Properties

Label 3960.2.d.f.3169.6
Level $3960$
Weight $2$
Character 3960.3169
Analytic conductor $31.621$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(3169,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.3169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.6207592004\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.47985531136.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 19x^{6} + 91x^{4} + 45x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3169.6
Root \(-3.36007i\) of defining polynomial
Character \(\chi\) \(=\) 3960.3169
Dual form 3960.2.d.f.3169.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.256321 + 2.22133i) q^{5} +1.08258i q^{7} +O(q^{10})\) \(q+(0.256321 + 2.22133i) q^{5} +1.08258i q^{7} -1.00000 q^{11} -4.00000i q^{13} +0.107866i q^{17} +6.61228 q^{19} -5.97235i q^{23} +(-4.86860 + 1.13874i) q^{25} +7.80273 q^{29} +1.12492 q^{31} +(-2.40477 + 0.277489i) q^{35} -7.05494i q^{37} -5.19045 q^{41} -5.52969i q^{43} +7.69486i q^{47} +5.82801 q^{49} -4.77745i q^{53} +(-0.256321 - 2.22133i) q^{55} -0.677809 q^{59} +0.197271 q^{61} +(8.88531 - 1.02528i) q^{65} -1.41737i q^{67} +6.15020 q^{71} -6.16517i q^{73} -1.08258i q^{77} +9.35562 q^{79} +13.7454i q^{83} +(-0.239607 + 0.0276484i) q^{85} -1.29009 q^{89} +4.33034 q^{91} +(1.69486 + 14.6880i) q^{95} -6.60782i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{11} + 18 q^{19} - 2 q^{25} + 6 q^{29} - 30 q^{31} - 30 q^{35} - 20 q^{41} - 18 q^{49} + 12 q^{59} + 58 q^{61} + 8 q^{65} + 2 q^{71} + 40 q^{79} - 26 q^{85} + 42 q^{89} + 8 q^{91} - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.256321 + 2.22133i 0.114630 + 0.993408i
\(6\) 0 0
\(7\) 1.08258i 0.409178i 0.978848 + 0.204589i \(0.0655858\pi\)
−0.978848 + 0.204589i \(0.934414\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.107866i 0.0261614i 0.999914 + 0.0130807i \(0.00416384\pi\)
−0.999914 + 0.0130807i \(0.995836\pi\)
\(18\) 0 0
\(19\) 6.61228 1.51696 0.758480 0.651696i \(-0.225942\pi\)
0.758480 + 0.651696i \(0.225942\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.97235i 1.24532i −0.782492 0.622661i \(-0.786052\pi\)
0.782492 0.622661i \(-0.213948\pi\)
\(24\) 0 0
\(25\) −4.86860 + 1.13874i −0.973720 + 0.227749i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.80273 1.44893 0.724465 0.689311i \(-0.242087\pi\)
0.724465 + 0.689311i \(0.242087\pi\)
\(30\) 0 0
\(31\) 1.12492 0.202042 0.101021 0.994884i \(-0.467789\pi\)
0.101021 + 0.994884i \(0.467789\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.40477 + 0.277489i −0.406481 + 0.0469041i
\(36\) 0 0
\(37\) 7.05494i 1.15982i −0.814679 0.579912i \(-0.803087\pi\)
0.814679 0.579912i \(-0.196913\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.19045 −0.810612 −0.405306 0.914181i \(-0.632835\pi\)
−0.405306 + 0.914181i \(0.632835\pi\)
\(42\) 0 0
\(43\) 5.52969i 0.843271i −0.906766 0.421635i \(-0.861456\pi\)
0.906766 0.421635i \(-0.138544\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.69486i 1.12241i 0.827676 + 0.561206i \(0.189662\pi\)
−0.827676 + 0.561206i \(0.810338\pi\)
\(48\) 0 0
\(49\) 5.82801 0.832573
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.77745i 0.656233i −0.944637 0.328116i \(-0.893586\pi\)
0.944637 0.328116i \(-0.106414\pi\)
\(54\) 0 0
\(55\) −0.256321 2.22133i −0.0345623 0.299524i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.677809 −0.0882433 −0.0441216 0.999026i \(-0.514049\pi\)
−0.0441216 + 0.999026i \(0.514049\pi\)
\(60\) 0 0
\(61\) 0.197271 0.0252579 0.0126290 0.999920i \(-0.495980\pi\)
0.0126290 + 0.999920i \(0.495980\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.88531 1.02528i 1.10209 0.127171i
\(66\) 0 0
\(67\) 1.41737i 0.173160i −0.996245 0.0865799i \(-0.972406\pi\)
0.996245 0.0865799i \(-0.0275938\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.15020 0.729895 0.364947 0.931028i \(-0.381087\pi\)
0.364947 + 0.931028i \(0.381087\pi\)
\(72\) 0 0
\(73\) 6.16517i 0.721578i −0.932647 0.360789i \(-0.882507\pi\)
0.932647 0.360789i \(-0.117493\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.08258i 0.123372i
\(78\) 0 0
\(79\) 9.35562 1.05259 0.526295 0.850302i \(-0.323581\pi\)
0.526295 + 0.850302i \(0.323581\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.7454i 1.50876i 0.656440 + 0.754378i \(0.272062\pi\)
−0.656440 + 0.754378i \(0.727938\pi\)
\(84\) 0 0
\(85\) −0.239607 + 0.0276484i −0.0259890 + 0.00299889i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.29009 −0.136749 −0.0683745 0.997660i \(-0.521781\pi\)
−0.0683745 + 0.997660i \(0.521781\pi\)
\(90\) 0 0
\(91\) 4.33034 0.453943
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.69486 + 14.6880i 0.173889 + 1.50696i
\(96\) 0 0
\(97\) 6.60782i 0.670923i −0.942054 0.335461i \(-0.891108\pi\)
0.942054 0.335461i \(-0.108892\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.4403 1.53637 0.768183 0.640230i \(-0.221161\pi\)
0.768183 + 0.640230i \(0.221161\pi\)
\(102\) 0 0
\(103\) 5.74543i 0.566114i 0.959103 + 0.283057i \(0.0913485\pi\)
−0.959103 + 0.283057i \(0.908651\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.30514i 0.416193i −0.978108 0.208097i \(-0.933273\pi\)
0.978108 0.208097i \(-0.0667269\pi\)
\(108\) 0 0
\(109\) 2.33034 0.223206 0.111603 0.993753i \(-0.464402\pi\)
0.111603 + 0.993753i \(0.464402\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.9471i 1.02981i 0.857246 + 0.514907i \(0.172173\pi\)
−0.857246 + 0.514907i \(0.827827\pi\)
\(114\) 0 0
\(115\) 13.2666 1.53084i 1.23711 0.142751i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.116774 −0.0107047
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.77745 10.5229i −0.337865 0.941195i
\(126\) 0 0
\(127\) 12.5802i 1.11631i 0.829737 + 0.558155i \(0.188491\pi\)
−0.829737 + 0.558155i \(0.811509\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.2430 −1.33179 −0.665894 0.746046i \(-0.731950\pi\)
−0.665894 + 0.746046i \(0.731950\pi\)
\(132\) 0 0
\(133\) 7.15835i 0.620707i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.6078i 1.24803i −0.781412 0.624015i \(-0.785500\pi\)
0.781412 0.624015i \(-0.214500\pi\)
\(138\) 0 0
\(139\) 20.4150 1.73158 0.865789 0.500409i \(-0.166817\pi\)
0.865789 + 0.500409i \(0.166817\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 2.00000 + 17.3324i 0.166091 + 1.43938i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.8874 −1.30155 −0.650773 0.759272i \(-0.725555\pi\)
−0.650773 + 0.759272i \(0.725555\pi\)
\(150\) 0 0
\(151\) 6.58018 0.535487 0.267744 0.963490i \(-0.413722\pi\)
0.267744 + 0.963490i \(0.413722\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.288340 + 2.49882i 0.0231600 + 0.200710i
\(156\) 0 0
\(157\) 6.38535i 0.509607i 0.966993 + 0.254803i \(0.0820108\pi\)
−0.966993 + 0.254803i \(0.917989\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.46557 0.509559
\(162\) 0 0
\(163\) 18.3071i 1.43393i 0.697111 + 0.716963i \(0.254468\pi\)
−0.697111 + 0.716963i \(0.745532\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.197271i 0.0152653i −0.999971 0.00763263i \(-0.997570\pi\)
0.999971 0.00763263i \(-0.00242956\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.7201i 1.11915i 0.828779 + 0.559576i \(0.189036\pi\)
−0.828779 + 0.559576i \(0.810964\pi\)
\(174\) 0 0
\(175\) −1.23279 5.27067i −0.0931899 0.398425i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.8518 0.885845 0.442923 0.896560i \(-0.353942\pi\)
0.442923 + 0.896560i \(0.353942\pi\)
\(180\) 0 0
\(181\) −10.7625 −0.799969 −0.399984 0.916522i \(-0.630984\pi\)
−0.399984 + 0.916522i \(0.630984\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.6713 1.80833i 1.15218 0.132951i
\(186\) 0 0
\(187\) 0.107866i 0.00788797i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.70309 −0.123231 −0.0616157 0.998100i \(-0.519625\pi\)
−0.0616157 + 0.998100i \(0.519625\pi\)
\(192\) 0 0
\(193\) 10.8280i 0.779417i −0.920938 0.389709i \(-0.872576\pi\)
0.920938 0.389709i \(-0.127424\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.72015i 0.478791i 0.970922 + 0.239395i \(0.0769492\pi\)
−0.970922 + 0.239395i \(0.923051\pi\)
\(198\) 0 0
\(199\) 10.8280 0.767577 0.383789 0.923421i \(-0.374619\pi\)
0.383789 + 0.923421i \(0.374619\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.44711i 0.592871i
\(204\) 0 0
\(205\) −1.33042 11.5297i −0.0929205 0.805269i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.61228 −0.457381
\(210\) 0 0
\(211\) 0.447111 0.0307804 0.0153902 0.999882i \(-0.495101\pi\)
0.0153902 + 0.999882i \(0.495101\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.2833 1.41737i 0.837712 0.0966641i
\(216\) 0 0
\(217\) 1.21782i 0.0826710i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.431465 0.0290235
\(222\) 0 0
\(223\) 17.8577i 1.19584i 0.801555 + 0.597922i \(0.204007\pi\)
−0.801555 + 0.597922i \(0.795993\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.31396i 0.0872107i −0.999049 0.0436054i \(-0.986116\pi\)
0.999049 0.0436054i \(-0.0138844\pi\)
\(228\) 0 0
\(229\) −4.84298 −0.320033 −0.160016 0.987114i \(-0.551155\pi\)
−0.160016 + 0.987114i \(0.551155\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.3829i 1.33533i −0.744462 0.667664i \(-0.767294\pi\)
0.744462 0.667664i \(-0.232706\pi\)
\(234\) 0 0
\(235\) −17.0928 + 1.97235i −1.11501 + 0.128662i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.35562 −0.605165 −0.302582 0.953123i \(-0.597849\pi\)
−0.302582 + 0.953123i \(0.597849\pi\)
\(240\) 0 0
\(241\) 22.3004 1.43650 0.718248 0.695788i \(-0.244944\pi\)
0.718248 + 0.695788i \(0.244944\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.49384 + 12.9459i 0.0954379 + 0.827085i
\(246\) 0 0
\(247\) 26.4491i 1.68292i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.9276 0.689747 0.344874 0.938649i \(-0.387922\pi\)
0.344874 + 0.938649i \(0.387922\pi\)
\(252\) 0 0
\(253\) 5.97235i 0.375479i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.4403i 1.33741i −0.743528 0.668704i \(-0.766849\pi\)
0.743528 0.668704i \(-0.233151\pi\)
\(258\) 0 0
\(259\) 7.63756 0.474575
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.52287i 0.402218i −0.979569 0.201109i \(-0.935546\pi\)
0.979569 0.201109i \(-0.0644545\pi\)
\(264\) 0 0
\(265\) 10.6123 1.22456i 0.651907 0.0752240i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.60546 0.341771 0.170885 0.985291i \(-0.445337\pi\)
0.170885 + 0.985291i \(0.445337\pi\)
\(270\) 0 0
\(271\) −28.9446 −1.75826 −0.879130 0.476582i \(-0.841876\pi\)
−0.879130 + 0.476582i \(0.841876\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.86860 1.13874i 0.293588 0.0686689i
\(276\) 0 0
\(277\) 25.3850i 1.52524i 0.646849 + 0.762618i \(0.276086\pi\)
−0.646849 + 0.762618i \(0.723914\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 27.1604 1.62025 0.810125 0.586257i \(-0.199399\pi\)
0.810125 + 0.586257i \(0.199399\pi\)
\(282\) 0 0
\(283\) 22.0205i 1.30898i 0.756070 + 0.654490i \(0.227117\pi\)
−0.756070 + 0.654490i \(0.772883\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.61910i 0.331685i
\(288\) 0 0
\(289\) 16.9884 0.999316
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.44029i 0.0841427i 0.999115 + 0.0420713i \(0.0133957\pi\)
−0.999115 + 0.0420713i \(0.986604\pi\)
\(294\) 0 0
\(295\) −0.173736 1.50564i −0.0101153 0.0876616i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −23.8894 −1.38156
\(300\) 0 0
\(301\) 5.98636 0.345048
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0505645 + 0.438203i 0.00289532 + 0.0250914i
\(306\) 0 0
\(307\) 2.80955i 0.160349i −0.996781 0.0801747i \(-0.974452\pi\)
0.996781 0.0801747i \(-0.0255478\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.5529 0.655104 0.327552 0.944833i \(-0.393776\pi\)
0.327552 + 0.944833i \(0.393776\pi\)
\(312\) 0 0
\(313\) 26.1580i 1.47854i −0.673411 0.739268i \(-0.735171\pi\)
0.673411 0.739268i \(-0.264829\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.3805i 1.65018i −0.565005 0.825088i \(-0.691126\pi\)
0.565005 0.825088i \(-0.308874\pi\)
\(318\) 0 0
\(319\) −7.80273 −0.436869
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.713242i 0.0396859i
\(324\) 0 0
\(325\) 4.55498 + 19.4744i 0.252665 + 1.08025i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.33034 −0.459266
\(330\) 0 0
\(331\) 12.2833 0.675149 0.337575 0.941299i \(-0.390393\pi\)
0.337575 + 0.941299i \(0.390393\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.14845 0.363302i 0.172018 0.0198493i
\(336\) 0 0
\(337\) 21.3324i 1.16205i −0.813885 0.581026i \(-0.802652\pi\)
0.813885 0.581026i \(-0.197348\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.12492 −0.0609178
\(342\) 0 0
\(343\) 13.8874i 0.749849i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.4150i 0.559107i −0.960130 0.279553i \(-0.909814\pi\)
0.960130 0.279553i \(-0.0901864\pi\)
\(348\) 0 0
\(349\) 13.4909 0.722149 0.361074 0.932537i \(-0.382410\pi\)
0.361074 + 0.932537i \(0.382410\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.7177i 0.676895i −0.940985 0.338447i \(-0.890098\pi\)
0.940985 0.338447i \(-0.109902\pi\)
\(354\) 0 0
\(355\) 1.57642 + 13.6616i 0.0836679 + 0.725083i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.8212 −1.04612 −0.523061 0.852295i \(-0.675210\pi\)
−0.523061 + 0.852295i \(0.675210\pi\)
\(360\) 0 0
\(361\) 24.7222 1.30117
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.6949 1.58026i 0.716822 0.0827146i
\(366\) 0 0
\(367\) 10.3027i 0.537796i 0.963169 + 0.268898i \(0.0866594\pi\)
−0.963169 + 0.268898i \(0.913341\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.17199 0.268516
\(372\) 0 0
\(373\) 23.3344i 1.20821i −0.796904 0.604105i \(-0.793531\pi\)
0.796904 0.604105i \(-0.206469\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 31.2109i 1.60744i
\(378\) 0 0
\(379\) 21.2074 1.08935 0.544676 0.838647i \(-0.316653\pi\)
0.544676 + 0.838647i \(0.316653\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.972434i 0.0496891i −0.999691 0.0248445i \(-0.992091\pi\)
0.999691 0.0248445i \(-0.00790908\pi\)
\(384\) 0 0
\(385\) 2.40477 0.277489i 0.122559 0.0141421i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.76248 0.140063 0.0700317 0.997545i \(-0.477690\pi\)
0.0700317 + 0.997545i \(0.477690\pi\)
\(390\) 0 0
\(391\) 0.644216 0.0325794
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.39804 + 20.7819i 0.120658 + 1.04565i
\(396\) 0 0
\(397\) 11.2751i 0.565882i −0.959137 0.282941i \(-0.908690\pi\)
0.959137 0.282941i \(-0.0913101\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.4471 0.521704 0.260852 0.965379i \(-0.415997\pi\)
0.260852 + 0.965379i \(0.415997\pi\)
\(402\) 0 0
\(403\) 4.49968i 0.224145i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.05494i 0.349700i
\(408\) 0 0
\(409\) 1.27512 0.0630507 0.0315254 0.999503i \(-0.489963\pi\)
0.0315254 + 0.999503i \(0.489963\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.733786i 0.0361072i
\(414\) 0 0
\(415\) −30.5331 + 3.52324i −1.49881 + 0.172949i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.7795 0.917436 0.458718 0.888582i \(-0.348309\pi\)
0.458718 + 0.888582i \(0.348309\pi\)
\(420\) 0 0
\(421\) −1.27512 −0.0621457 −0.0310728 0.999517i \(-0.509892\pi\)
−0.0310728 + 0.999517i \(0.509892\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.122832 0.525158i −0.00595824 0.0254739i
\(426\) 0 0
\(427\) 0.213562i 0.0103350i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.63556 −0.0787820 −0.0393910 0.999224i \(-0.512542\pi\)
−0.0393910 + 0.999224i \(0.512542\pi\)
\(432\) 0 0
\(433\) 26.4932i 1.27318i 0.771201 + 0.636591i \(0.219656\pi\)
−0.771201 + 0.636591i \(0.780344\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 39.4909i 1.88910i
\(438\) 0 0
\(439\) −31.9358 −1.52421 −0.762106 0.647452i \(-0.775835\pi\)
−0.762106 + 0.647452i \(0.775835\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.02765i 0.0963365i −0.998839 0.0481682i \(-0.984662\pi\)
0.998839 0.0481682i \(-0.0153384\pi\)
\(444\) 0 0
\(445\) −0.330676 2.86571i −0.0156756 0.135848i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10.0675 −0.475116 −0.237558 0.971373i \(-0.576347\pi\)
−0.237558 + 0.971373i \(0.576347\pi\)
\(450\) 0 0
\(451\) 5.19045 0.244409
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.10995 + 9.61910i 0.0520355 + 0.450950i
\(456\) 0 0
\(457\) 6.04839i 0.282932i −0.989943 0.141466i \(-0.954818\pi\)
0.989943 0.141466i \(-0.0451816\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −31.8397 −1.48292 −0.741460 0.670997i \(-0.765866\pi\)
−0.741460 + 0.670997i \(0.765866\pi\)
\(462\) 0 0
\(463\) 30.2474i 1.40572i −0.711330 0.702858i \(-0.751907\pi\)
0.711330 0.702858i \(-0.248093\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.3417i 1.45032i 0.688580 + 0.725160i \(0.258234\pi\)
−0.688580 + 0.725160i \(0.741766\pi\)
\(468\) 0 0
\(469\) 1.53443 0.0708533
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.52969i 0.254256i
\(474\) 0 0
\(475\) −32.1925 + 7.52969i −1.47709 + 0.345486i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.59663 0.301408 0.150704 0.988579i \(-0.451846\pi\)
0.150704 + 0.988579i \(0.451846\pi\)
\(480\) 0 0
\(481\) −28.2197 −1.28671
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.6781 1.69372i 0.666500 0.0769079i
\(486\) 0 0
\(487\) 1.13343i 0.0513605i −0.999670 0.0256802i \(-0.991825\pi\)
0.999670 0.0256802i \(-0.00817517\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −43.5569 −1.96570 −0.982848 0.184419i \(-0.940960\pi\)
−0.982848 + 0.184419i \(0.940960\pi\)
\(492\) 0 0
\(493\) 0.841652i 0.0379061i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.65811i 0.298657i
\(498\) 0 0
\(499\) 34.5502 1.54668 0.773341 0.633991i \(-0.218584\pi\)
0.773341 + 0.633991i \(0.218584\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.92424i 0.264149i 0.991240 + 0.132074i \(0.0421638\pi\)
−0.991240 + 0.132074i \(0.957836\pi\)
\(504\) 0 0
\(505\) 3.95766 + 34.2980i 0.176114 + 1.52624i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −42.3679 −1.87793 −0.938963 0.344018i \(-0.888212\pi\)
−0.938963 + 0.344018i \(0.888212\pi\)
\(510\) 0 0
\(511\) 6.67431 0.295254
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.7625 + 1.47267i −0.562382 + 0.0648936i
\(516\) 0 0
\(517\) 7.69486i 0.338420i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.2116 −0.929297 −0.464648 0.885495i \(-0.653819\pi\)
−0.464648 + 0.885495i \(0.653819\pi\)
\(522\) 0 0
\(523\) 5.19045i 0.226963i 0.993540 + 0.113481i \(0.0362002\pi\)
−0.993540 + 0.113481i \(0.963800\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.121341i 0.00528570i
\(528\) 0 0
\(529\) −12.6690 −0.550825
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 20.7618i 0.899293i
\(534\) 0 0
\(535\) 9.56312 1.10350i 0.413450 0.0477083i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.82801 −0.251030
\(540\) 0 0
\(541\) −24.0185 −1.03263 −0.516317 0.856397i \(-0.672697\pi\)
−0.516317 + 0.856397i \(0.672697\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.597313 + 5.17644i 0.0255861 + 0.221734i
\(546\) 0 0
\(547\) 12.8601i 0.549859i −0.961464 0.274929i \(-0.911346\pi\)
0.961464 0.274929i \(-0.0886545\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 51.5938 2.19797
\(552\) 0 0
\(553\) 10.1282i 0.430697i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.3344i 1.32768i 0.747874 + 0.663841i \(0.231075\pi\)
−0.747874 + 0.663841i \(0.768925\pi\)
\(558\) 0 0
\(559\) −22.1188 −0.935525
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.6901i 0.745550i −0.927922 0.372775i \(-0.878406\pi\)
0.927922 0.372775i \(-0.121594\pi\)
\(564\) 0 0
\(565\) −24.3170 + 2.80596i −1.02303 + 0.118048i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.3004 1.10257 0.551285 0.834317i \(-0.314138\pi\)
0.551285 + 0.834317i \(0.314138\pi\)
\(570\) 0 0
\(571\) −35.9884 −1.50607 −0.753033 0.657983i \(-0.771410\pi\)
−0.753033 + 0.657983i \(0.771410\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.80098 + 29.0770i 0.283621 + 1.21259i
\(576\) 0 0
\(577\) 32.6031i 1.35728i −0.734469 0.678642i \(-0.762569\pi\)
0.734469 0.678642i \(-0.237431\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.8806 −0.617351
\(582\) 0 0
\(583\) 4.77745i 0.197862i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.6287i 0.727612i −0.931475 0.363806i \(-0.881477\pi\)
0.931475 0.363806i \(-0.118523\pi\)
\(588\) 0 0
\(589\) 7.43829 0.306489
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.2246i 0.543068i 0.962429 + 0.271534i \(0.0875309\pi\)
−0.962429 + 0.271534i \(0.912469\pi\)
\(594\) 0 0
\(595\) −0.0299317 0.259394i −0.00122708 0.0106341i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.2771 1.52310 0.761551 0.648105i \(-0.224438\pi\)
0.761551 + 0.648105i \(0.224438\pi\)
\(600\) 0 0
\(601\) 17.0594 0.695867 0.347934 0.937519i \(-0.386883\pi\)
0.347934 + 0.937519i \(0.386883\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.256321 + 2.22133i 0.0104209 + 0.0903098i
\(606\) 0 0
\(607\) 7.92624i 0.321716i 0.986978 + 0.160858i \(0.0514262\pi\)
−0.986978 + 0.160858i \(0.948574\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 30.7795 1.24520
\(612\) 0 0
\(613\) 9.93596i 0.401310i −0.979662 0.200655i \(-0.935693\pi\)
0.979662 0.200655i \(-0.0643070\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.1010i 1.53389i −0.641715 0.766944i \(-0.721777\pi\)
0.641715 0.766944i \(-0.278223\pi\)
\(618\) 0 0
\(619\) −5.70309 −0.229227 −0.114613 0.993410i \(-0.536563\pi\)
−0.114613 + 0.993410i \(0.536563\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.39663i 0.0559548i
\(624\) 0 0
\(625\) 22.4065 11.0882i 0.896261 0.443527i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.760990 0.0303427
\(630\) 0 0
\(631\) 17.3242 0.689665 0.344833 0.938664i \(-0.387936\pi\)
0.344833 + 0.938664i \(0.387936\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −27.9447 + 3.22456i −1.10895 + 0.127963i
\(636\) 0 0
\(637\) 23.3120i 0.923657i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.3523 0.882863 0.441431 0.897295i \(-0.354471\pi\)
0.441431 + 0.897295i \(0.354471\pi\)
\(642\) 0 0
\(643\) 25.2911i 0.997385i 0.866779 + 0.498693i \(0.166186\pi\)
−0.866779 + 0.498693i \(0.833814\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.4262i 0.881665i −0.897589 0.440832i \(-0.854683\pi\)
0.897589 0.440832i \(-0.145317\pi\)
\(648\) 0 0
\(649\) 0.677809 0.0266063
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.8391i 0.463301i 0.972799 + 0.231650i \(0.0744125\pi\)
−0.972799 + 0.231650i \(0.925587\pi\)
\(654\) 0 0
\(655\) −3.90710 33.8598i −0.152663 1.32301i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.7522 −0.613617 −0.306809 0.951771i \(-0.599261\pi\)
−0.306809 + 0.951771i \(0.599261\pi\)
\(660\) 0 0
\(661\) −7.15702 −0.278376 −0.139188 0.990266i \(-0.544449\pi\)
−0.139188 + 0.990266i \(0.544449\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15.9010 + 1.83483i −0.616616 + 0.0711517i
\(666\) 0 0
\(667\) 46.6006i 1.80438i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.197271 −0.00761555
\(672\) 0 0
\(673\) 11.4976i 0.443200i 0.975138 + 0.221600i \(0.0711279\pi\)
−0.975138 + 0.221600i \(0.928872\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.9953i 0.845347i 0.906282 + 0.422673i \(0.138908\pi\)
−0.906282 + 0.422673i \(0.861092\pi\)
\(678\) 0 0
\(679\) 7.15353 0.274527
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.468300i 0.0179190i 0.999960 + 0.00895950i \(0.00285194\pi\)
−0.999960 + 0.00895950i \(0.997148\pi\)
\(684\) 0 0
\(685\) 32.4488 3.74429i 1.23980 0.143062i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19.1098 −0.728025
\(690\) 0 0
\(691\) −36.9140 −1.40428 −0.702138 0.712041i \(-0.747771\pi\)
−0.702138 + 0.712041i \(0.747771\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.23279 + 45.3484i 0.198491 + 1.72016i
\(696\) 0 0
\(697\) 0.559875i 0.0212068i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.6628 −0.704886 −0.352443 0.935833i \(-0.614649\pi\)
−0.352443 + 0.935833i \(0.614649\pi\)
\(702\) 0 0
\(703\) 46.6492i 1.75941i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.7154i 0.628648i
\(708\) 0 0
\(709\) −6.66135 −0.250172 −0.125086 0.992146i \(-0.539921\pi\)
−0.125086 + 0.992146i \(0.539921\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.71842i 0.251607i
\(714\) 0 0
\(715\) −8.88531 + 1.02528i −0.332292 + 0.0383434i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.11128 −0.116031 −0.0580156 0.998316i \(-0.518477\pi\)
−0.0580156 + 0.998316i \(0.518477\pi\)
\(720\) 0 0
\(721\) −6.21991 −0.231641
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −37.9884 + 8.88531i −1.41085 + 0.329992i
\(726\) 0 0
\(727\) 33.9540i 1.25928i 0.776886 + 0.629642i \(0.216798\pi\)
−0.776886 + 0.629642i \(0.783202\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.596468 0.0220612
\(732\) 0 0
\(733\) 21.0457i 0.777342i −0.921377 0.388671i \(-0.872934\pi\)
0.921377 0.388671i \(-0.127066\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.41737i 0.0522097i
\(738\) 0 0
\(739\) 17.0253 0.626285 0.313143 0.949706i \(-0.398618\pi\)
0.313143 + 0.949706i \(0.398618\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.7563i 0.871536i 0.900059 + 0.435768i \(0.143523\pi\)
−0.900059 + 0.435768i \(0.856477\pi\)
\(744\) 0 0
\(745\) −4.07227 35.2911i −0.149196 1.29297i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.66067 0.170297
\(750\) 0 0
\(751\) −44.8654 −1.63716 −0.818582 0.574390i \(-0.805239\pi\)
−0.818582 + 0.574390i \(0.805239\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.68663 + 14.6167i 0.0613829 + 0.531957i
\(756\) 0 0
\(757\) 41.3761i 1.50384i 0.659255 + 0.751920i \(0.270872\pi\)
−0.659255 + 0.751920i \(0.729128\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16.3002 −0.590883 −0.295442 0.955361i \(-0.595467\pi\)
−0.295442 + 0.955361i \(0.595467\pi\)
\(762\) 0 0
\(763\) 2.52279i 0.0913310i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.71124i 0.0978971i
\(768\) 0 0
\(769\) −41.1262 −1.48305 −0.741525 0.670925i \(-0.765897\pi\)
−0.741525 + 0.670925i \(0.765897\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.77280i 0.351503i 0.984435 + 0.175752i \(0.0562355\pi\)
−0.984435 + 0.175752i \(0.943764\pi\)
\(774\) 0 0
\(775\) −5.47679 + 1.28100i −0.196732 + 0.0460147i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −34.3207 −1.22967
\(780\) 0 0
\(781\) −6.15020 −0.220072
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.1840 + 1.63670i −0.506248 + 0.0584162i
\(786\) 0 0
\(787\) 5.25466i 0.187308i 0.995605 + 0.0936541i \(0.0298548\pi\)
−0.995605 + 0.0936541i \(0.970145\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.8511 −0.421377
\(792\) 0 0
\(793\) 0.789082i 0.0280211i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.2133i 0.503460i 0.967797 + 0.251730i \(0.0809995\pi\)
−0.967797 + 0.251730i \(0.919000\pi\)
\(798\) 0 0
\(799\) −0.830017 −0.0293639
\(800\) 0 0
\(801\) 0