Defining parameters
| Level: | \( N \) | \(=\) | \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 396.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(396))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 228 | 13 | 215 |
| Cusp forms | 204 | 13 | 191 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(32\) | \(0\) | \(32\) | \(28\) | \(0\) | \(28\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(26\) | \(0\) | \(26\) | \(22\) | \(0\) | \(22\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(29\) | \(0\) | \(29\) | \(25\) | \(0\) | \(25\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(29\) | \(0\) | \(29\) | \(25\) | \(0\) | \(25\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(28\) | \(3\) | \(25\) | \(26\) | \(3\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(28\) | \(3\) | \(25\) | \(26\) | \(3\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(28\) | \(4\) | \(24\) | \(26\) | \(4\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(28\) | \(3\) | \(25\) | \(26\) | \(3\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(117\) | \(7\) | \(110\) | \(105\) | \(7\) | \(98\) | \(12\) | \(0\) | \(12\) | |||||
| Minus space | \(-\) | \(111\) | \(6\) | \(105\) | \(99\) | \(6\) | \(93\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(396))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(396))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(396)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 2}\)