Properties

Label 3960.1.dh.b.2539.1
Level $3960$
Weight $1$
Character 3960.2539
Analytic conductor $1.976$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3960,1,Mod(379,3960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3960.379"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3960, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 0, 5, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3960.dh (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.97629745003\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.23425600.1

Embedding invariants

Embedding label 2539.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 3960.2539
Dual form 3960.1.dh.b.379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(1.30902 + 0.951057i) q^{7} +(0.809017 - 0.587785i) q^{8} +1.00000 q^{10} +(0.809017 + 0.587785i) q^{11} +(0.190983 - 0.587785i) q^{13} +(-1.30902 + 0.951057i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-0.500000 + 0.363271i) q^{19} +(-0.309017 + 0.951057i) q^{20} +(-0.809017 + 0.587785i) q^{22} +1.61803 q^{23} +(-0.809017 + 0.587785i) q^{25} +(0.500000 + 0.363271i) q^{26} +(-0.500000 - 1.53884i) q^{28} -1.00000 q^{32} +(0.500000 - 1.53884i) q^{35} +(-0.500000 - 0.363271i) q^{37} +(-0.190983 - 0.587785i) q^{38} +(-0.809017 - 0.587785i) q^{40} +(-1.30902 + 0.951057i) q^{41} +(-0.309017 - 0.951057i) q^{44} +(-0.500000 + 1.53884i) q^{46} +(0.500000 - 0.363271i) q^{47} +(0.500000 + 1.53884i) q^{49} +(-0.309017 - 0.951057i) q^{50} +(-0.500000 + 0.363271i) q^{52} +(0.500000 - 1.53884i) q^{53} +(0.309017 - 0.951057i) q^{55} +1.61803 q^{56} +(0.500000 + 0.363271i) q^{59} +(0.309017 - 0.951057i) q^{64} -0.618034 q^{65} +(1.30902 + 0.951057i) q^{70} +(0.500000 - 0.363271i) q^{74} +0.618034 q^{76} +(0.500000 + 1.53884i) q^{77} +(0.809017 - 0.587785i) q^{80} +(-0.500000 - 1.53884i) q^{82} +1.00000 q^{88} +1.61803 q^{89} +(0.809017 - 0.587785i) q^{91} +(-1.30902 - 0.951057i) q^{92} +(0.190983 + 0.587785i) q^{94} +(0.500000 + 0.363271i) q^{95} -1.61803 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} + q^{5} + 3 q^{7} + q^{8} + 4 q^{10} + q^{11} + 3 q^{13} - 3 q^{14} - q^{16} - 2 q^{19} + q^{20} - q^{22} + 2 q^{23} - q^{25} + 2 q^{26} - 2 q^{28} - 4 q^{32} + 2 q^{35} - 2 q^{37}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(3\) 0 0
\(4\) −0.809017 0.587785i −0.809017 0.587785i
\(5\) −0.309017 0.951057i −0.309017 0.951057i
\(6\) 0 0
\(7\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(8\) 0.809017 0.587785i 0.809017 0.587785i
\(9\) 0 0
\(10\) 1.00000 1.00000
\(11\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(12\) 0 0
\(13\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(14\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(17\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(20\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(21\) 0 0
\(22\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(23\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(26\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(27\) 0 0
\(28\) −0.500000 1.53884i −0.500000 1.53884i
\(29\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(30\) 0 0
\(31\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) 0.500000 1.53884i 0.500000 1.53884i
\(36\) 0 0
\(37\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(38\) −0.190983 0.587785i −0.190983 0.587785i
\(39\) 0 0
\(40\) −0.809017 0.587785i −0.809017 0.587785i
\(41\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −0.309017 0.951057i −0.309017 0.951057i
\(45\) 0 0
\(46\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(47\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(48\) 0 0
\(49\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(50\) −0.309017 0.951057i −0.309017 0.951057i
\(51\) 0 0
\(52\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(53\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(54\) 0 0
\(55\) 0.309017 0.951057i 0.309017 0.951057i
\(56\) 1.61803 1.61803
\(57\) 0 0
\(58\) 0 0
\(59\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.309017 0.951057i 0.309017 0.951057i
\(65\) −0.618034 −0.618034
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(71\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) 0 0
\(73\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(74\) 0.500000 0.363271i 0.500000 0.363271i
\(75\) 0 0
\(76\) 0.618034 0.618034
\(77\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(78\) 0 0
\(79\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(80\) 0.809017 0.587785i 0.809017 0.587785i
\(81\) 0 0
\(82\) −0.500000 1.53884i −0.500000 1.53884i
\(83\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 1.00000 1.00000
\(89\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(90\) 0 0
\(91\) 0.809017 0.587785i 0.809017 0.587785i
\(92\) −1.30902 0.951057i −1.30902 0.951057i
\(93\) 0 0
\(94\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(95\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(96\) 0 0
\(97\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(98\) −1.61803 −1.61803
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(102\) 0 0
\(103\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(104\) −0.190983 0.587785i −0.190983 0.587785i
\(105\) 0 0
\(106\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(107\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(111\) 0 0
\(112\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(113\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(114\) 0 0
\(115\) −0.500000 1.53884i −0.500000 1.53884i
\(116\) 0 0
\(117\) 0 0
\(118\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(126\) 0 0
\(127\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(128\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(129\) 0 0
\(130\) 0.190983 0.587785i 0.190983 0.587785i
\(131\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −1.00000 −1.00000
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(138\) 0 0
\(139\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(140\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(141\) 0 0
\(142\) 0 0
\(143\) 0.500000 0.363271i 0.500000 0.363271i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(149\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) 0 0
\(151\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(153\) 0 0
\(154\) −1.61803 −1.61803
\(155\) 0 0
\(156\) 0 0
\(157\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(161\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(162\) 0 0
\(163\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(164\) 1.61803 1.61803
\(165\) 0 0
\(166\) 0 0
\(167\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.61803 −1.61803
\(176\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(177\) 0 0
\(178\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(179\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(182\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(183\) 0 0
\(184\) 1.30902 0.951057i 1.30902 0.951057i
\(185\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(186\) 0 0
\(187\) 0 0
\(188\) −0.618034 −0.618034
\(189\) 0 0
\(190\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(191\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(192\) 0 0
\(193\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.500000 1.53884i 0.500000 1.53884i
\(197\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(206\) 0.500000 0.363271i 0.500000 0.363271i
\(207\) 0 0
\(208\) 0.618034 0.618034
\(209\) −0.618034 −0.618034
\(210\) 0 0
\(211\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(212\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(221\) 0 0
\(222\) 0 0
\(223\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(224\) −1.30902 0.951057i −1.30902 0.951057i
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(228\) 0 0
\(229\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(230\) 1.61803 1.61803
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(234\) 0 0
\(235\) −0.500000 0.363271i −0.500000 0.363271i
\(236\) −0.190983 0.587785i −0.190983 0.587785i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) 0 0
\(241\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(242\) −1.00000 −1.00000
\(243\) 0 0
\(244\) 0 0
\(245\) 1.30902 0.951057i 1.30902 0.951057i
\(246\) 0 0
\(247\) 0.118034 + 0.363271i 0.118034 + 0.363271i
\(248\) 0 0
\(249\) 0 0
\(250\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(251\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(252\) 0 0
\(253\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(254\) −0.618034 −0.618034
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(257\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(258\) 0 0
\(259\) −0.309017 0.951057i −0.309017 0.951057i
\(260\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(261\) 0 0
\(262\) 0.618034 1.90211i 0.618034 1.90211i
\(263\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(264\) 0 0
\(265\) −1.61803 −1.61803
\(266\) 0.309017 0.951057i 0.309017 0.951057i
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 −1.00000
\(276\) 0 0
\(277\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(278\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(279\) 0 0
\(280\) −0.500000 1.53884i −0.500000 1.53884i
\(281\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(282\) 0 0
\(283\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(287\) −2.61803 −2.61803
\(288\) 0 0
\(289\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0.190983 0.587785i 0.190983 0.587785i
\(296\) −0.618034 −0.618034
\(297\) 0 0
\(298\) 0 0
\(299\) 0.309017 0.951057i 0.309017 0.951057i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.500000 0.363271i −0.500000 0.363271i
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0.500000 1.53884i 0.500000 1.53884i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(314\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.00000 −1.00000
\(321\) 0 0
\(322\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(323\) 0 0
\(324\) 0 0
\(325\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(329\) 1.00000 1.00000
\(330\) 0 0
\(331\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.500000 0.363271i −0.500000 0.363271i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(338\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(344\) 0 0
\(345\) 0 0
\(346\) −0.500000 1.53884i −0.500000 1.53884i
\(347\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(348\) 0 0
\(349\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(350\) 0.500000 1.53884i 0.500000 1.53884i
\(351\) 0 0
\(352\) −0.809017 0.587785i −0.809017 0.587785i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.30902 0.951057i −1.30902 0.951057i
\(357\) 0 0
\(358\) −0.500000 1.53884i −0.500000 1.53884i
\(359\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(360\) 0 0
\(361\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) −1.00000 −1.00000
\(365\) 0 0
\(366\) 0 0
\(367\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(368\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(369\) 0 0
\(370\) −0.500000 0.363271i −0.500000 0.363271i
\(371\) 2.11803 1.53884i 2.11803 1.53884i
\(372\) 0 0
\(373\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.190983 0.587785i 0.190983 0.587785i
\(377\) 0 0
\(378\) 0 0
\(379\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(380\) −0.190983 0.587785i −0.190983 0.587785i
\(381\) 0 0
\(382\) 0 0
\(383\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(384\) 0 0
\(385\) 1.30902 0.951057i 1.30902 0.951057i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(393\) 0 0
\(394\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.809017 0.587785i −0.809017 0.587785i
\(401\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.190983 0.587785i −0.190983 0.587785i
\(408\) 0 0
\(409\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(410\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(411\) 0 0
\(412\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(413\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(414\) 0 0
\(415\) 0 0
\(416\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(417\) 0 0
\(418\) 0.190983 0.587785i 0.190983 0.587785i
\(419\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(420\) 0 0
\(421\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(423\) 0 0
\(424\) −0.500000 1.53884i −0.500000 1.53884i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(432\) 0 0
\(433\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) −0.309017 0.951057i −0.309017 0.951057i
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(444\) 0 0
\(445\) −0.500000 1.53884i −0.500000 1.53884i
\(446\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(447\) 0 0
\(448\) 1.30902 0.951057i 1.30902 0.951057i
\(449\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) −1.61803 −1.61803
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.809017 0.587785i −0.809017 0.587785i
\(456\) 0 0
\(457\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.500000 0.363271i 0.500000 0.363271i
\(471\) 0 0
\(472\) 0.618034 0.618034
\(473\) 0 0
\(474\) 0 0
\(475\) 0.190983 0.587785i 0.190983 0.587785i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) 0 0
\(481\) −0.309017 + 0.224514i −0.309017 + 0.224514i
\(482\) 0.500000 1.53884i 0.500000 1.53884i
\(483\) 0 0
\(484\) 0.309017 0.951057i 0.309017 0.951057i
\(485\) 0 0
\(486\) 0 0
\(487\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(491\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.381966 −0.381966
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(500\) −0.309017 0.951057i −0.309017 0.951057i
\(501\) 0 0
\(502\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(503\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(507\) 0 0
\(508\) 0.190983 0.587785i 0.190983 0.587785i
\(509\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.309017 0.951057i −0.309017 0.951057i
\(513\) 0 0
\(514\) 0 0
\(515\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(516\) 0 0
\(517\) 0.618034 0.618034
\(518\) 1.00000 1.00000
\(519\) 0 0
\(520\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(521\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(524\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(525\) 0 0
\(526\) 0.190983 0.587785i 0.190983 0.587785i
\(527\) 0 0
\(528\) 0 0
\(529\) 1.61803 1.61803
\(530\) 0.500000 1.53884i 0.500000 1.53884i
\(531\) 0 0
\(532\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(533\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(540\) 0 0
\(541\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0.309017 0.951057i 0.309017 0.951057i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.30902 0.951057i −1.30902 0.951057i
\(555\) 0 0
\(556\) −0.500000 1.53884i −0.500000 1.53884i
\(557\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.61803 1.61803
\(561\) 0 0
\(562\) 2.00000 2.00000
\(563\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(572\) −0.618034 −0.618034
\(573\) 0 0
\(574\) 0.809017 2.48990i 0.809017 2.48990i
\(575\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(576\) 0 0
\(577\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(578\) −0.309017 0.951057i −0.309017 0.951057i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.30902 0.951057i 1.30902 0.951057i
\(584\) 0 0
\(585\) 0 0
\(586\) 1.30902 0.951057i 1.30902 0.951057i
\(587\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(591\) 0 0
\(592\) 0.190983 0.587785i 0.190983 0.587785i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(599\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(600\) 0 0
\(601\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.809017 0.587785i 0.809017 0.587785i
\(606\) 0 0
\(607\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(608\) 0.500000 0.363271i 0.500000 0.363271i
\(609\) 0 0
\(610\) 0 0
\(611\) −0.118034 0.363271i −0.118034 0.363271i
\(612\) 0 0
\(613\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.309017 0.951057i
\(626\) 0 0
\(627\) 0 0
\(628\) −1.61803 −1.61803
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.500000 0.363271i −0.500000 0.363271i
\(635\) 0.500000 0.363271i 0.500000 0.363271i
\(636\) 0 0
\(637\) 1.00000 1.00000
\(638\) 0 0
\(639\) 0 0
\(640\) 0.309017 0.951057i 0.309017 0.951057i
\(641\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(642\) 0 0
\(643\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(644\) −0.809017 2.48990i −0.809017 2.48990i
\(645\) 0 0
\(646\) 0 0
\(647\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(648\) 0 0
\(649\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(650\) −0.618034 −0.618034
\(651\) 0 0
\(652\) 0 0
\(653\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(654\) 0 0
\(655\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(656\) −1.30902 0.951057i −1.30902 0.951057i
\(657\) 0 0
\(658\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(659\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(663\) 0 0
\(664\) 0 0
\(665\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(666\) 0 0
\(667\) 0 0
\(668\) 0.500000 0.363271i 0.500000 0.363271i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.190983 0.587785i −0.190983 0.587785i
\(677\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.809017 0.587785i −0.809017 0.587785i
\(687\) 0 0
\(688\) 0 0
\(689\) −0.809017 0.587785i −0.809017 0.587785i
\(690\) 0 0
\(691\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(692\) 1.61803 1.61803
\(693\) 0 0
\(694\) 0 0
\(695\) 0.500000 1.53884i 0.500000 1.53884i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(701\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(702\) 0 0
\(703\) 0.381966 0.381966
\(704\) 0.809017 0.587785i 0.809017 0.587785i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.30902 0.951057i 1.30902 0.951057i
\(713\) 0 0
\(714\) 0 0
\(715\) −0.500000 0.363271i −0.500000 0.363271i
\(716\) 1.61803 1.61803
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(720\) 0 0
\(721\) −0.309017 0.951057i −0.309017 0.951057i
\(722\) −0.500000 0.363271i −0.500000 0.363271i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(728\) 0.309017 0.951057i 0.309017 0.951057i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(734\) 1.61803 1.17557i 1.61803 1.17557i
\(735\) 0 0
\(736\) −1.61803 −1.61803
\(737\) 0 0
\(738\) 0 0
\(739\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(740\) 0.500000 0.363271i 0.500000 0.363271i
\(741\) 0 0
\(742\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(743\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(752\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(758\) 1.61803 1.61803
\(759\) 0 0
\(760\) 0.618034 0.618034
\(761\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(767\) 0.309017 0.224514i 0.309017 0.224514i
\(768\) 0 0
\(769\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(770\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(771\) 0 0
\(772\) 0 0
\(773\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.309017 0.951057i 0.309017 0.951057i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(785\) −1.30902 0.951057i −1.30902 0.951057i
\(786\) 0 0
\(787\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(788\) −1.30902 0.951057i −1.30902 0.951057i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0.500000 1.53884i 0.500000 1.53884i
\(795\) 0 0
\(796\) 0 0
\(797\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.809017 0.587785i 0.809017 0.587785i
\(801\) 0 0
\(802\) 0.618034 0.618034
\(803\) 0 0
\(804\) 0 0
\(805\) 0.809017 2.48990i 0.809017 2.48990i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.618034 0.618034
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(819\) 0 0
\(820\) −0.500000 1.53884i −0.500000 1.53884i
\(821\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(822\) 0 0
\(823\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(824\) −0.618034 −0.618034
\(825\) 0 0
\(826\) −1.00000 −1.00000
\(827\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(828\) 0 0
\(829\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.500000 0.363271i −0.500000 0.363271i
\(833\) 0 0
\(834\) 0 0
\(835\) 0.618034 0.618034
\(836\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(837\) 0 0
\(838\) 0.190983 0.587785i 0.190983 0.587785i
\(839\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(840\) 0 0
\(841\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(842\) 0 0
\(843\) 0 0
\(844\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(845\) 0.190983 0.587785i 0.190983 0.587785i
\(846\) 0 0
\(847\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(848\) 1.61803 1.61803
\(849\) 0 0
\(850\) 0 0
\(851\) −0.809017 0.587785i −0.809017 0.587785i
\(852\) 0 0
\(853\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −0.309017 0.951057i −0.309017 0.951057i
\(875\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(876\) 0 0
\(877\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 1.00000 1.00000
\(881\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(882\) 0 0
\(883\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(890\) 1.61803 1.61803
\(891\) 0 0
\(892\) −1.61803 −1.61803
\(893\) −0.118034 + 0.363271i −0.118034 + 0.363271i
\(894\) 0 0
\(895\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(896\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(897\) 0 0
\(898\) −0.500000 0.363271i −0.500000 0.363271i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0.500000 1.53884i 0.500000 1.53884i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0.809017 0.587785i 0.809017 0.587785i
\(911\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.61803 1.90211i −2.61803 1.90211i
\(918\) 0 0
\(919\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(920\) −1.30902 0.951057i −1.30902 0.951057i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.618034 0.618034
\(926\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(927\) 0 0
\(928\) 0 0
\(929\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(930\) 0 0
\(931\) −0.809017 0.587785i −0.809017 0.587785i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(941\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(942\) 0 0
\(943\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(944\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.809017 0.587785i −0.809017 0.587785i
\(962\) −0.118034 0.363271i −0.118034 0.363271i
\(963\) 0 0
\(964\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(968\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(969\) 0 0
\(970\) 0 0
\(971\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(974\) −0.618034 1.90211i −0.618034 1.90211i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(978\) 0 0
\(979\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(980\) −1.61803 −1.61803
\(981\) 0 0
\(982\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(983\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −0.500000 1.53884i −0.500000 1.53884i
\(986\) 0 0
\(987\) 0 0
\(988\) 0.118034 0.363271i 0.118034 0.363271i
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(998\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.1.dh.b.2539.1 4
3.2 odd 2 440.1.bh.a.339.1 4
5.4 even 2 3960.1.dh.a.2539.1 4
8.3 odd 2 3960.1.dh.a.2539.1 4
11.5 even 5 inner 3960.1.dh.b.379.1 4
12.11 even 2 1760.1.cn.a.559.1 4
15.2 even 4 2200.1.cl.c.251.2 8
15.8 even 4 2200.1.cl.c.251.1 8
15.14 odd 2 440.1.bh.b.339.1 yes 4
24.5 odd 2 1760.1.cn.b.559.1 4
24.11 even 2 440.1.bh.b.339.1 yes 4
33.5 odd 10 440.1.bh.a.379.1 yes 4
40.19 odd 2 CM 3960.1.dh.b.2539.1 4
55.49 even 10 3960.1.dh.a.379.1 4
60.59 even 2 1760.1.cn.b.559.1 4
88.27 odd 10 3960.1.dh.a.379.1 4
120.29 odd 2 1760.1.cn.a.559.1 4
120.59 even 2 440.1.bh.a.339.1 4
120.83 odd 4 2200.1.cl.c.251.2 8
120.107 odd 4 2200.1.cl.c.251.1 8
132.71 even 10 1760.1.cn.a.1039.1 4
165.38 even 20 2200.1.cl.c.2051.2 8
165.104 odd 10 440.1.bh.b.379.1 yes 4
165.137 even 20 2200.1.cl.c.2051.1 8
264.5 odd 10 1760.1.cn.b.1039.1 4
264.203 even 10 440.1.bh.b.379.1 yes 4
440.379 odd 10 inner 3960.1.dh.b.379.1 4
660.599 even 10 1760.1.cn.b.1039.1 4
1320.203 odd 20 2200.1.cl.c.2051.1 8
1320.269 odd 10 1760.1.cn.a.1039.1 4
1320.467 odd 20 2200.1.cl.c.2051.2 8
1320.1259 even 10 440.1.bh.a.379.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.1.bh.a.339.1 4 3.2 odd 2
440.1.bh.a.339.1 4 120.59 even 2
440.1.bh.a.379.1 yes 4 33.5 odd 10
440.1.bh.a.379.1 yes 4 1320.1259 even 10
440.1.bh.b.339.1 yes 4 15.14 odd 2
440.1.bh.b.339.1 yes 4 24.11 even 2
440.1.bh.b.379.1 yes 4 165.104 odd 10
440.1.bh.b.379.1 yes 4 264.203 even 10
1760.1.cn.a.559.1 4 12.11 even 2
1760.1.cn.a.559.1 4 120.29 odd 2
1760.1.cn.a.1039.1 4 132.71 even 10
1760.1.cn.a.1039.1 4 1320.269 odd 10
1760.1.cn.b.559.1 4 24.5 odd 2
1760.1.cn.b.559.1 4 60.59 even 2
1760.1.cn.b.1039.1 4 264.5 odd 10
1760.1.cn.b.1039.1 4 660.599 even 10
2200.1.cl.c.251.1 8 15.8 even 4
2200.1.cl.c.251.1 8 120.107 odd 4
2200.1.cl.c.251.2 8 15.2 even 4
2200.1.cl.c.251.2 8 120.83 odd 4
2200.1.cl.c.2051.1 8 165.137 even 20
2200.1.cl.c.2051.1 8 1320.203 odd 20
2200.1.cl.c.2051.2 8 165.38 even 20
2200.1.cl.c.2051.2 8 1320.467 odd 20
3960.1.dh.a.379.1 4 55.49 even 10
3960.1.dh.a.379.1 4 88.27 odd 10
3960.1.dh.a.2539.1 4 5.4 even 2
3960.1.dh.a.2539.1 4 8.3 odd 2
3960.1.dh.b.379.1 4 11.5 even 5 inner
3960.1.dh.b.379.1 4 440.379 odd 10 inner
3960.1.dh.b.2539.1 4 1.1 even 1 trivial
3960.1.dh.b.2539.1 4 40.19 odd 2 CM