0 0
\(229\) −2.80247 −0.185192 −0.0925962 0.995704i \(-0.529517\pi\)
−0.0925962 + 0.995704i \(0.529517\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.24424i 0.540098i 0.962847 + 0.270049i \(0.0870399\pi\)
−0.962847 + 0.270049i \(0.912960\pi\)
\(234\) 0 0
\(235\) 0.674259 12.5483i 0.0439838 0.818561i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.2682 −0.728877 −0.364438 0.931227i \(-0.618739\pi\)
−0.364438 + 0.931227i \(0.618739\pi\)
\(240\) 0 0
\(241\) 22.3860 1.44201 0.721006 0.692929i \(-0.243680\pi\)
0.721006 + 0.692929i \(0.243680\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.2439 + 0.819101i 0.973896 + 0.0523304i
\(246\) 0 0
\(247\) 20.8162i 1.32451i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.84265 −0.242546 −0.121273 0.992619i \(-0.538698\pi\)
−0.121273 + 0.992619i \(0.538698\pi\)
\(252\) 0 0
\(253\) 8.54830i 0.537427i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.6230i 0.662648i −0.943517 0.331324i \(-0.892505\pi\)
0.943517 0.331324i \(-0.107495\pi\)
\(258\) 0 0
\(259\) 3.72733 0.231605
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.79276i 0.357197i 0.983922 + 0.178598i \(0.0571563\pi\)
−0.983922 + 0.178598i \(0.942844\pi\)
\(264\) 0 0
\(265\) −1.20406 + 22.4081i −0.0739647 + 1.37652i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.20857 −0.500485 −0.250243 0.968183i \(-0.580510\pi\)
−0.250243 + 0.968183i \(0.580510\pi\)
\(270\) 0 0
\(271\) 27.3111 1.65903 0.829515 0.558485i \(-0.188617\pi\)
0.829515 + 0.558485i \(0.188617\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.97121 0.535784i −0.299775 0.0323090i
\(276\) 0 0
\(277\) 14.4735i 0.869631i −0.900520 0.434815i \(-0.856814\pi\)
0.900520 0.434815i \(-0.143186\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.2799 −0.971178 −0.485589 0.874187i \(-0.661395\pi\)
−0.485589 + 0.874187i \(0.661395\pi\)
\(282\) 0 0
\(283\) 10.5169i 0.625165i −0.949891 0.312583i \(-0.898806\pi\)
0.949891 0.312583i \(-0.101194\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.19955i 0.247892i
\(288\) 0 0
\(289\) −25.4528 −1.49722
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.37695i 0.547807i −0.961757 0.273904i \(-0.911685\pi\)
0.961757 0.273904i \(-0.0883150\pi\)
\(294\) 0 0
\(295\) −3.64865 0.196053i −0.212433 0.0114147i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 34.1932 1.97744
\(300\) 0 0
\(301\) 1.99099 0.114758
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.8628 + 0.852356i 0.908300 + 0.0488058i
\(306\) 0 0
\(307\) 2.09978i 0.119840i 0.998203 + 0.0599202i \(0.0190846\pi\)
−0.998203 + 0.0599202i \(0.980915\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.3724 1.15522 0.577608 0.816314i \(-0.303986\pi\)
0.577608 + 0.816314i \(0.303986\pi\)
\(312\) 0 0
\(313\) 23.8968i 1.35073i 0.737485 + 0.675364i \(0.236013\pi\)
−0.737485 + 0.675364i \(0.763987\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.86114i 0.329195i 0.986361 + 0.164597i \(0.0526325\pi\)
−0.986361 + 0.164597i \(0.947368\pi\)
\(318\) 0 0
\(319\) −0.895717 −0.0501506
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 33.9075i 1.88666i
\(324\) 0 0
\(325\) 2.14314 19.8848i 0.118880 1.10301i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.33677 −0.128831
\(330\) 0 0
\(331\) −0.574484 −0.0315765 −0.0157882 0.999875i \(-0.505026\pi\)
−0.0157882 + 0.999875i \(0.505026\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.28273 + 23.8723i −0.0700833 + 1.30428i
\(336\) 0 0
\(337\) 4.10747i 0.223748i −0.993722 0.111874i \(-0.964315\pi\)
0.993722 0.111874i \(-0.0356853\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.73836 0.364903
\(342\) 0 0
\(343\) 5.74940i 0.310438i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.30834i 0.446015i 0.974817 + 0.223008i \(0.0715875\pi\)
−0.974817 + 0.223008i \(0.928413\pi\)
\(348\) 0 0
\(349\) 18.4858 0.989523 0.494762 0.869029i \(-0.335255\pi\)
0.494762 + 0.869029i \(0.335255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.5199i 1.41151i 0.708456 + 0.705755i \(0.249392\pi\)
−0.708456 + 0.705755i \(0.750608\pi\)
\(354\) 0 0
\(355\) 13.8281 + 0.743025i 0.733918 + 0.0394357i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.8226 −0.993419 −0.496709 0.867917i \(-0.665459\pi\)
−0.496709 + 0.867917i \(0.665459\pi\)
\(360\) 0 0
\(361\) 8.08222 0.425380
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.380136 7.07452i 0.0198972 0.370298i
\(366\) 0 0
\(367\) 10.2115i 0.533037i −0.963830 0.266519i \(-0.914127\pi\)
0.963830 0.266519i \(-0.0858734\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.17289 0.216646
\(372\) 0 0
\(373\) 32.3363i 1.67431i 0.546965 + 0.837156i \(0.315783\pi\)
−0.546965 + 0.837156i \(0.684217\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.58287i 0.184527i
\(378\) 0 0
\(379\) −15.3686 −0.789434 −0.394717 0.918803i \(-0.629157\pi\)
−0.394717 + 0.918803i \(0.629157\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.6662i 0.698309i −0.937065 0.349155i \(-0.886469\pi\)
0.937065 0.349155i \(-0.113531\pi\)
\(384\) 0 0
\(385\) −0.0498875 + 0.928432i −0.00254250 + 0.0473173i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.01103 −0.456878 −0.228439 0.973558i \(-0.573362\pi\)
−0.228439 + 0.973558i \(0.573362\pi\)
\(390\) 0 0
\(391\) −55.6971 −2.81672
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 25.1601 + 1.35193i 1.26594 + 0.0680229i
\(396\) 0 0
\(397\) 3.45466i 0.173384i −0.996235 0.0866922i \(-0.972370\pi\)
0.996235 0.0866922i \(-0.0276297\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.62756 0.0812762 0.0406381 0.999174i \(-0.487061\pi\)
0.0406381 + 0.999174i \(0.487061\pi\)
\(402\) 0 0
\(403\) 26.9535i 1.34265i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.96410i 0.444334i
\(408\) 0 0
\(409\) −6.54534 −0.323646 −0.161823 0.986820i \(-0.551737\pi\)
−0.161823 + 0.986820i \(0.551737\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.679461i 0.0334341i
\(414\) 0 0
\(415\) −1.94879 + 36.2679i −0.0956623 + 1.78032i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −34.4795 −1.68443 −0.842216 0.539141i \(-0.818749\pi\)
−0.842216 + 0.539141i \(0.818749\pi\)
\(420\) 0 0
\(421\) 6.54534 0.319000 0.159500 0.987198i \(-0.449012\pi\)
0.159500 + 0.987198i \(0.449012\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.49094 + 32.3903i −0.169336 + 1.57116i
\(426\) 0 0
\(427\) 2.95401i 0.142954i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.1711 −1.74230 −0.871151 0.491016i \(-0.836626\pi\)
−0.871151 + 0.491016i \(0.836626\pi\)
\(432\) 0 0
\(433\) 38.1027i 1.83110i 0.402204 + 0.915550i \(0.368244\pi\)
−0.402204 + 0.915550i \(0.631756\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 44.4858i 2.12805i
\(438\) 0 0
\(439\) −12.1282 −0.578848 −0.289424 0.957201i \(-0.593464\pi\)
−0.289424 + 0.957201i \(0.593464\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.5483i 0.786233i −0.919489 0.393117i \(-0.871397\pi\)
0.919489 0.393117i \(-0.128603\pi\)
\(444\) 0 0
\(445\) 21.3683 + 1.14818i 1.01295 + 0.0544292i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15.6056 0.736476 0.368238 0.929732i \(-0.379961\pi\)
0.368238 + 0.929732i \(0.379961\pi\)
\(450\) 0 0
\(451\) 10.0998 0.475580
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.71373 0.199550i −0.174102 0.00935505i
\(456\) 0 0
\(457\) 5.87761i 0.274943i −0.990506 0.137471i \(-0.956102\pi\)
0.990506 0.137471i \(-0.0438975\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.7495 −1.71159 −0.855797 0.517312i \(-0.826933\pi\)
−0.855797 + 0.517312i \(0.826933\pi\)
\(462\) 0 0
\(463\) 19.3081i 0.897324i 0.893702 + 0.448662i \(0.148099\pi\)
−0.893702 + 0.448662i \(0.851901\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.4129i 0.528127i 0.964505 + 0.264064i \(0.0850629\pi\)
−0.964505 + 0.264064i \(0.914937\pi\)
\(468\) 0 0
\(469\) 4.44556 0.205277
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.78825i 0.220164i
\(474\) 0 0
\(475\) −25.8705 2.78825i −1.18702 0.127934i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 29.2307 1.33559 0.667793 0.744347i \(-0.267239\pi\)
0.667793 + 0.744347i \(0.267239\pi\)
\(480\) 0 0
\(481\) 35.8564 1.63491
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.0709857 + 1.32108i −0.00322329 + 0.0599871i
\(486\) 0 0
\(487\) 33.2932i 1.50866i −0.656496 0.754329i \(-0.727962\pi\)
0.656496 0.754329i \(-0.272038\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.5151 1.10635 0.553176 0.833064i \(-0.313416\pi\)
0.553176 + 0.833064i \(0.313416\pi\)
\(492\) 0 0
\(493\) 5.83612i 0.262846i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.57510i 0.115509i
\(498\) 0 0
\(499\) 18.9093 0.846497 0.423249 0.906014i \(-0.360890\pi\)
0.423249 + 0.906014i \(0.360890\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.42031i 0.420031i 0.977698 + 0.210016i \(0.0673515\pi\)
−0.977698 + 0.210016i \(0.932649\pi\)
\(504\) 0 0
\(505\) 10.3226 + 0.554663i 0.459348 + 0.0246822i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.7804 −0.743778 −0.371889 0.928277i \(-0.621290\pi\)
−0.371889 + 0.928277i \(0.621290\pi\)
\(510\) 0 0
\(511\) −1.31744 −0.0582799
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.988966 + 18.4052i −0.0435791 + 0.811028i
\(516\) 0 0
\(517\) 5.61986i 0.247161i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 37.8273 1.65724 0.828621 0.559810i \(-0.189126\pi\)
0.828621 + 0.559810i \(0.189126\pi\)
\(522\) 0 0
\(523\) 10.0998i 0.441632i 0.975315 + 0.220816i \(0.0708721\pi\)
−0.975315 + 0.220816i \(0.929128\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 43.9044i 1.91250i
\(528\) 0 0
\(529\) −50.0734 −2.17710
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 40.3991i 1.74988i
\(534\) 0 0
\(535\) 2.11399 39.3425i 0.0913959 1.70092i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.82711 −0.294064
\(540\) 0 0
\(541\) −29.9269 −1.28666 −0.643329 0.765590i \(-0.722447\pi\)
−0.643329 + 0.765590i \(0.722447\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.17942 0.439506i −0.350368 0.0188264i
\(546\) 0 0
\(547\) 23.7630i 1.01603i −0.861347 0.508016i \(-0.830379\pi\)
0.861347 0.508016i \(-0.169621\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.66137 −0.198581
\(552\) 0 0
\(553\) 4.68537i 0.199242i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.3363i 1.03116i −0.856841 0.515581i \(-0.827576\pi\)
0.856841 0.515581i \(-0.172424\pi\)
\(558\) 0 0
\(559\) 19.1530 0.810086
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.85368i 0.373138i 0.982442 + 0.186569i \(0.0597368\pi\)
−0.982442 + 0.186569i \(0.940263\pi\)
\(564\) 0 0
\(565\) 1.37731 25.6324i 0.0579437 1.07836i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.3860 1.10616 0.553080 0.833128i \(-0.313452\pi\)
0.553080 + 0.833128i \(0.313452\pi\)
\(570\) 0 0
\(571\) 6.45280 0.270041 0.135021 0.990843i \(-0.456890\pi\)
0.135021 + 0.990843i \(0.456890\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.58004 + 42.4954i −0.191001 + 1.77218i
\(576\) 0 0
\(577\) 12.1745i 0.506832i −0.967357 0.253416i \(-0.918446\pi\)
0.967357 0.253416i \(-0.0815542\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.75390 0.280199
\(582\) 0 0
\(583\) 10.0357i 0.415635i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.9521i 0.947336i −0.880704 0.473668i \(-0.842930\pi\)
0.880704 0.473668i \(-0.157070\pi\)
\(588\) 0 0
\(589\) 35.0668 1.44490
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10.4081i 0.427410i −0.976898 0.213705i \(-0.931447\pi\)
0.976898 0.213705i \(-0.0685531\pi\)
\(594\) 0 0
\(595\) 6.04927 + 0.325046i 0.247996 + 0.0133256i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.98913 −0.367286 −0.183643 0.982993i \(-0.558789\pi\)
−0.183643 + 0.982993i \(0.558789\pi\)
\(600\) 0 0
\(601\) −3.57650 −0.145889 −0.0729443 0.997336i \(-0.523240\pi\)
−0.0729443 + 0.997336i \(0.523240\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.23285 + 0.119978i 0.0907781 + 0.00487779i
\(606\) 0 0
\(607\) 27.0235i 1.09685i −0.836200 0.548424i \(-0.815228\pi\)
0.836200 0.548424i \(-0.184772\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.4795 −0.909421
\(612\) 0 0
\(613\) 44.5572i 1.79965i −0.436254 0.899823i \(-0.643695\pi\)
0.436254 0.899823i \(-0.356305\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.2966i 0.615818i −0.951416 0.307909i \(-0.900371\pi\)
0.951416 0.307909i \(-0.0996292\pi\)
\(618\) 0 0
\(619\) −14.5655 −0.585436 −0.292718 0.956199i \(-0.594560\pi\)
−0.292718 + 0.956199i \(0.594560\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.97926i 0.159426i
\(624\) 0 0
\(625\) 24.4259 + 5.32699i 0.977035 + 0.213080i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −58.4063 −2.32881
\(630\) 0 0
\(631\) −22.0779 −0.878906 −0.439453 0.898266i \(-0.644828\pi\)
−0.439453 + 0.898266i \(0.644828\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.09659 20.4081i 0.0435169 0.809871i
\(636\) 0 0
\(637\) 27.3084i 1.08200i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 31.2152 1.23293 0.616463 0.787384i \(-0.288565\pi\)
0.616463 + 0.787384i \(0.288565\pi\)
\(642\) 0 0
\(643\) 10.4498i 0.412102i −0.978541 0.206051i \(-0.933939\pi\)
0.978541 0.206051i \(-0.0660612\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.1307i 1.02730i 0.857999 + 0.513652i \(0.171708\pi\)
−0.857999 + 0.513652i \(0.828292\pi\)
\(648\) 0 0
\(649\) 1.63408 0.0641433
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 44.2097i 1.73006i −0.501719 0.865030i \(-0.667299\pi\)
0.501719 0.865030i \(-0.332701\pi\)
\(654\) 0 0
\(655\) 5.54022 + 0.297693i 0.216474 + 0.0116318i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.96706 0.271398 0.135699 0.990750i \(-0.456672\pi\)
0.135699 + 0.990750i \(0.456672\pi\)
\(660\) 0 0
\(661\) −9.19753 −0.357743 −0.178871 0.983872i \(-0.557245\pi\)
−0.178871 + 0.983872i \(0.557245\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.259618 + 4.83161i −0.0100675 + 0.187362i
\(666\) 0 0
\(667\) 7.65686i 0.296475i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.10428 −0.274258
\(672\) 0 0
\(673\) 8.72415i 0.336291i −0.985762 0.168146i \(-0.946222\pi\)
0.985762 0.168146i \(-0.0537779\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.76618i 0.336912i 0.985709 + 0.168456i \(0.0538781\pi\)
−0.985709 + 0.168456i \(0.946122\pi\)
\(678\) 0 0
\(679\) 0.246015 0.00944118
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 49.2320i 1.88381i 0.335877 + 0.941906i \(0.390967\pi\)
−0.335877 + 0.941906i \(0.609033\pi\)
\(684\) 0 0
\(685\) 0.888837 16.5417i 0.0339607 0.632026i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 40.1427 1.52931
\(690\) 0 0
\(691\) −18.1483 −0.690395 −0.345198 0.938530i \(-0.612188\pi\)
−0.345198 + 0.938530i \(0.612188\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.77722 + 0.202962i 0.143278 + 0.00769877i
\(696\) 0 0
\(697\) 65.8059i 2.49258i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22.6587 −0.855808 −0.427904 0.903824i \(-0.640748\pi\)
−0.427904 + 0.903824i \(0.640748\pi\)
\(702\) 0 0
\(703\) 46.6497i 1.75943i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.92229i 0.0722952i
\(708\) 0 0
\(709\) 36.7366 1.37967 0.689836 0.723966i \(-0.257683\pi\)
0.689836 + 0.723966i \(0.257683\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 57.6015i 2.15719i
\(714\) 0 0
\(715\) −0.479911 + 8.93139i −0.0179477 + 0.334015i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.74738 0.326222 0.163111 0.986608i \(-0.447847\pi\)
0.163111 + 0.986608i \(0.447847\pi\)
\(720\) 0 0
\(721\) 3.42745 0.127645
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.45280 + 0.479911i 0.165373 + 0.0178235i
\(726\) 0 0
\(727\) 2.20887i 0.0819226i 0.999161 + 0.0409613i \(0.0130420\pi\)
−0.999161 + 0.0409613i \(0.986958\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −31.1982 −1.15391
\(732\) 0 0
\(733\) 3.58552i 0.132434i 0.997805 + 0.0662171i \(0.0210930\pi\)
−0.997805 + 0.0662171i \(0.978907\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.6914i 0.393824i
\(738\) 0 0
\(739\) 24.9314 0.917116 0.458558 0.888665i \(-0.348366\pi\)
0.458558 + 0.888665i \(0.348366\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.4257i 0.786032i −0.919532 0.393016i \(-0.871432\pi\)
0.919532 0.393016i \(-0.128568\pi\)
\(744\) 0 0
\(745\) 8.37183 + 0.449844i 0.306720 + 0.0164810i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7.32645 −0.267703
\(750\) 0 0
\(751\) 28.1582 1.02751 0.513754 0.857938i \(-0.328254\pi\)
0.513754 + 0.857938i \(0.328254\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −33.8052 1.81646i −1.23030 0.0661077i
\(756\) 0 0
\(757\) 10.7513i 0.390761i 0.980728 + 0.195381i \(0.0625942\pi\)
−0.980728 + 0.195381i \(0.937406\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.0429 1.37905 0.689527 0.724260i \(-0.257818\pi\)
0.689527 + 0.724260i \(0.257818\pi\)
\(762\) 0 0
\(763\) 1.52319i 0.0551433i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.53632i 0.236013i
\(768\) 0 0
\(769\) −26.2280 −0.945805 −0.472903 0.881115i \(-0.656794\pi\)
−0.472903 + 0.881115i \(0.656794\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.94499i 0.321729i 0.986977 + 0.160864i \(0.0514282\pi\)
−0.986977 + 0.160864i \(0.948572\pi\)
\(774\) 0 0
\(775\) −33.4978 3.61031i −1.20328 0.129686i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 52.5598 1.88315
\(780\) 0 0
\(781\) −6.19302 −0.221604
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.39020 + 25.8723i −0.0496184 + 0.923423i
\(786\) 0 0
\(787\) 29.9716i 1.06837i 0.845367 + 0.534185i \(0.179382\pi\)
−0.845367 + 0.534185i \(0.820618\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.77332 −0.169720
\(792\) 0 0
\(793\) 28.4171i 1.00912i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.80022i 0.240876i −0.992721 0.120438i \(-0.961570\pi\)
0.992721 0.120438i \(-0.0384299\pi\)
\(798\) 0 0
\(799\) 36.6167 1.29541
\(800\) 0 0
\(801\) 0