Properties

Label 3960.2.a.bb.1.1
Level $3960$
Weight $2$
Character 3960.1
Self dual yes
Analytic conductor $31.621$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(1,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6207592004\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -3.41421 q^{7} +O(q^{10})\) \(q+1.00000 q^{5} -3.41421 q^{7} +1.00000 q^{11} -1.41421 q^{13} +4.24264 q^{17} -6.82843 q^{19} +2.82843 q^{23} +1.00000 q^{25} +3.65685 q^{29} +0.828427 q^{31} -3.41421 q^{35} +7.65685 q^{37} -7.65685 q^{41} +5.07107 q^{43} -12.4853 q^{47} +4.65685 q^{49} -10.4853 q^{53} +1.00000 q^{55} -3.17157 q^{59} +3.17157 q^{61} -1.41421 q^{65} -8.48528 q^{67} +6.48528 q^{71} -7.07107 q^{73} -3.41421 q^{77} -16.4853 q^{79} -1.75736 q^{83} +4.24264 q^{85} -2.00000 q^{89} +4.82843 q^{91} -6.82843 q^{95} +3.17157 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 4 q^{7} + 2 q^{11} - 8 q^{19} + 2 q^{25} - 4 q^{29} - 4 q^{31} - 4 q^{35} + 4 q^{37} - 4 q^{41} - 4 q^{43} - 8 q^{47} - 2 q^{49} - 4 q^{53} + 2 q^{55} - 12 q^{59} + 12 q^{61} - 4 q^{71} - 4 q^{77} - 16 q^{79} - 12 q^{83} - 4 q^{89} + 4 q^{91} - 8 q^{95} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.41421 −1.29045 −0.645226 0.763992i \(-0.723237\pi\)
−0.645226 + 0.763992i \(0.723237\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −1.41421 −0.392232 −0.196116 0.980581i \(-0.562833\pi\)
−0.196116 + 0.980581i \(0.562833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.24264 1.02899 0.514496 0.857493i \(-0.327979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 0 0
\(19\) −6.82843 −1.56655 −0.783274 0.621676i \(-0.786452\pi\)
−0.783274 + 0.621676i \(0.786452\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.65685 0.679061 0.339530 0.940595i \(-0.389732\pi\)
0.339530 + 0.940595i \(0.389732\pi\)
\(30\) 0 0
\(31\) 0.828427 0.148790 0.0743950 0.997229i \(-0.476297\pi\)
0.0743950 + 0.997229i \(0.476297\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.41421 −0.577107
\(36\) 0 0
\(37\) 7.65685 1.25878 0.629390 0.777090i \(-0.283305\pi\)
0.629390 + 0.777090i \(0.283305\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.65685 −1.19580 −0.597900 0.801571i \(-0.703998\pi\)
−0.597900 + 0.801571i \(0.703998\pi\)
\(42\) 0 0
\(43\) 5.07107 0.773331 0.386665 0.922220i \(-0.373627\pi\)
0.386665 + 0.922220i \(0.373627\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.4853 −1.82117 −0.910583 0.413327i \(-0.864367\pi\)
−0.910583 + 0.413327i \(0.864367\pi\)
\(48\) 0 0
\(49\) 4.65685 0.665265
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.4853 −1.44026 −0.720132 0.693837i \(-0.755919\pi\)
−0.720132 + 0.693837i \(0.755919\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.17157 −0.412904 −0.206452 0.978457i \(-0.566192\pi\)
−0.206452 + 0.978457i \(0.566192\pi\)
\(60\) 0 0
\(61\) 3.17157 0.406078 0.203039 0.979171i \(-0.434918\pi\)
0.203039 + 0.979171i \(0.434918\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.41421 −0.175412
\(66\) 0 0
\(67\) −8.48528 −1.03664 −0.518321 0.855186i \(-0.673443\pi\)
−0.518321 + 0.855186i \(0.673443\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.48528 0.769661 0.384831 0.922987i \(-0.374260\pi\)
0.384831 + 0.922987i \(0.374260\pi\)
\(72\) 0 0
\(73\) −7.07107 −0.827606 −0.413803 0.910366i \(-0.635800\pi\)
−0.413803 + 0.910366i \(0.635800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.41421 −0.389086
\(78\) 0 0
\(79\) −16.4853 −1.85474 −0.927370 0.374147i \(-0.877936\pi\)
−0.927370 + 0.374147i \(0.877936\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.75736 −0.192895 −0.0964476 0.995338i \(-0.530748\pi\)
−0.0964476 + 0.995338i \(0.530748\pi\)
\(84\) 0 0
\(85\) 4.24264 0.460179
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 4.82843 0.506157
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.82843 −0.700582
\(96\) 0 0
\(97\) 3.17157 0.322024 0.161012 0.986952i \(-0.448524\pi\)
0.161012 + 0.986952i \(0.448524\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.51472 −0.150720 −0.0753601 0.997156i \(-0.524011\pi\)
−0.0753601 + 0.997156i \(0.524011\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.41421 −0.716759 −0.358380 0.933576i \(-0.616671\pi\)
−0.358380 + 0.933576i \(0.616671\pi\)
\(108\) 0 0
\(109\) −13.3137 −1.27522 −0.637611 0.770358i \(-0.720077\pi\)
−0.637611 + 0.770358i \(0.720077\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.65685 0.344008 0.172004 0.985096i \(-0.444976\pi\)
0.172004 + 0.985096i \(0.444976\pi\)
\(114\) 0 0
\(115\) 2.82843 0.263752
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −14.4853 −1.32786
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 21.5563 1.91282 0.956408 0.292033i \(-0.0943316\pi\)
0.956408 + 0.292033i \(0.0943316\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.82843 −0.596602 −0.298301 0.954472i \(-0.596420\pi\)
−0.298301 + 0.954472i \(0.596420\pi\)
\(132\) 0 0
\(133\) 23.3137 2.02155
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.3137 −1.47921 −0.739605 0.673041i \(-0.764988\pi\)
−0.739605 + 0.673041i \(0.764988\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.41421 −0.118262
\(144\) 0 0
\(145\) 3.65685 0.303685
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.4853 −1.18668 −0.593340 0.804952i \(-0.702191\pi\)
−0.593340 + 0.804952i \(0.702191\pi\)
\(150\) 0 0
\(151\) −18.1421 −1.47639 −0.738193 0.674590i \(-0.764321\pi\)
−0.738193 + 0.674590i \(0.764321\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.828427 0.0665409
\(156\) 0 0
\(157\) 22.4853 1.79452 0.897260 0.441502i \(-0.145554\pi\)
0.897260 + 0.441502i \(0.145554\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.65685 −0.761067
\(162\) 0 0
\(163\) −11.3137 −0.886158 −0.443079 0.896483i \(-0.646114\pi\)
−0.443079 + 0.896483i \(0.646114\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.72792 0.520622 0.260311 0.965525i \(-0.416175\pi\)
0.260311 + 0.965525i \(0.416175\pi\)
\(168\) 0 0
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.10051 −0.159698 −0.0798492 0.996807i \(-0.525444\pi\)
−0.0798492 + 0.996807i \(0.525444\pi\)
\(174\) 0 0
\(175\) −3.41421 −0.258090
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.34315 −0.474109 −0.237054 0.971496i \(-0.576182\pi\)
−0.237054 + 0.971496i \(0.576182\pi\)
\(180\) 0 0
\(181\) 0.686292 0.0510116 0.0255058 0.999675i \(-0.491880\pi\)
0.0255058 + 0.999675i \(0.491880\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.65685 0.562943
\(186\) 0 0
\(187\) 4.24264 0.310253
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.3137 −1.39749 −0.698745 0.715370i \(-0.746258\pi\)
−0.698745 + 0.715370i \(0.746258\pi\)
\(192\) 0 0
\(193\) −1.89949 −0.136729 −0.0683643 0.997660i \(-0.521778\pi\)
−0.0683643 + 0.997660i \(0.521778\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.242641 0.0172874 0.00864372 0.999963i \(-0.497249\pi\)
0.00864372 + 0.999963i \(0.497249\pi\)
\(198\) 0 0
\(199\) 16.9706 1.20301 0.601506 0.798869i \(-0.294568\pi\)
0.601506 + 0.798869i \(0.294568\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.4853 −0.876295
\(204\) 0 0
\(205\) −7.65685 −0.534778
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.82843 −0.472332
\(210\) 0 0
\(211\) −3.51472 −0.241963 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.07107 0.345844
\(216\) 0 0
\(217\) −2.82843 −0.192006
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 9.17157 0.614174 0.307087 0.951681i \(-0.400646\pi\)
0.307087 + 0.951681i \(0.400646\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.0711 −0.867557 −0.433779 0.901019i \(-0.642820\pi\)
−0.433779 + 0.901019i \(0.642820\pi\)
\(228\) 0 0
\(229\) 13.3137 0.879795 0.439897 0.898048i \(-0.355015\pi\)
0.439897 + 0.898048i \(0.355015\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.7279 −1.09588 −0.547941 0.836517i \(-0.684588\pi\)
−0.547941 + 0.836517i \(0.684588\pi\)
\(234\) 0 0
\(235\) −12.4853 −0.814450
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.1421 −0.656040 −0.328020 0.944671i \(-0.606381\pi\)
−0.328020 + 0.944671i \(0.606381\pi\)
\(240\) 0 0
\(241\) 16.1421 1.03981 0.519903 0.854225i \(-0.325968\pi\)
0.519903 + 0.854225i \(0.325968\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.65685 0.297516
\(246\) 0 0
\(247\) 9.65685 0.614451
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.4853 1.67174 0.835868 0.548930i \(-0.184965\pi\)
0.835868 + 0.548930i \(0.184965\pi\)
\(252\) 0 0
\(253\) 2.82843 0.177822
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 29.7990 1.85881 0.929405 0.369062i \(-0.120321\pi\)
0.929405 + 0.369062i \(0.120321\pi\)
\(258\) 0 0
\(259\) −26.1421 −1.62439
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.72792 0.414861 0.207431 0.978250i \(-0.433490\pi\)
0.207431 + 0.978250i \(0.433490\pi\)
\(264\) 0 0
\(265\) −10.4853 −0.644106
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.65685 0.588789 0.294394 0.955684i \(-0.404882\pi\)
0.294394 + 0.955684i \(0.404882\pi\)
\(270\) 0 0
\(271\) 4.48528 0.272461 0.136231 0.990677i \(-0.456501\pi\)
0.136231 + 0.990677i \(0.456501\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 17.4142 1.04632 0.523159 0.852235i \(-0.324753\pi\)
0.523159 + 0.852235i \(0.324753\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −29.3137 −1.74871 −0.874355 0.485288i \(-0.838715\pi\)
−0.874355 + 0.485288i \(0.838715\pi\)
\(282\) 0 0
\(283\) −1.75736 −0.104464 −0.0522321 0.998635i \(-0.516634\pi\)
−0.0522321 + 0.998635i \(0.516634\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.1421 1.54312
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.58579 0.384746 0.192373 0.981322i \(-0.438382\pi\)
0.192373 + 0.981322i \(0.438382\pi\)
\(294\) 0 0
\(295\) −3.17157 −0.184656
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) −17.3137 −0.997946
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.17157 0.181604
\(306\) 0 0
\(307\) −1.75736 −0.100298 −0.0501489 0.998742i \(-0.515970\pi\)
−0.0501489 + 0.998742i \(0.515970\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.82843 −0.273795 −0.136897 0.990585i \(-0.543713\pi\)
−0.136897 + 0.990585i \(0.543713\pi\)
\(312\) 0 0
\(313\) 18.0000 1.01742 0.508710 0.860938i \(-0.330123\pi\)
0.508710 + 0.860938i \(0.330123\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 0 0
\(319\) 3.65685 0.204745
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −28.9706 −1.61197
\(324\) 0 0
\(325\) −1.41421 −0.0784465
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 42.6274 2.35013
\(330\) 0 0
\(331\) −2.48528 −0.136603 −0.0683017 0.997665i \(-0.521758\pi\)
−0.0683017 + 0.997665i \(0.521758\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.48528 −0.463600
\(336\) 0 0
\(337\) −34.8701 −1.89949 −0.949747 0.313020i \(-0.898659\pi\)
−0.949747 + 0.313020i \(0.898659\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.828427 0.0448618
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.75736 0.523802 0.261901 0.965095i \(-0.415651\pi\)
0.261901 + 0.965095i \(0.415651\pi\)
\(348\) 0 0
\(349\) −16.8284 −0.900805 −0.450403 0.892826i \(-0.648720\pi\)
−0.450403 + 0.892826i \(0.648720\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.48528 −0.345177 −0.172588 0.984994i \(-0.555213\pi\)
−0.172588 + 0.984994i \(0.555213\pi\)
\(354\) 0 0
\(355\) 6.48528 0.344203
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.48528 0.447836 0.223918 0.974608i \(-0.428115\pi\)
0.223918 + 0.974608i \(0.428115\pi\)
\(360\) 0 0
\(361\) 27.6274 1.45407
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.07107 −0.370117
\(366\) 0 0
\(367\) −26.8284 −1.40043 −0.700216 0.713931i \(-0.746913\pi\)
−0.700216 + 0.713931i \(0.746913\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 35.7990 1.85859
\(372\) 0 0
\(373\) 24.2426 1.25524 0.627618 0.778521i \(-0.284030\pi\)
0.627618 + 0.778521i \(0.284030\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.17157 −0.266350
\(378\) 0 0
\(379\) −15.3137 −0.786612 −0.393306 0.919408i \(-0.628669\pi\)
−0.393306 + 0.919408i \(0.628669\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.9706 1.68472 0.842359 0.538918i \(-0.181167\pi\)
0.842359 + 0.538918i \(0.181167\pi\)
\(384\) 0 0
\(385\) −3.41421 −0.174004
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −19.3137 −0.979244 −0.489622 0.871935i \(-0.662865\pi\)
−0.489622 + 0.871935i \(0.662865\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.4853 −0.829465
\(396\) 0 0
\(397\) 1.51472 0.0760215 0.0380108 0.999277i \(-0.487898\pi\)
0.0380108 + 0.999277i \(0.487898\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.3137 0.664855 0.332427 0.943129i \(-0.392132\pi\)
0.332427 + 0.943129i \(0.392132\pi\)
\(402\) 0 0
\(403\) −1.17157 −0.0583602
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.65685 0.379536
\(408\) 0 0
\(409\) −26.9706 −1.33361 −0.666804 0.745233i \(-0.732338\pi\)
−0.666804 + 0.745233i \(0.732338\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.8284 0.532832
\(414\) 0 0
\(415\) −1.75736 −0.0862654
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.6274 −0.910009 −0.455004 0.890489i \(-0.650362\pi\)
−0.455004 + 0.890489i \(0.650362\pi\)
\(420\) 0 0
\(421\) 22.3431 1.08894 0.544469 0.838781i \(-0.316731\pi\)
0.544469 + 0.838781i \(0.316731\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.24264 0.205798
\(426\) 0 0
\(427\) −10.8284 −0.524024
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.9706 −1.20279 −0.601395 0.798952i \(-0.705388\pi\)
−0.601395 + 0.798952i \(0.705388\pi\)
\(432\) 0 0
\(433\) −20.8284 −1.00095 −0.500475 0.865751i \(-0.666841\pi\)
−0.500475 + 0.865751i \(0.666841\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.3137 −0.923900
\(438\) 0 0
\(439\) −16.6863 −0.796393 −0.398197 0.917300i \(-0.630364\pi\)
−0.398197 + 0.917300i \(0.630364\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) −2.00000 −0.0948091
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.34315 −0.204966 −0.102483 0.994735i \(-0.532679\pi\)
−0.102483 + 0.994735i \(0.532679\pi\)
\(450\) 0 0
\(451\) −7.65685 −0.360547
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.82843 0.226360
\(456\) 0 0
\(457\) 25.6985 1.20212 0.601062 0.799202i \(-0.294744\pi\)
0.601062 + 0.799202i \(0.294744\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −39.4558 −1.83764 −0.918821 0.394675i \(-0.870857\pi\)
−0.918821 + 0.394675i \(0.870857\pi\)
\(462\) 0 0
\(463\) 20.4853 0.952032 0.476016 0.879437i \(-0.342080\pi\)
0.476016 + 0.879437i \(0.342080\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.82843 0.130884 0.0654420 0.997856i \(-0.479154\pi\)
0.0654420 + 0.997856i \(0.479154\pi\)
\(468\) 0 0
\(469\) 28.9706 1.33774
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.07107 0.233168
\(474\) 0 0
\(475\) −6.82843 −0.313310
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.14214 0.0978767 0.0489383 0.998802i \(-0.484416\pi\)
0.0489383 + 0.998802i \(0.484416\pi\)
\(480\) 0 0
\(481\) −10.8284 −0.493734
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.17157 0.144014
\(486\) 0 0
\(487\) −11.7990 −0.534663 −0.267332 0.963605i \(-0.586142\pi\)
−0.267332 + 0.963605i \(0.586142\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 40.9706 1.84898 0.924488 0.381212i \(-0.124493\pi\)
0.924488 + 0.381212i \(0.124493\pi\)
\(492\) 0 0
\(493\) 15.5147 0.698748
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.1421 −0.993211
\(498\) 0 0
\(499\) −36.0000 −1.61158 −0.805791 0.592200i \(-0.798259\pi\)
−0.805791 + 0.592200i \(0.798259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.0711 −0.761161 −0.380581 0.924748i \(-0.624276\pi\)
−0.380581 + 0.924748i \(0.624276\pi\)
\(504\) 0 0
\(505\) −1.51472 −0.0674041
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.6863 0.562310 0.281155 0.959662i \(-0.409282\pi\)
0.281155 + 0.959662i \(0.409282\pi\)
\(510\) 0 0
\(511\) 24.1421 1.06799
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −12.4853 −0.549102
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.6274 1.07895 0.539473 0.842003i \(-0.318623\pi\)
0.539473 + 0.842003i \(0.318623\pi\)
\(522\) 0 0
\(523\) 4.10051 0.179303 0.0896513 0.995973i \(-0.471425\pi\)
0.0896513 + 0.995973i \(0.471425\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.51472 0.153104
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.8284 0.469031
\(534\) 0 0
\(535\) −7.41421 −0.320544
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.65685 0.200585
\(540\) 0 0
\(541\) 31.6569 1.36103 0.680517 0.732732i \(-0.261755\pi\)
0.680517 + 0.732732i \(0.261755\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.3137 −0.570297
\(546\) 0 0
\(547\) −13.2721 −0.567473 −0.283737 0.958902i \(-0.591574\pi\)
−0.283737 + 0.958902i \(0.591574\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −24.9706 −1.06378
\(552\) 0 0
\(553\) 56.2843 2.39345
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −41.2132 −1.74626 −0.873130 0.487488i \(-0.837913\pi\)
−0.873130 + 0.487488i \(0.837913\pi\)
\(558\) 0 0
\(559\) −7.17157 −0.303325
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.07107 0.213720 0.106860 0.994274i \(-0.465920\pi\)
0.106860 + 0.994274i \(0.465920\pi\)
\(564\) 0 0
\(565\) 3.65685 0.153845
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.14214 0.173647 0.0868237 0.996224i \(-0.472328\pi\)
0.0868237 + 0.996224i \(0.472328\pi\)
\(570\) 0 0
\(571\) −17.6569 −0.738916 −0.369458 0.929247i \(-0.620457\pi\)
−0.369458 + 0.929247i \(0.620457\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.82843 0.117954
\(576\) 0 0
\(577\) 8.82843 0.367532 0.183766 0.982970i \(-0.441171\pi\)
0.183766 + 0.982970i \(0.441171\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) −10.4853 −0.434256
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.4853 1.01062 0.505308 0.862939i \(-0.331379\pi\)
0.505308 + 0.862939i \(0.331379\pi\)
\(588\) 0 0
\(589\) −5.65685 −0.233087
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.4142 1.37216 0.686079 0.727527i \(-0.259331\pi\)
0.686079 + 0.727527i \(0.259331\pi\)
\(594\) 0 0
\(595\) −14.4853 −0.593839
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.34315 0.0957383 0.0478692 0.998854i \(-0.484757\pi\)
0.0478692 + 0.998854i \(0.484757\pi\)
\(600\) 0 0
\(601\) 20.1421 0.821615 0.410807 0.911722i \(-0.365247\pi\)
0.410807 + 0.911722i \(0.365247\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −36.3848 −1.47681 −0.738406 0.674356i \(-0.764421\pi\)
−0.738406 + 0.674356i \(0.764421\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.6569 0.714320
\(612\) 0 0
\(613\) 4.44365 0.179477 0.0897387 0.995965i \(-0.471397\pi\)
0.0897387 + 0.995965i \(0.471397\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.3431 1.14105 0.570526 0.821280i \(-0.306739\pi\)
0.570526 + 0.821280i \(0.306739\pi\)
\(618\) 0 0
\(619\) 15.4558 0.621223 0.310611 0.950537i \(-0.399466\pi\)
0.310611 + 0.950537i \(0.399466\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.82843 0.273575
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 32.4853 1.29527
\(630\) 0 0
\(631\) −22.6274 −0.900783 −0.450392 0.892831i \(-0.648716\pi\)
−0.450392 + 0.892831i \(0.648716\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.5563 0.855438
\(636\) 0 0
\(637\) −6.58579 −0.260938
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −25.3137 −0.999831 −0.499916 0.866074i \(-0.666636\pi\)
−0.499916 + 0.866074i \(0.666636\pi\)
\(642\) 0 0
\(643\) 18.3431 0.723383 0.361692 0.932298i \(-0.382199\pi\)
0.361692 + 0.932298i \(0.382199\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.62742 −0.260551 −0.130275 0.991478i \(-0.541586\pi\)
−0.130275 + 0.991478i \(0.541586\pi\)
\(648\) 0 0
\(649\) −3.17157 −0.124495
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.79899 −0.226932 −0.113466 0.993542i \(-0.536195\pi\)
−0.113466 + 0.993542i \(0.536195\pi\)
\(654\) 0 0
\(655\) −6.82843 −0.266809
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.6274 −0.881439 −0.440720 0.897645i \(-0.645277\pi\)
−0.440720 + 0.897645i \(0.645277\pi\)
\(660\) 0 0
\(661\) 39.6569 1.54247 0.771236 0.636549i \(-0.219639\pi\)
0.771236 + 0.636549i \(0.219639\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.3137 0.904067
\(666\) 0 0
\(667\) 10.3431 0.400488
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.17157 0.122437
\(672\) 0 0
\(673\) 25.8995 0.998352 0.499176 0.866501i \(-0.333636\pi\)
0.499176 + 0.866501i \(0.333636\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.8995 0.995398 0.497699 0.867350i \(-0.334178\pi\)
0.497699 + 0.867350i \(0.334178\pi\)
\(678\) 0 0
\(679\) −10.8284 −0.415557
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.79899 0.145364 0.0726822 0.997355i \(-0.476844\pi\)
0.0726822 + 0.997355i \(0.476844\pi\)
\(684\) 0 0
\(685\) −17.3137 −0.661523
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.8284 0.564918
\(690\) 0 0
\(691\) 6.34315 0.241305 0.120652 0.992695i \(-0.461501\pi\)
0.120652 + 0.992695i \(0.461501\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.0000 −0.606915
\(696\) 0 0
\(697\) −32.4853 −1.23047
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.2843 1.14382 0.571911 0.820316i \(-0.306202\pi\)
0.571911 + 0.820316i \(0.306202\pi\)
\(702\) 0 0
\(703\) −52.2843 −1.97194
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.17157 0.194497
\(708\) 0 0
\(709\) 12.6863 0.476444 0.238222 0.971211i \(-0.423435\pi\)
0.238222 + 0.971211i \(0.423435\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.34315 0.0877515
\(714\) 0 0
\(715\) −1.41421 −0.0528886
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.65685 0.210965 0.105483 0.994421i \(-0.466361\pi\)
0.105483 + 0.994421i \(0.466361\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.65685 0.135812
\(726\) 0 0
\(727\) −28.2843 −1.04901 −0.524503 0.851409i \(-0.675749\pi\)
−0.524503 + 0.851409i \(0.675749\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.5147 0.795751
\(732\) 0 0
\(733\) 35.5563 1.31330 0.656652 0.754194i \(-0.271972\pi\)
0.656652 + 0.754194i \(0.271972\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.48528 −0.312559
\(738\) 0 0
\(739\) 36.2843 1.33474 0.667369 0.744727i \(-0.267420\pi\)
0.667369 + 0.744727i \(0.267420\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.5269 −0.826432 −0.413216 0.910633i \(-0.635595\pi\)
−0.413216 + 0.910633i \(0.635595\pi\)
\(744\) 0 0
\(745\) −14.4853 −0.530700
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 25.3137 0.924943
\(750\) 0 0
\(751\) 13.6569 0.498346 0.249173 0.968459i \(-0.419841\pi\)
0.249173 + 0.968459i \(0.419841\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.1421 −0.660260
\(756\) 0 0
\(757\) 22.4853 0.817241 0.408621 0.912704i \(-0.366010\pi\)
0.408621 + 0.912704i \(0.366010\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.82843 0.175030 0.0875152 0.996163i \(-0.472107\pi\)
0.0875152 + 0.996163i \(0.472107\pi\)
\(762\) 0 0
\(763\) 45.4558 1.64561
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.48528 0.161954
\(768\) 0 0
\(769\) −32.8284 −1.18382 −0.591912 0.806003i \(-0.701627\pi\)
−0.591912 + 0.806003i \(0.701627\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 40.1421 1.44381 0.721906 0.691991i \(-0.243266\pi\)
0.721906 + 0.691991i \(0.243266\pi\)
\(774\) 0 0
\(775\) 0.828427 0.0297580
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 52.2843 1.87328
\(780\) 0 0
\(781\) 6.48528 0.232062
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.4853 0.802534
\(786\) 0 0
\(787\) 4.10051 0.146167 0.0730836 0.997326i \(-0.476716\pi\)
0.0730836 + 0.997326i \(0.476716\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.4853 −0.443925
\(792\) 0 0
\(793\) −4.48528 −0.159277
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.6274 1.01404 0.507018 0.861936i \(-0.330748\pi\)
0.507018 + 0.861936i \(0.330748\pi\)
\(798\) 0 0
\(799\) −52.9706 −1.87396
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.07107 −0.249533
\(804\) 0 0
\(805\) −9.65685 −0.340359
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −54.9706 −1.93266 −0.966331 0.257302i \(-0.917166\pi\)
−0.966331 + 0.257302i \(0.917166\pi\)
\(810\) 0 0
\(811\) 30.6274 1.07547 0.537737 0.843113i \(-0.319279\pi\)
0.537737 + 0.843113i \(0.319279\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.3137 −0.396302
\(816\) 0 0
\(817\) −34.6274 −1.21146
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.31371 0.0458487 0.0229244 0.999737i \(-0.492702\pi\)
0.0229244 + 0.999737i \(0.492702\pi\)
\(822\) 0 0
\(823\) 42.6274 1.48590 0.742949 0.669348i \(-0.233426\pi\)
0.742949 + 0.669348i \(0.233426\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36.8701 −1.28210 −0.641049 0.767500i \(-0.721500\pi\)
−0.641049 + 0.767500i \(0.721500\pi\)
\(828\) 0 0
\(829\) 6.62742 0.230180 0.115090 0.993355i \(-0.463284\pi\)
0.115090 + 0.993355i \(0.463284\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19.7574 0.684552
\(834\) 0 0
\(835\) 6.72792 0.232829
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 44.1421 1.52396 0.761978 0.647603i \(-0.224228\pi\)
0.761978 + 0.647603i \(0.224228\pi\)
\(840\) 0 0
\(841\) −15.6274 −0.538876
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.0000 −0.378412
\(846\) 0 0
\(847\) −3.41421 −0.117314
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 21.6569 0.742387
\(852\) 0 0
\(853\) 34.5858 1.18419 0.592097 0.805866i \(-0.298300\pi\)
0.592097 + 0.805866i \(0.298300\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.1005 0.754939 0.377469 0.926022i \(-0.376794\pi\)
0.377469 + 0.926022i \(0.376794\pi\)
\(858\) 0 0
\(859\) 36.1421 1.23315 0.616577 0.787295i \(-0.288519\pi\)
0.616577 + 0.787295i \(0.288519\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.68629 −0.159523 −0.0797616 0.996814i \(-0.525416\pi\)
−0.0797616 + 0.996814i \(0.525416\pi\)
\(864\) 0 0
\(865\) −2.10051 −0.0714193
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −16.4853 −0.559225
\(870\) 0 0
\(871\) 12.0000 0.406604
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.41421 −0.115421
\(876\) 0 0
\(877\) 22.3848 0.755880 0.377940 0.925830i \(-0.376633\pi\)
0.377940 + 0.925830i \(0.376633\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13.6569 0.460111 0.230056 0.973177i \(-0.426109\pi\)
0.230056 + 0.973177i \(0.426109\pi\)
\(882\) 0 0
\(883\) 40.2843 1.35567 0.677837 0.735212i \(-0.262918\pi\)
0.677837 + 0.735212i \(0.262918\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.8995 0.802467 0.401233 0.915976i \(-0.368582\pi\)
0.401233 + 0.915976i \(0.368582\pi\)
\(888\) 0 0
\(889\) −73.5980 −2.46840
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 85.2548 2.85294
\(894\) 0 0
\(895\) −6.34315 −0.212028
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.02944 0.101037
\(900\) 0 0
\(901\) −44.4853 −1.48202
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.686292 0.0228131
\(906\) 0 0
\(907\) 56.4853 1.87556 0.937781 0.347226i \(-0.112876\pi\)
0.937781 + 0.347226i \(0.112876\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 59.3137 1.96515 0.982575 0.185864i \(-0.0595085\pi\)
0.982575 + 0.185864i \(0.0595085\pi\)
\(912\) 0 0
\(913\) −1.75736 −0.0581601
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.3137 0.769886
\(918\) 0 0
\(919\) 35.3137 1.16489 0.582446 0.812869i \(-0.302096\pi\)
0.582446 + 0.812869i \(0.302096\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.17157 −0.301886
\(924\) 0 0
\(925\) 7.65685 0.251756
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.6569 −0.579303 −0.289651 0.957132i \(-0.593539\pi\)
−0.289651 + 0.957132i \(0.593539\pi\)
\(930\) 0 0
\(931\) −31.7990 −1.04217
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.24264 0.138749
\(936\) 0 0
\(937\) −3.07107 −0.100327 −0.0501637 0.998741i \(-0.515974\pi\)
−0.0501637 + 0.998741i \(0.515974\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 17.5147 0.570964 0.285482 0.958384i \(-0.407846\pi\)
0.285482 + 0.958384i \(0.407846\pi\)
\(942\) 0 0
\(943\) −21.6569 −0.705244
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.4558 0.437256 0.218628 0.975808i \(-0.429842\pi\)
0.218628 + 0.975808i \(0.429842\pi\)
\(948\) 0 0
\(949\) 10.0000 0.324614
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.10051 0.0680420 0.0340210 0.999421i \(-0.489169\pi\)
0.0340210 + 0.999421i \(0.489169\pi\)
\(954\) 0 0
\(955\) −19.3137 −0.624977
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 59.1127 1.90885
\(960\) 0 0
\(961\) −30.3137 −0.977862
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.89949 −0.0611469
\(966\) 0 0
\(967\) 8.87006 0.285242 0.142621 0.989777i \(-0.454447\pi\)
0.142621 + 0.989777i \(0.454447\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29.9411 −0.960856 −0.480428 0.877034i \(-0.659519\pi\)
−0.480428 + 0.877034i \(0.659519\pi\)
\(972\) 0 0
\(973\) 54.6274 1.75127
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −50.2843 −1.60874 −0.804368 0.594131i \(-0.797496\pi\)
−0.804368 + 0.594131i \(0.797496\pi\)
\(978\) 0 0
\(979\) −2.00000 −0.0639203
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −23.0294 −0.734525 −0.367262 0.930117i \(-0.619705\pi\)
−0.367262 + 0.930117i \(0.619705\pi\)
\(984\) 0 0
\(985\) 0.242641 0.00773118
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.3431 0.456086
\(990\) 0 0
\(991\) 35.4558 1.12629 0.563146 0.826357i \(-0.309591\pi\)
0.563146 + 0.826357i \(0.309591\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.9706 0.538003
\(996\) 0 0
\(997\) −8.24264 −0.261047 −0.130524 0.991445i \(-0.541666\pi\)
−0.130524 + 0.991445i \(0.541666\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.2.a.bb.1.1 yes 2
3.2 odd 2 3960.2.a.u.1.1 2
4.3 odd 2 7920.2.a.cf.1.2 2
12.11 even 2 7920.2.a.bx.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.2.a.u.1.1 2 3.2 odd 2
3960.2.a.bb.1.1 yes 2 1.1 even 1 trivial
7920.2.a.bx.1.2 2 12.11 even 2
7920.2.a.cf.1.2 2 4.3 odd 2