Properties

Label 396.2.j.d.181.1
Level $396$
Weight $2$
Character 396.181
Analytic conductor $3.162$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,2,Mod(37,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.484000000.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + 16x^{4} - 66x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-1.26313 - 1.73855i\) of defining polynomial
Character \(\chi\) \(=\) 396.181
Dual form 396.2.j.d.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.780656 + 2.40261i) q^{5} +(-0.809017 + 0.587785i) q^{7} +(-2.82444 + 1.73855i) q^{11} +(-0.0729490 - 0.224514i) q^{13} +(-2.04378 + 6.29012i) q^{17} +(-3.11803 - 2.26538i) q^{19} +0.964944 q^{23} +(-1.11803 - 0.812299i) q^{25} +(-2.52626 + 1.83543i) q^{29} +(2.11803 + 6.51864i) q^{31} +(-0.780656 - 2.40261i) q^{35} +(5.42705 - 3.94298i) q^{37} +(7.39448 + 5.37240i) q^{41} +3.00000 q^{43} +(-7.87695 - 5.72294i) q^{47} +(-1.85410 + 5.70634i) q^{49} +(-0.482472 - 1.48490i) q^{53} +(-1.97214 - 8.14324i) q^{55} +(8.65761 - 6.29012i) q^{59} +(0.281153 - 0.865300i) q^{61} +0.596368 q^{65} +4.32624 q^{67} +(3.30691 - 10.1776i) q^{71} +(-11.7082 + 8.50651i) q^{73} +(1.26313 - 3.06668i) q^{77} +(-0.218847 - 0.673542i) q^{79} +(1.85950 - 5.72294i) q^{83} +(-13.5172 - 9.82084i) q^{85} +7.21019 q^{89} +(0.190983 + 0.138757i) q^{91} +(7.87695 - 5.72294i) q^{95} +(3.57295 + 10.9964i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{7} - 14 q^{13} - 16 q^{19} + 8 q^{31} + 30 q^{37} + 24 q^{43} + 12 q^{49} + 20 q^{55} - 38 q^{61} - 28 q^{67} - 40 q^{73} - 42 q^{79} - 50 q^{85} + 6 q^{91} + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.780656 + 2.40261i −0.349120 + 1.07448i 0.610221 + 0.792231i \(0.291081\pi\)
−0.959341 + 0.282249i \(0.908919\pi\)
\(6\) 0 0
\(7\) −0.809017 + 0.587785i −0.305780 + 0.222162i −0.730084 0.683358i \(-0.760519\pi\)
0.424304 + 0.905520i \(0.360519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.82444 + 1.73855i −0.851600 + 0.524191i
\(12\) 0 0
\(13\) −0.0729490 0.224514i −0.0202324 0.0622690i 0.940431 0.339986i \(-0.110422\pi\)
−0.960663 + 0.277717i \(0.910422\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.04378 + 6.29012i −0.495690 + 1.52558i 0.320188 + 0.947354i \(0.396254\pi\)
−0.815878 + 0.578224i \(0.803746\pi\)
\(18\) 0 0
\(19\) −3.11803 2.26538i −0.715326 0.519715i 0.169561 0.985520i \(-0.445765\pi\)
−0.884887 + 0.465805i \(0.845765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.964944 0.201205 0.100602 0.994927i \(-0.467923\pi\)
0.100602 + 0.994927i \(0.467923\pi\)
\(24\) 0 0
\(25\) −1.11803 0.812299i −0.223607 0.162460i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.52626 + 1.83543i −0.469114 + 0.340831i −0.797096 0.603853i \(-0.793631\pi\)
0.327982 + 0.944684i \(0.393631\pi\)
\(30\) 0 0
\(31\) 2.11803 + 6.51864i 0.380410 + 1.17078i 0.939756 + 0.341847i \(0.111053\pi\)
−0.559345 + 0.828935i \(0.688947\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.780656 2.40261i −0.131955 0.406115i
\(36\) 0 0
\(37\) 5.42705 3.94298i 0.892202 0.648222i −0.0442495 0.999021i \(-0.514090\pi\)
0.936451 + 0.350798i \(0.114090\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.39448 + 5.37240i 1.15482 + 0.839028i 0.989115 0.147146i \(-0.0470088\pi\)
0.165709 + 0.986175i \(0.447009\pi\)
\(42\) 0 0
\(43\) 3.00000 0.457496 0.228748 0.973486i \(-0.426537\pi\)
0.228748 + 0.973486i \(0.426537\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.87695 5.72294i −1.14897 0.834776i −0.160627 0.987015i \(-0.551352\pi\)
−0.988344 + 0.152239i \(0.951352\pi\)
\(48\) 0 0
\(49\) −1.85410 + 5.70634i −0.264872 + 0.815191i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.482472 1.48490i −0.0662726 0.203966i 0.912437 0.409218i \(-0.134199\pi\)
−0.978709 + 0.205252i \(0.934199\pi\)
\(54\) 0 0
\(55\) −1.97214 8.14324i −0.265923 1.09803i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.65761 6.29012i 1.12712 0.818904i 0.141851 0.989888i \(-0.454695\pi\)
0.985274 + 0.170984i \(0.0546948\pi\)
\(60\) 0 0
\(61\) 0.281153 0.865300i 0.0359979 0.110790i −0.931443 0.363888i \(-0.881449\pi\)
0.967441 + 0.253097i \(0.0814493\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.596368 0.0739703
\(66\) 0 0
\(67\) 4.32624 0.528534 0.264267 0.964450i \(-0.414870\pi\)
0.264267 + 0.964450i \(0.414870\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.30691 10.1776i 0.392458 1.20786i −0.538465 0.842648i \(-0.680996\pi\)
0.930923 0.365214i \(-0.119004\pi\)
\(72\) 0 0
\(73\) −11.7082 + 8.50651i −1.37034 + 0.995611i −0.372631 + 0.927979i \(0.621544\pi\)
−0.997710 + 0.0676320i \(0.978456\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.26313 3.06668i 0.143947 0.349480i
\(78\) 0 0
\(79\) −0.218847 0.673542i −0.0246222 0.0757794i 0.937990 0.346661i \(-0.112685\pi\)
−0.962613 + 0.270882i \(0.912685\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.85950 5.72294i 0.204106 0.628174i −0.795643 0.605766i \(-0.792867\pi\)
0.999749 0.0224080i \(-0.00713330\pi\)
\(84\) 0 0
\(85\) −13.5172 9.82084i −1.46615 1.06522i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.21019 0.764279 0.382139 0.924105i \(-0.375187\pi\)
0.382139 + 0.924105i \(0.375187\pi\)
\(90\) 0 0
\(91\) 0.190983 + 0.138757i 0.0200205 + 0.0145457i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.87695 5.72294i 0.808158 0.587161i
\(96\) 0 0
\(97\) 3.57295 + 10.9964i 0.362778 + 1.11652i 0.951361 + 0.308079i \(0.0996861\pi\)
−0.588583 + 0.808437i \(0.700314\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.22807 6.85730i −0.221701 0.682327i −0.998610 0.0527130i \(-0.983213\pi\)
0.776908 0.629614i \(-0.216787\pi\)
\(102\) 0 0
\(103\) 10.8541 7.88597i 1.06949 0.777027i 0.0936666 0.995604i \(-0.470141\pi\)
0.975820 + 0.218576i \(0.0701412\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.92073 7.20783i −0.959074 0.696808i −0.00613812 0.999981i \(-0.501954\pi\)
−0.952935 + 0.303173i \(0.901954\pi\)
\(108\) 0 0
\(109\) 18.1803 1.74136 0.870680 0.491849i \(-0.163679\pi\)
0.870680 + 0.491849i \(0.163679\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.92073 + 7.20783i 0.933264 + 0.678056i 0.946790 0.321852i \(-0.104306\pi\)
−0.0135257 + 0.999909i \(0.504306\pi\)
\(114\) 0 0
\(115\) −0.753289 + 2.31838i −0.0702446 + 0.216191i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.04378 6.29012i −0.187353 0.576614i
\(120\) 0 0
\(121\) 4.95492 9.82084i 0.450447 0.892803i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.39448 + 5.37240i −0.661382 + 0.480522i
\(126\) 0 0
\(127\) −5.00000 + 15.3884i −0.443678 + 1.36550i 0.440249 + 0.897876i \(0.354890\pi\)
−0.883927 + 0.467625i \(0.845110\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.54371 0.746467 0.373234 0.927737i \(-0.378249\pi\)
0.373234 + 0.927737i \(0.378249\pi\)
\(132\) 0 0
\(133\) 3.85410 0.334193
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.75433 + 14.6323i −0.406190 + 1.25012i 0.513708 + 0.857965i \(0.328271\pi\)
−0.919898 + 0.392158i \(0.871729\pi\)
\(138\) 0 0
\(139\) −10.6353 + 7.72696i −0.902071 + 0.655393i −0.938997 0.343925i \(-0.888243\pi\)
0.0369264 + 0.999318i \(0.488243\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.596368 + 0.507301i 0.0498708 + 0.0424226i
\(144\) 0 0
\(145\) −2.43769 7.50245i −0.202439 0.623045i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.19302 9.82709i 0.261582 0.805067i −0.730879 0.682507i \(-0.760890\pi\)
0.992461 0.122560i \(-0.0391103\pi\)
\(150\) 0 0
\(151\) −17.0902 12.4167i −1.39078 1.01046i −0.995779 0.0917780i \(-0.970745\pi\)
−0.394999 0.918682i \(-0.629255\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −17.3152 −1.39079
\(156\) 0 0
\(157\) −1.85410 1.34708i −0.147973 0.107509i 0.511335 0.859381i \(-0.329151\pi\)
−0.659309 + 0.751872i \(0.729151\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.780656 + 0.567180i −0.0615243 + 0.0447000i
\(162\) 0 0
\(163\) 4.44427 + 13.6781i 0.348102 + 1.07135i 0.959902 + 0.280336i \(0.0904458\pi\)
−0.611800 + 0.791013i \(0.709554\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.79811 + 20.9224i 0.526054 + 1.61903i 0.762223 + 0.647314i \(0.224108\pi\)
−0.236169 + 0.971712i \(0.575892\pi\)
\(168\) 0 0
\(169\) 10.4721 7.60845i 0.805549 0.585266i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.69266 5.58905i −0.584862 0.424927i 0.255611 0.966780i \(-0.417723\pi\)
−0.840474 + 0.541852i \(0.817723\pi\)
\(174\) 0 0
\(175\) 1.38197 0.104467
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.4470 + 9.04327i 0.930332 + 0.675925i 0.946074 0.323951i \(-0.105011\pi\)
−0.0157424 + 0.999876i \(0.505011\pi\)
\(180\) 0 0
\(181\) −5.01722 + 15.4414i −0.372927 + 1.14775i 0.571939 + 0.820296i \(0.306191\pi\)
−0.944867 + 0.327456i \(0.893809\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.23680 + 16.1172i 0.385017 + 1.18496i
\(186\) 0 0
\(187\) −5.16312 21.3193i −0.377565 1.55902i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.0608 + 13.8485i −1.37919 + 1.00204i −0.382237 + 0.924064i \(0.624846\pi\)
−0.996955 + 0.0779771i \(0.975154\pi\)
\(192\) 0 0
\(193\) 3.44427 10.6004i 0.247924 0.763032i −0.747218 0.664579i \(-0.768611\pi\)
0.995142 0.0984525i \(-0.0313893\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −26.0867 −1.85860 −0.929301 0.369324i \(-0.879589\pi\)
−0.929301 + 0.369324i \(0.879589\pi\)
\(198\) 0 0
\(199\) 4.23607 0.300287 0.150143 0.988664i \(-0.452026\pi\)
0.150143 + 0.988664i \(0.452026\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.964944 2.96979i 0.0677258 0.208438i
\(204\) 0 0
\(205\) −18.6803 + 13.5721i −1.30469 + 0.947914i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.7452 + 0.977595i 0.881602 + 0.0676216i
\(210\) 0 0
\(211\) 3.20820 + 9.87384i 0.220862 + 0.679743i 0.998685 + 0.0512601i \(0.0163238\pi\)
−0.777823 + 0.628483i \(0.783676\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.34197 + 7.20783i −0.159721 + 0.491570i
\(216\) 0 0
\(217\) −5.54508 4.02874i −0.376425 0.273489i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.56131 0.105025
\(222\) 0 0
\(223\) 5.19098 + 3.77147i 0.347614 + 0.252556i 0.747867 0.663848i \(-0.231078\pi\)
−0.400253 + 0.916404i \(0.631078\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.6572 + 14.2818i −1.30469 + 0.947915i −0.999990 0.00453258i \(-0.998557\pi\)
−0.304703 + 0.952447i \(0.598557\pi\)
\(228\) 0 0
\(229\) 3.52786 + 10.8576i 0.233128 + 0.717494i 0.997364 + 0.0725574i \(0.0231161\pi\)
−0.764236 + 0.644936i \(0.776884\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.74560 + 5.37240i 0.114358 + 0.351958i 0.991813 0.127702i \(-0.0407601\pi\)
−0.877455 + 0.479660i \(0.840760\pi\)
\(234\) 0 0
\(235\) 19.8992 14.4576i 1.29808 0.943110i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.78938 + 2.75315i 0.245115 + 0.178086i 0.703559 0.710637i \(-0.251593\pi\)
−0.458444 + 0.888723i \(0.651593\pi\)
\(240\) 0 0
\(241\) 22.9443 1.47797 0.738985 0.673722i \(-0.235305\pi\)
0.738985 + 0.673722i \(0.235305\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.2627 8.90937i −0.783435 0.569199i
\(246\) 0 0
\(247\) −0.281153 + 0.865300i −0.0178893 + 0.0550577i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.16641 + 15.9006i 0.326101 + 1.00363i 0.970941 + 0.239318i \(0.0769237\pi\)
−0.644841 + 0.764317i \(0.723076\pi\)
\(252\) 0 0
\(253\) −2.72542 + 1.67760i −0.171346 + 0.105470i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.60510 + 2.61925i −0.224880 + 0.163385i −0.694520 0.719473i \(-0.744383\pi\)
0.469641 + 0.882858i \(0.344383\pi\)
\(258\) 0 0
\(259\) −2.07295 + 6.37988i −0.128807 + 0.396427i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.7014 0.659876 0.329938 0.944003i \(-0.392972\pi\)
0.329938 + 0.944003i \(0.392972\pi\)
\(264\) 0 0
\(265\) 3.94427 0.242295
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.49120 10.7448i 0.212862 0.655122i −0.786436 0.617671i \(-0.788076\pi\)
0.999298 0.0374510i \(-0.0119238\pi\)
\(270\) 0 0
\(271\) 1.73607 1.26133i 0.105459 0.0766202i −0.533806 0.845607i \(-0.679239\pi\)
0.639265 + 0.768987i \(0.279239\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.57004 + 0.350536i 0.275584 + 0.0211381i
\(276\) 0 0
\(277\) −2.55573 7.86572i −0.153559 0.472605i 0.844453 0.535629i \(-0.179926\pi\)
−0.998012 + 0.0630239i \(0.979926\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.64888 17.3855i 0.336984 1.03713i −0.628753 0.777605i \(-0.716434\pi\)
0.965737 0.259524i \(-0.0835658\pi\)
\(282\) 0 0
\(283\) −20.5623 14.9394i −1.22230 0.888055i −0.226013 0.974124i \(-0.572569\pi\)
−0.996289 + 0.0860697i \(0.972569\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.14008 −0.539522
\(288\) 0 0
\(289\) −21.6353 15.7189i −1.27266 0.924643i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.39448 5.37240i 0.431990 0.313859i −0.350454 0.936580i \(-0.613973\pi\)
0.782444 + 0.622721i \(0.213973\pi\)
\(294\) 0 0
\(295\) 8.35410 + 25.7113i 0.486395 + 1.49697i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.0703917 0.216643i −0.00407086 0.0125288i
\(300\) 0 0
\(301\) −2.42705 + 1.76336i −0.139893 + 0.101638i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.85950 + 1.35100i 0.106474 + 0.0773582i
\(306\) 0 0
\(307\) −14.0902 −0.804168 −0.402084 0.915603i \(-0.631714\pi\)
−0.402084 + 0.915603i \(0.631714\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.86822 + 3.53697i 0.276052 + 0.200563i 0.717193 0.696874i \(-0.245426\pi\)
−0.441142 + 0.897437i \(0.645426\pi\)
\(312\) 0 0
\(313\) −4.07295 + 12.5352i −0.230217 + 0.708534i 0.767503 + 0.641045i \(0.221499\pi\)
−0.997720 + 0.0674891i \(0.978501\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.47332 26.0782i −0.475909 1.46470i −0.844728 0.535196i \(-0.820238\pi\)
0.368819 0.929501i \(-0.379762\pi\)
\(318\) 0 0
\(319\) 3.94427 9.57608i 0.220837 0.536157i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.6221 14.9828i 1.14745 0.833668i
\(324\) 0 0
\(325\) −0.100813 + 0.310271i −0.00559210 + 0.0172107i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.73645 0.536788
\(330\) 0 0
\(331\) 10.4164 0.572538 0.286269 0.958149i \(-0.407585\pi\)
0.286269 + 0.958149i \(0.407585\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.37730 + 10.3943i −0.184522 + 0.567900i
\(336\) 0 0
\(337\) −10.7082 + 7.77997i −0.583313 + 0.423802i −0.839917 0.542715i \(-0.817396\pi\)
0.256604 + 0.966517i \(0.417396\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −17.3152 14.7292i −0.937671 0.797631i
\(342\) 0 0
\(343\) −4.01722 12.3637i −0.216910 0.667579i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.45614 + 13.7146i −0.239218 + 0.736238i 0.757316 + 0.653049i \(0.226511\pi\)
−0.996534 + 0.0831890i \(0.973489\pi\)
\(348\) 0 0
\(349\) −9.51722 6.91467i −0.509445 0.370134i 0.303168 0.952937i \(-0.401956\pi\)
−0.812613 + 0.582804i \(0.801956\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.2802 0.972954 0.486477 0.873693i \(-0.338282\pi\)
0.486477 + 0.873693i \(0.338282\pi\)
\(354\) 0 0
\(355\) 21.8713 + 15.8904i 1.16081 + 0.843377i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.5254 17.8187i 1.29440 0.940438i 0.294517 0.955646i \(-0.404841\pi\)
0.999884 + 0.0152088i \(0.00484128\pi\)
\(360\) 0 0
\(361\) −1.28115 3.94298i −0.0674291 0.207525i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.2978 34.7709i −0.591352 1.81999i
\(366\) 0 0
\(367\) 1.26393 0.918300i 0.0659767 0.0479349i −0.554308 0.832312i \(-0.687017\pi\)
0.620285 + 0.784377i \(0.287017\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.26313 + 0.917716i 0.0655783 + 0.0476454i
\(372\) 0 0
\(373\) 13.0000 0.673114 0.336557 0.941663i \(-0.390737\pi\)
0.336557 + 0.941663i \(0.390737\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.596368 + 0.433287i 0.0307145 + 0.0223154i
\(378\) 0 0
\(379\) 6.12868 18.8621i 0.314809 0.968882i −0.661024 0.750365i \(-0.729878\pi\)
0.975833 0.218518i \(-0.0701221\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.71927 17.6021i −0.292241 0.899426i −0.984134 0.177426i \(-0.943223\pi\)
0.691893 0.722000i \(-0.256777\pi\)
\(384\) 0 0
\(385\) 6.38197 + 5.42882i 0.325255 + 0.276679i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.1397 14.6323i 1.02112 0.741888i 0.0546085 0.998508i \(-0.482609\pi\)
0.966512 + 0.256620i \(0.0826089\pi\)
\(390\) 0 0
\(391\) −1.97214 + 6.06961i −0.0997352 + 0.306953i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.78910 0.0900196
\(396\) 0 0
\(397\) 21.0000 1.05396 0.526980 0.849878i \(-0.323324\pi\)
0.526980 + 0.849878i \(0.323324\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.57004 14.0651i 0.228217 0.702379i −0.769732 0.638367i \(-0.779610\pi\)
0.997949 0.0640124i \(-0.0203897\pi\)
\(402\) 0 0
\(403\) 1.30902 0.951057i 0.0652068 0.0473755i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.47332 + 20.5719i −0.420007 + 1.01971i
\(408\) 0 0
\(409\) 5.56231 + 17.1190i 0.275038 + 0.846481i 0.989209 + 0.146510i \(0.0468039\pi\)
−0.714171 + 0.699971i \(0.753196\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.30691 + 10.1776i −0.162722 + 0.500808i
\(414\) 0 0
\(415\) 12.2984 + 8.93529i 0.603703 + 0.438616i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.1042 1.56839 0.784196 0.620514i \(-0.213076\pi\)
0.784196 + 0.620514i \(0.213076\pi\)
\(420\) 0 0
\(421\) −11.2082 8.14324i −0.546254 0.396877i 0.280148 0.959957i \(-0.409616\pi\)
−0.826403 + 0.563080i \(0.809616\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.39448 5.37240i 0.358685 0.260600i
\(426\) 0 0
\(427\) 0.281153 + 0.865300i 0.0136059 + 0.0418748i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.64015 8.12555i −0.127172 0.391394i 0.867119 0.498101i \(-0.165969\pi\)
−0.994290 + 0.106707i \(0.965969\pi\)
\(432\) 0 0
\(433\) 8.70820 6.32688i 0.418490 0.304050i −0.358540 0.933514i \(-0.616725\pi\)
0.777030 + 0.629464i \(0.216725\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.00873 2.18597i −0.143927 0.104569i
\(438\) 0 0
\(439\) −14.7082 −0.701984 −0.350992 0.936378i \(-0.614156\pi\)
−0.350992 + 0.936378i \(0.614156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −19.8415 14.4157i −0.942697 0.684909i 0.00637170 0.999980i \(-0.497972\pi\)
−0.949068 + 0.315071i \(0.897972\pi\)
\(444\) 0 0
\(445\) −5.62868 + 17.3233i −0.266825 + 0.821203i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.89483 8.90937i −0.136616 0.420459i 0.859222 0.511602i \(-0.170948\pi\)
−0.995838 + 0.0911431i \(0.970948\pi\)
\(450\) 0 0
\(451\) −30.2254 2.31838i −1.42326 0.109168i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.482472 + 0.350536i −0.0226186 + 0.0164334i
\(456\) 0 0
\(457\) 7.50000 23.0826i 0.350835 1.07976i −0.607550 0.794281i \(-0.707848\pi\)
0.958385 0.285478i \(-0.0921524\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 27.0517 1.25992 0.629961 0.776627i \(-0.283071\pi\)
0.629961 + 0.776627i \(0.283071\pi\)
\(462\) 0 0
\(463\) −32.5623 −1.51330 −0.756649 0.653821i \(-0.773165\pi\)
−0.756649 + 0.653821i \(0.773165\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.01718 + 12.3636i −0.185893 + 0.572119i −0.999963 0.00864799i \(-0.997247\pi\)
0.814070 + 0.580767i \(0.197247\pi\)
\(468\) 0 0
\(469\) −3.50000 + 2.54290i −0.161615 + 0.117420i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.47332 + 5.21564i −0.389604 + 0.239815i
\(474\) 0 0
\(475\) 1.64590 + 5.06555i 0.0755190 + 0.232424i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.482472 1.48490i 0.0220447 0.0678466i −0.939429 0.342744i \(-0.888644\pi\)
0.961474 + 0.274897i \(0.0886438\pi\)
\(480\) 0 0
\(481\) −1.28115 0.930812i −0.0584155 0.0424414i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −29.2093 −1.32633
\(486\) 0 0
\(487\) −1.42705 1.03681i −0.0646659 0.0469825i 0.554983 0.831862i \(-0.312725\pi\)
−0.619649 + 0.784879i \(0.712725\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.6308 + 17.1688i −1.06645 + 0.774818i −0.975270 0.221017i \(-0.929062\pi\)
−0.0911754 + 0.995835i \(0.529062\pi\)
\(492\) 0 0
\(493\) −6.38197 19.6417i −0.287429 0.884616i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.30691 + 10.1776i 0.148335 + 0.456529i
\(498\) 0 0
\(499\) −7.73607 + 5.62058i −0.346314 + 0.251612i −0.747321 0.664463i \(-0.768660\pi\)
0.401007 + 0.916075i \(0.368660\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.1917 + 26.2948i 1.61371 + 1.17243i 0.849799 + 0.527106i \(0.176723\pi\)
0.763910 + 0.645322i \(0.223277\pi\)
\(504\) 0 0
\(505\) 18.2148 0.810547
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.0521 11.6625i −0.711496 0.516932i 0.172160 0.985069i \(-0.444925\pi\)
−0.883656 + 0.468137i \(0.844925\pi\)
\(510\) 0 0
\(511\) 4.47214 13.7638i 0.197836 0.608876i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.4736 + 32.2344i 0.461522 + 1.42042i
\(516\) 0 0
\(517\) 32.1976 + 2.46965i 1.41605 + 0.108615i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.14008 6.64066i 0.400434 0.290932i −0.369284 0.929317i \(-0.620397\pi\)
0.769718 + 0.638384i \(0.220397\pi\)
\(522\) 0 0
\(523\) −8.97214 + 27.6134i −0.392324 + 1.20745i 0.538702 + 0.842496i \(0.318915\pi\)
−0.931026 + 0.364953i \(0.881085\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −45.3318 −1.97468
\(528\) 0 0
\(529\) −22.0689 −0.959517
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.666760 2.05208i 0.0288806 0.0888852i
\(534\) 0 0
\(535\) 25.0623 18.2088i 1.08354 0.787236i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.68393 19.3407i −0.201751 0.833061i
\(540\) 0 0
\(541\) −3.66312 11.2739i −0.157490 0.484704i 0.840915 0.541167i \(-0.182017\pi\)
−0.998405 + 0.0564637i \(0.982017\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.1926 + 43.6803i −0.607944 + 1.87106i
\(546\) 0 0
\(547\) 20.4894 + 14.8864i 0.876062 + 0.636496i 0.932207 0.361927i \(-0.117881\pi\)
−0.0561450 + 0.998423i \(0.517881\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0349 0.512704
\(552\) 0 0
\(553\) 0.572949 + 0.416272i 0.0243643 + 0.0177017i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.4466 + 17.0349i −0.993463 + 0.721793i −0.960677 0.277669i \(-0.910438\pi\)
−0.0327861 + 0.999462i \(0.510438\pi\)
\(558\) 0 0
\(559\) −0.218847 0.673542i −0.00925624 0.0284878i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.0703917 0.216643i −0.00296666 0.00913043i 0.949562 0.313579i \(-0.101528\pi\)
−0.952529 + 0.304448i \(0.901528\pi\)
\(564\) 0 0
\(565\) −25.0623 + 18.2088i −1.05438 + 0.766051i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.7188 + 12.1470i 0.700890 + 0.509227i 0.880222 0.474562i \(-0.157394\pi\)
−0.179332 + 0.983789i \(0.557394\pi\)
\(570\) 0 0
\(571\) −25.9230 −1.08484 −0.542422 0.840106i \(-0.682492\pi\)
−0.542422 + 0.840106i \(0.682492\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.07884 0.783823i −0.0449907 0.0326877i
\(576\) 0 0
\(577\) −6.85410 + 21.0948i −0.285340 + 0.878186i 0.700957 + 0.713204i \(0.252757\pi\)
−0.986297 + 0.164982i \(0.947243\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.85950 + 5.72294i 0.0771449 + 0.237428i
\(582\) 0 0
\(583\) 3.94427 + 3.35520i 0.163355 + 0.138958i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.6047 + 10.6109i −0.602799 + 0.437959i −0.846871 0.531798i \(-0.821517\pi\)
0.244072 + 0.969757i \(0.421517\pi\)
\(588\) 0 0
\(589\) 8.16312 25.1235i 0.336355 1.03520i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.78910 −0.0734697 −0.0367348 0.999325i \(-0.511696\pi\)
−0.0367348 + 0.999325i \(0.511696\pi\)
\(594\) 0 0
\(595\) 16.7082 0.684970
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(600\) 0 0
\(601\) 10.0451 7.29818i 0.409748 0.297699i −0.363752 0.931496i \(-0.618504\pi\)
0.773500 + 0.633797i \(0.218504\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.7276 + 19.5714i 0.802040 + 0.795692i
\(606\) 0 0
\(607\) −1.77051 5.44907i −0.0718628 0.221171i 0.908674 0.417506i \(-0.137096\pi\)
−0.980537 + 0.196335i \(0.937096\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.710264 + 2.18597i −0.0287342 + 0.0884348i
\(612\) 0 0
\(613\) 29.7984 + 21.6498i 1.20354 + 0.874427i 0.994629 0.103507i \(-0.0330064\pi\)
0.208916 + 0.977934i \(0.433006\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −33.6655 −1.35532 −0.677661 0.735375i \(-0.737006\pi\)
−0.677661 + 0.735375i \(0.737006\pi\)
\(618\) 0 0
\(619\) 28.9336 + 21.0215i 1.16294 + 0.844926i 0.990147 0.140032i \(-0.0447206\pi\)
0.172794 + 0.984958i \(0.444721\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.83317 + 4.23804i −0.233701 + 0.169794i
\(624\) 0 0
\(625\) −9.27051 28.5317i −0.370820 1.14127i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.7101 + 42.1954i 0.546658 + 1.68244i
\(630\) 0 0
\(631\) 10.8713 7.89848i 0.432781 0.314433i −0.349979 0.936757i \(-0.613811\pi\)
0.782760 + 0.622324i \(0.213811\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −33.0691 24.0261i −1.31231 0.953447i
\(636\) 0 0
\(637\) 1.41641 0.0561201
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.2714 + 11.0953i 0.603185 + 0.438240i 0.847008 0.531580i \(-0.178402\pi\)
−0.243823 + 0.969820i \(0.578402\pi\)
\(642\) 0 0
\(643\) 14.2082 43.7284i 0.560317 1.72448i −0.121155 0.992634i \(-0.538660\pi\)
0.681472 0.731844i \(-0.261340\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.113896 0.350536i −0.00447772 0.0137810i 0.948793 0.315899i \(-0.102306\pi\)
−0.953270 + 0.302118i \(0.902306\pi\)
\(648\) 0 0
\(649\) −13.5172 + 32.8177i −0.530597 + 1.28821i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.0695 + 16.0345i −0.863648 + 0.627477i −0.928875 0.370394i \(-0.879223\pi\)
0.0652271 + 0.997870i \(0.479223\pi\)
\(654\) 0 0
\(655\) −6.66970 + 20.5272i −0.260607 + 0.802065i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0349 0.468813 0.234407 0.972139i \(-0.424685\pi\)
0.234407 + 0.972139i \(0.424685\pi\)
\(660\) 0 0
\(661\) −3.90983 −0.152075 −0.0760374 0.997105i \(-0.524227\pi\)
−0.0760374 + 0.997105i \(0.524227\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.00873 + 9.25991i −0.116673 + 0.359084i
\(666\) 0 0
\(667\) −2.43769 + 1.77109i −0.0943879 + 0.0685768i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.710264 + 2.93278i 0.0274194 + 0.113219i
\(672\) 0 0
\(673\) 3.12868 + 9.62908i 0.120602 + 0.371174i 0.993074 0.117490i \(-0.0374847\pi\)
−0.872472 + 0.488663i \(0.837485\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.12262 9.61045i 0.120012 0.369359i −0.872947 0.487815i \(-0.837794\pi\)
0.992959 + 0.118455i \(0.0377942\pi\)
\(678\) 0 0
\(679\) −9.35410 6.79615i −0.358977 0.260812i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.5781 0.634342 0.317171 0.948368i \(-0.397267\pi\)
0.317171 + 0.948368i \(0.397267\pi\)
\(684\) 0 0
\(685\) −31.4443 22.8456i −1.20142 0.872886i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.298184 + 0.216643i −0.0113599 + 0.00825345i
\(690\) 0 0
\(691\) −10.2918 31.6749i −0.391518 1.20497i −0.931640 0.363383i \(-0.881622\pi\)
0.540122 0.841587i \(-0.318378\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.2624 31.5845i −0.389276 1.19807i
\(696\) 0 0
\(697\) −48.9058 + 35.5321i −1.85244 + 1.34587i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.3941 13.3641i −0.694734 0.504754i 0.183479 0.983024i \(-0.441264\pi\)
−0.878213 + 0.478270i \(0.841264\pi\)
\(702\) 0 0
\(703\) −25.8541 −0.975106
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.83317 + 4.23804i 0.219379 + 0.159388i
\(708\) 0 0
\(709\) 7.00658 21.5640i 0.263138 0.809854i −0.728979 0.684536i \(-0.760005\pi\)
0.992117 0.125318i \(-0.0399951\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.04378 + 6.29012i 0.0765403 + 0.235567i
\(714\) 0 0
\(715\) −1.68441 + 1.03681i −0.0629932 + 0.0387746i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.92073 + 7.20783i −0.369981 + 0.268807i −0.757203 0.653180i \(-0.773435\pi\)
0.387222 + 0.921986i \(0.373435\pi\)
\(720\) 0 0
\(721\) −4.14590 + 12.7598i −0.154401 + 0.475198i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.31536 0.160268
\(726\) 0 0
\(727\) −13.4377 −0.498376 −0.249188 0.968455i \(-0.580164\pi\)
−0.249188 + 0.968455i \(0.580164\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.13135 + 18.8704i −0.226776 + 0.697945i
\(732\) 0 0
\(733\) 9.47214 6.88191i 0.349861 0.254189i −0.398950 0.916973i \(-0.630625\pi\)
0.748811 + 0.662784i \(0.230625\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.2192 + 7.52136i −0.450100 + 0.277053i
\(738\) 0 0
\(739\) 4.89261 + 15.0579i 0.179978 + 0.553914i 0.999826 0.0186670i \(-0.00594224\pi\)
−0.819848 + 0.572581i \(0.805942\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.8243 48.7022i 0.580537 1.78671i −0.0359618 0.999353i \(-0.511449\pi\)
0.616499 0.787356i \(-0.288551\pi\)
\(744\) 0 0
\(745\) 21.1180 + 15.3431i 0.773705 + 0.562130i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.2627 0.448069
\(750\) 0 0
\(751\) 28.9164 + 21.0090i 1.05517 + 0.766629i 0.973190 0.230004i \(-0.0738740\pi\)
0.0819851 + 0.996634i \(0.473874\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 43.1741 31.3678i 1.57127 1.14159i
\(756\) 0 0
\(757\) −10.3435 31.8339i −0.375939 1.15702i −0.942843 0.333238i \(-0.891859\pi\)
0.566903 0.823784i \(-0.308141\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.54343 + 20.1386i 0.237199 + 0.730024i 0.996822 + 0.0796602i \(0.0253835\pi\)
−0.759623 + 0.650364i \(0.774616\pi\)
\(762\) 0 0
\(763\) −14.7082 + 10.6861i −0.532473 + 0.386864i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.04378 1.48490i −0.0737967 0.0536165i
\(768\) 0 0
\(769\) 7.85410 0.283226 0.141613 0.989922i \(-0.454771\pi\)
0.141613 + 0.989922i \(0.454771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31.3235 + 22.7579i 1.12663 + 0.818543i 0.985201 0.171405i \(-0.0548307\pi\)
0.141428 + 0.989949i \(0.454831\pi\)
\(774\) 0 0
\(775\) 2.92705 9.00854i 0.105143 0.323596i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.8857 33.5027i −0.390020 1.20036i
\(780\) 0 0
\(781\) 8.35410 + 34.4953i 0.298933 + 1.23434i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.68393 3.40308i 0.167177 0.121461i
\(786\) 0 0
\(787\) 12.5836 38.7283i 0.448557 1.38052i −0.429979 0.902839i \(-0.641479\pi\)
0.878536 0.477677i \(-0.158521\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.2627 −0.436011
\(792\) 0 0
\(793\) −0.214782 −0.00762712
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.824160 2.53650i 0.0291933 0.0898476i −0.935398 0.353596i \(-0.884959\pi\)
0.964592 + 0.263748i \(0.0849588\pi\)
\(798\) 0 0
\(799\) 52.0967 37.8505i 1.84305 1.33905i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 18.2802 44.3814i 0.645093 1.56618i
\(804\) 0 0
\(805\) −0.753289 2.31838i −0.0265499 0.0817123i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.6748 39.0090i 0.445622 1.37148i −0.436179 0.899860i \(-0.643669\pi\)
0.881801 0.471622i \(-0.156331\pi\)
\(810\) 0 0
\(811\) 43.5238 + 31.6219i 1.52833 + 1.11039i 0.957159 + 0.289561i \(0.0935095\pi\)
0.571168 + 0.820833i \(0.306491\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −36.3325 −1.27267
\(816\) 0 0
\(817\) −9.35410 6.79615i −0.327259 0.237767i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29.7622 21.6235i 1.03871 0.754666i 0.0686751 0.997639i \(-0.478123\pi\)
0.970033 + 0.242974i \(0.0781228\pi\)
\(822\) 0 0
\(823\) 7.30902 + 22.4948i 0.254776 + 0.784121i 0.993874 + 0.110522i \(0.0352523\pi\)
−0.739097 + 0.673599i \(0.764748\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.54371 26.2948i −0.297094 0.914361i −0.982510 0.186209i \(-0.940380\pi\)
0.685416 0.728152i \(-0.259620\pi\)
\(828\) 0 0
\(829\) 5.01722 3.64522i 0.174255 0.126604i −0.497239 0.867614i \(-0.665653\pi\)
0.671494 + 0.741010i \(0.265653\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −32.1042 23.3250i −1.11234 0.808165i
\(834\) 0 0
\(835\) −55.5755 −1.92327
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.9724 + 26.8620i 1.27643 + 0.927380i 0.999439 0.0334932i \(-0.0106632\pi\)
0.276990 + 0.960873i \(0.410663\pi\)
\(840\) 0 0
\(841\) −5.94834 + 18.3071i −0.205115 + 0.631279i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.1050 + 31.1001i 0.347623 + 1.06987i
\(846\) 0 0
\(847\) 1.76393 + 10.8576i 0.0606094 + 0.373073i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.23680 3.80476i 0.179515 0.130425i
\(852\) 0 0
\(853\) 10.2533 31.5564i 0.351066 1.08047i −0.607190 0.794557i \(-0.707703\pi\)
0.958256 0.285913i \(-0.0922968\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.2976 0.829991 0.414995 0.909824i \(-0.363783\pi\)
0.414995 + 0.909824i \(0.363783\pi\)
\(858\) 0 0
\(859\) −19.6525 −0.670534 −0.335267 0.942123i \(-0.608826\pi\)
−0.335267 + 0.942123i \(0.608826\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.4905 38.4418i 0.425181 1.30857i −0.477639 0.878556i \(-0.658507\pi\)
0.902821 0.430018i \(-0.141493\pi\)
\(864\) 0 0
\(865\) 19.4336 14.1194i 0.660763 0.480073i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.78910 + 1.52190i 0.0606912 + 0.0516270i
\(870\) 0 0
\(871\) −0.315595 0.971301i −0.0106935 0.0329113i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.82444 8.69273i 0.0954835 0.293868i
\(876\) 0 0
\(877\) 28.1353 + 20.4415i 0.950060 + 0.690259i 0.950821 0.309741i \(-0.100242\pi\)
−0.000761020 1.00000i \(0.500242\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.9817 0.538437 0.269218 0.963079i \(-0.413235\pi\)
0.269218 + 0.963079i \(0.413235\pi\)
\(882\) 0 0
\(883\) −12.0000 8.71851i −0.403832 0.293401i 0.367268 0.930115i \(-0.380293\pi\)
−0.771100 + 0.636714i \(0.780293\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.4820 + 8.34219i −0.385529 + 0.280103i −0.763621 0.645665i \(-0.776580\pi\)
0.378092 + 0.925768i \(0.376580\pi\)
\(888\) 0 0
\(889\) −5.00000 15.3884i −0.167695 0.516111i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.5959 + 35.6886i 0.388043 + 1.19427i
\(894\) 0 0
\(895\) −31.4443 + 22.8456i −1.05107 + 0.763644i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −17.3152 12.5802i −0.577495 0.419574i
\(900\) 0 0
\(901\) 10.3262 0.344017
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −33.1830 24.1089i −1.10304 0.801406i
\(906\) 0 0
\(907\) 0.225425 0.693786i 0.00748511 0.0230368i −0.947244 0.320513i \(-0.896145\pi\)
0.954729 + 0.297476i \(0.0961448\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.5609 38.6584i −0.416161 1.28081i −0.911209 0.411945i \(-0.864850\pi\)
0.495048 0.868866i \(-0.335150\pi\)
\(912\) 0 0
\(913\) 4.69756 + 19.3969i 0.155467 + 0.641944i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.91201 + 5.02187i −0.228255 + 0.165837i
\(918\) 0 0
\(919\) −16.6353 + 51.1981i −0.548746 + 1.68887i 0.163165 + 0.986599i \(0.447830\pi\)
−0.711912 + 0.702269i \(0.752170\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.52626 −0.0831527
\(924\) 0 0
\(925\) −9.27051 −0.304812
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.3331 37.9574i 0.404636 1.24534i −0.516563 0.856249i \(-0.672789\pi\)
0.921199 0.389092i \(-0.127211\pi\)
\(930\) 0 0
\(931\) 18.7082 13.5923i 0.613137 0.445470i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 55.2525 + 4.23804i 1.80695 + 0.138599i
\(936\) 0 0
\(937\) −13.6353 41.9650i −0.445444 1.37094i −0.881996 0.471257i \(-0.843800\pi\)
0.436551 0.899679i \(-0.356200\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.83289 11.7964i 0.124949 0.384552i −0.868943 0.494912i \(-0.835200\pi\)
0.993892 + 0.110360i \(0.0352003\pi\)
\(942\) 0 0
\(943\) 7.13525 + 5.18407i 0.232356 + 0.168816i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10.7014 0.347748 0.173874 0.984768i \(-0.444371\pi\)
0.173874 + 0.984768i \(0.444371\pi\)
\(948\) 0 0
\(949\) 2.76393 + 2.00811i 0.0897210 + 0.0651861i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −23.9290 + 17.3855i −0.775137 + 0.563170i −0.903516 0.428555i \(-0.859023\pi\)
0.128378 + 0.991725i \(0.459023\pi\)
\(954\) 0 0
\(955\) −18.3926 56.6066i −0.595171 1.83175i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.75433 14.6323i −0.153525 0.472502i
\(960\) 0 0
\(961\) −12.9271 + 9.39205i −0.417002 + 0.302969i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.7798 + 16.5505i 0.733308 + 0.532779i
\(966\) 0 0
\(967\) −57.5623 −1.85108 −0.925539 0.378651i \(-0.876388\pi\)
−0.925539 + 0.378651i \(0.876388\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.4378 14.8490i −0.655881 0.476526i 0.209388 0.977833i \(-0.432853\pi\)
−0.865270 + 0.501307i \(0.832853\pi\)
\(972\) 0 0
\(973\) 4.06231 12.5025i 0.130232 0.400811i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.50837 + 23.1084i 0.240214 + 0.739303i 0.996387 + 0.0849311i \(0.0270670\pi\)
−0.756173 + 0.654372i \(0.772933\pi\)
\(978\) 0 0
\(979\) −20.3647 + 12.5352i −0.650860 + 0.400628i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.57877 5.50630i 0.241725 0.175624i −0.460326 0.887750i \(-0.652268\pi\)
0.702051 + 0.712126i \(0.252268\pi\)
\(984\) 0 0
\(985\) 20.3647 62.6762i 0.648875 1.99703i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.89483 0.0920503
\(990\) 0 0
\(991\) −20.3951 −0.647872 −0.323936 0.946079i \(-0.605006\pi\)
−0.323936 + 0.946079i \(0.605006\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.30691 + 10.1776i −0.104836 + 0.322652i
\(996\) 0 0
\(997\) −9.73607 + 7.07367i −0.308344 + 0.224025i −0.731186 0.682178i \(-0.761033\pi\)
0.422841 + 0.906204i \(0.361033\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.j.d.181.1 8
3.2 odd 2 inner 396.2.j.d.181.2 yes 8
11.3 even 5 4356.2.a.z.1.2 4
11.8 odd 10 4356.2.a.x.1.2 4
11.9 even 5 inner 396.2.j.d.361.1 yes 8
33.8 even 10 4356.2.a.x.1.3 4
33.14 odd 10 4356.2.a.z.1.3 4
33.20 odd 10 inner 396.2.j.d.361.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.j.d.181.1 8 1.1 even 1 trivial
396.2.j.d.181.2 yes 8 3.2 odd 2 inner
396.2.j.d.361.1 yes 8 11.9 even 5 inner
396.2.j.d.361.2 yes 8 33.20 odd 10 inner
4356.2.a.x.1.2 4 11.8 odd 10
4356.2.a.x.1.3 4 33.8 even 10
4356.2.a.z.1.2 4 11.3 even 5
4356.2.a.z.1.3 4 33.14 odd 10