Properties

Label 396.2.j.c.361.1
Level $396$
Weight $2$
Character 396.361
Analytic conductor $3.162$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,2,Mod(37,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,7,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 396.361
Dual form 396.2.j.c.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19098 + 3.66547i) q^{5} +(0.190983 + 0.138757i) q^{7} +(-3.30902 - 0.224514i) q^{11} +(-1.92705 + 5.93085i) q^{13} +(-0.736068 - 2.26538i) q^{17} +(4.11803 - 2.99193i) q^{19} +0.236068 q^{23} +(-7.97214 + 5.79210i) q^{25} +(3.61803 + 2.62866i) q^{29} +(-1.97214 + 6.06961i) q^{31} +(-0.281153 + 0.865300i) q^{35} +(3.04508 + 2.21238i) q^{37} +(7.66312 - 5.56758i) q^{41} +9.47214 q^{43} +(2.92705 - 2.12663i) q^{47} +(-2.14590 - 6.60440i) q^{49} +(-2.02786 + 6.24112i) q^{53} +(-3.11803 - 12.3965i) q^{55} +(1.73607 + 1.26133i) q^{59} +(-0.809017 - 2.48990i) q^{61} -24.0344 q^{65} -0.145898 q^{67} +(0.427051 + 1.31433i) q^{71} +(-2.61803 - 1.90211i) q^{73} +(-0.600813 - 0.502029i) q^{77} +(4.39919 - 13.5393i) q^{79} +(-4.78115 - 14.7149i) q^{83} +(7.42705 - 5.39607i) q^{85} -1.00000 q^{89} +(-1.19098 + 0.865300i) q^{91} +(15.8713 + 11.5312i) q^{95} +(-1.57295 + 4.84104i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{5} + 3 q^{7} - 11 q^{11} - q^{13} + 6 q^{17} + 12 q^{19} - 8 q^{23} - 14 q^{25} + 10 q^{29} + 10 q^{31} + 19 q^{35} + q^{37} + 15 q^{41} + 20 q^{43} + 5 q^{47} - 22 q^{49} - 26 q^{53} - 8 q^{55}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.19098 + 3.66547i 0.532624 + 1.63925i 0.748728 + 0.662877i \(0.230665\pi\)
−0.216104 + 0.976370i \(0.569335\pi\)
\(6\) 0 0
\(7\) 0.190983 + 0.138757i 0.0721848 + 0.0524453i 0.623292 0.781989i \(-0.285795\pi\)
−0.551108 + 0.834434i \(0.685795\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.30902 0.224514i −0.997706 0.0676935i
\(12\) 0 0
\(13\) −1.92705 + 5.93085i −0.534468 + 1.64492i 0.210329 + 0.977631i \(0.432547\pi\)
−0.744796 + 0.667292i \(0.767453\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.736068 2.26538i −0.178523 0.549436i 0.821254 0.570563i \(-0.193275\pi\)
−0.999777 + 0.0211262i \(0.993275\pi\)
\(18\) 0 0
\(19\) 4.11803 2.99193i 0.944742 0.686395i −0.00481560 0.999988i \(-0.501533\pi\)
0.949557 + 0.313593i \(0.101533\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) 0 0
\(25\) −7.97214 + 5.79210i −1.59443 + 1.15842i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.61803 + 2.62866i 0.671852 + 0.488129i 0.870645 0.491912i \(-0.163702\pi\)
−0.198793 + 0.980042i \(0.563702\pi\)
\(30\) 0 0
\(31\) −1.97214 + 6.06961i −0.354206 + 1.09013i 0.602262 + 0.798298i \(0.294266\pi\)
−0.956468 + 0.291836i \(0.905734\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.281153 + 0.865300i −0.0475235 + 0.146262i
\(36\) 0 0
\(37\) 3.04508 + 2.21238i 0.500609 + 0.363714i 0.809250 0.587465i \(-0.199874\pi\)
−0.308641 + 0.951179i \(0.599874\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.66312 5.56758i 1.19678 0.869510i 0.202814 0.979217i \(-0.434991\pi\)
0.993964 + 0.109707i \(0.0349913\pi\)
\(42\) 0 0
\(43\) 9.47214 1.44449 0.722244 0.691639i \(-0.243111\pi\)
0.722244 + 0.691639i \(0.243111\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.92705 2.12663i 0.426954 0.310200i −0.353476 0.935444i \(-0.615000\pi\)
0.780430 + 0.625243i \(0.215000\pi\)
\(48\) 0 0
\(49\) −2.14590 6.60440i −0.306557 0.943485i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.02786 + 6.24112i −0.278549 + 0.857284i 0.709710 + 0.704494i \(0.248826\pi\)
−0.988259 + 0.152790i \(0.951174\pi\)
\(54\) 0 0
\(55\) −3.11803 12.3965i −0.420436 1.67154i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.73607 + 1.26133i 0.226017 + 0.164211i 0.695031 0.718980i \(-0.255391\pi\)
−0.469014 + 0.883191i \(0.655391\pi\)
\(60\) 0 0
\(61\) −0.809017 2.48990i −0.103584 0.318799i 0.885811 0.464045i \(-0.153602\pi\)
−0.989396 + 0.145246i \(0.953602\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −24.0344 −2.98111
\(66\) 0 0
\(67\) −0.145898 −0.0178243 −0.00891214 0.999960i \(-0.502837\pi\)
−0.00891214 + 0.999960i \(0.502837\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.427051 + 1.31433i 0.0506816 + 0.155982i 0.973194 0.229985i \(-0.0738678\pi\)
−0.922512 + 0.385967i \(0.873868\pi\)
\(72\) 0 0
\(73\) −2.61803 1.90211i −0.306418 0.222625i 0.423940 0.905690i \(-0.360647\pi\)
−0.730358 + 0.683065i \(0.760647\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.600813 0.502029i −0.0684690 0.0572115i
\(78\) 0 0
\(79\) 4.39919 13.5393i 0.494947 1.52329i −0.322092 0.946708i \(-0.604386\pi\)
0.817039 0.576582i \(-0.195614\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.78115 14.7149i −0.524800 1.61517i −0.764712 0.644373i \(-0.777119\pi\)
0.239912 0.970795i \(-0.422881\pi\)
\(84\) 0 0
\(85\) 7.42705 5.39607i 0.805577 0.585286i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) −1.19098 + 0.865300i −0.124849 + 0.0907081i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.8713 + 11.5312i 1.62836 + 1.18308i
\(96\) 0 0
\(97\) −1.57295 + 4.84104i −0.159709 + 0.491533i −0.998608 0.0527545i \(-0.983200\pi\)
0.838899 + 0.544288i \(0.183200\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.83688 5.65334i 0.182776 0.562528i −0.817126 0.576458i \(-0.804434\pi\)
0.999903 + 0.0139302i \(0.00443427\pi\)
\(102\) 0 0
\(103\) −10.0902 7.33094i −0.994214 0.722339i −0.0333741 0.999443i \(-0.510625\pi\)
−0.960840 + 0.277104i \(0.910625\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.28115 3.83698i 0.510548 0.370935i −0.302483 0.953155i \(-0.597816\pi\)
0.813032 + 0.582220i \(0.197816\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.89919 7.19218i 0.931237 0.676583i −0.0150583 0.999887i \(-0.504793\pi\)
0.946295 + 0.323303i \(0.104793\pi\)
\(114\) 0 0
\(115\) 0.281153 + 0.865300i 0.0262176 + 0.0806896i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.173762 0.534785i 0.0159287 0.0490236i
\(120\) 0 0
\(121\) 10.8992 + 1.48584i 0.990835 + 0.135076i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −15.1353 10.9964i −1.35374 0.983548i
\(126\) 0 0
\(127\) 4.85410 + 14.9394i 0.430732 + 1.32566i 0.897398 + 0.441223i \(0.145455\pi\)
−0.466666 + 0.884434i \(0.654545\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.56231 0.748092 0.374046 0.927410i \(-0.377970\pi\)
0.374046 + 0.927410i \(0.377970\pi\)
\(132\) 0 0
\(133\) 1.20163 0.104194
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.48936 + 19.9722i 0.554423 + 1.70634i 0.697462 + 0.716622i \(0.254313\pi\)
−0.143039 + 0.989717i \(0.545687\pi\)
\(138\) 0 0
\(139\) −3.07295 2.23263i −0.260644 0.189369i 0.449787 0.893136i \(-0.351500\pi\)
−0.710431 + 0.703767i \(0.751500\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.70820 19.1926i 0.644592 1.60497i
\(144\) 0 0
\(145\) −5.32624 + 16.3925i −0.442320 + 1.36132i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.21885 + 16.0620i 0.427545 + 1.31585i 0.900537 + 0.434780i \(0.143174\pi\)
−0.472992 + 0.881067i \(0.656826\pi\)
\(150\) 0 0
\(151\) −3.61803 + 2.62866i −0.294431 + 0.213917i −0.725188 0.688551i \(-0.758247\pi\)
0.430756 + 0.902468i \(0.358247\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −24.5967 −1.97566
\(156\) 0 0
\(157\) 13.9443 10.1311i 1.11287 0.808550i 0.129760 0.991545i \(-0.458579\pi\)
0.983114 + 0.182995i \(0.0585792\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.0450850 + 0.0327561i 0.00355319 + 0.00258155i
\(162\) 0 0
\(163\) −1.50000 + 4.61653i −0.117489 + 0.361594i −0.992458 0.122585i \(-0.960882\pi\)
0.874969 + 0.484179i \(0.160882\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.190983 0.587785i 0.0147787 0.0454842i −0.943395 0.331671i \(-0.892388\pi\)
0.958174 + 0.286187i \(0.0923877\pi\)
\(168\) 0 0
\(169\) −20.9443 15.2169i −1.61110 1.17053i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.50000 3.26944i 0.342129 0.248571i −0.403431 0.915010i \(-0.632182\pi\)
0.745559 + 0.666439i \(0.232182\pi\)
\(174\) 0 0
\(175\) −2.32624 −0.175847
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.5172 + 10.5474i −1.08507 + 0.788348i −0.978560 0.205964i \(-0.933967\pi\)
−0.106508 + 0.994312i \(0.533967\pi\)
\(180\) 0 0
\(181\) 1.83688 + 5.65334i 0.136534 + 0.420209i 0.995826 0.0912773i \(-0.0290950\pi\)
−0.859291 + 0.511487i \(0.829095\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.48278 + 13.7966i −0.329580 + 1.01434i
\(186\) 0 0
\(187\) 1.92705 + 7.66145i 0.140920 + 0.560261i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.5172 12.7270i −1.26750 0.920894i −0.268401 0.963307i \(-0.586495\pi\)
−0.999100 + 0.0424133i \(0.986495\pi\)
\(192\) 0 0
\(193\) 4.73607 + 14.5761i 0.340910 + 1.04921i 0.963737 + 0.266853i \(0.0859838\pi\)
−0.622828 + 0.782359i \(0.714016\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.90983 0.421058 0.210529 0.977588i \(-0.432481\pi\)
0.210529 + 0.977588i \(0.432481\pi\)
\(198\) 0 0
\(199\) −10.4164 −0.738400 −0.369200 0.929350i \(-0.620368\pi\)
−0.369200 + 0.929350i \(0.620368\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.326238 + 1.00406i 0.0228974 + 0.0704710i
\(204\) 0 0
\(205\) 29.5344 + 21.4580i 2.06277 + 1.49869i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −14.2984 + 8.97578i −0.989039 + 0.620868i
\(210\) 0 0
\(211\) 5.79180 17.8253i 0.398724 1.22715i −0.527300 0.849679i \(-0.676796\pi\)
0.926023 0.377466i \(-0.123204\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.2812 + 34.7198i 0.769368 + 2.36787i
\(216\) 0 0
\(217\) −1.21885 + 0.885544i −0.0827407 + 0.0601147i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.8541 0.999195
\(222\) 0 0
\(223\) 6.04508 4.39201i 0.404809 0.294111i −0.366688 0.930344i \(-0.619508\pi\)
0.771497 + 0.636233i \(0.219508\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.2812 + 7.46969i 0.682384 + 0.495781i 0.874148 0.485660i \(-0.161421\pi\)
−0.191764 + 0.981441i \(0.561421\pi\)
\(228\) 0 0
\(229\) 3.38197 10.4086i 0.223487 0.687821i −0.774955 0.632016i \(-0.782228\pi\)
0.998442 0.0558047i \(-0.0177724\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.371323 + 1.14281i −0.0243262 + 0.0748683i −0.962483 0.271343i \(-0.912532\pi\)
0.938156 + 0.346212i \(0.112532\pi\)
\(234\) 0 0
\(235\) 11.2812 + 8.19624i 0.735901 + 0.534664i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.1631 10.2901i 0.916136 0.665612i −0.0264232 0.999651i \(-0.508412\pi\)
0.942559 + 0.334039i \(0.108412\pi\)
\(240\) 0 0
\(241\) −23.7082 −1.52718 −0.763590 0.645702i \(-0.776565\pi\)
−0.763590 + 0.645702i \(0.776565\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 21.6525 15.7314i 1.38333 1.00505i
\(246\) 0 0
\(247\) 9.80902 + 30.1891i 0.624133 + 1.92088i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.44427 + 22.9111i −0.469878 + 1.44614i 0.382864 + 0.923805i \(0.374938\pi\)
−0.852742 + 0.522332i \(0.825062\pi\)
\(252\) 0 0
\(253\) −0.781153 0.0530006i −0.0491107 0.00333212i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.26393 1.64484i −0.141220 0.102602i 0.514932 0.857231i \(-0.327817\pi\)
−0.656152 + 0.754628i \(0.727817\pi\)
\(258\) 0 0
\(259\) 0.274575 + 0.845055i 0.0170613 + 0.0525092i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.8541 −1.47091 −0.735453 0.677575i \(-0.763031\pi\)
−0.735453 + 0.677575i \(0.763031\pi\)
\(264\) 0 0
\(265\) −25.2918 −1.55366
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.79837 27.0786i −0.536446 1.65101i −0.740503 0.672053i \(-0.765413\pi\)
0.204057 0.978959i \(-0.434587\pi\)
\(270\) 0 0
\(271\) 1.97214 + 1.43284i 0.119799 + 0.0870389i 0.646071 0.763277i \(-0.276411\pi\)
−0.526273 + 0.850316i \(0.676411\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 27.6803 17.3763i 1.66919 1.04783i
\(276\) 0 0
\(277\) 0.791796 2.43690i 0.0475744 0.146419i −0.924447 0.381310i \(-0.875473\pi\)
0.972022 + 0.234891i \(0.0754732\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.29180 16.2865i −0.315682 0.971570i −0.975473 0.220120i \(-0.929355\pi\)
0.659791 0.751449i \(-0.270645\pi\)
\(282\) 0 0
\(283\) −18.7984 + 13.6578i −1.11745 + 0.811873i −0.983820 0.179159i \(-0.942662\pi\)
−0.133627 + 0.991032i \(0.542662\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.23607 0.131991
\(288\) 0 0
\(289\) 9.16312 6.65740i 0.539007 0.391612i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.04508 2.93893i −0.236316 0.171694i 0.463324 0.886189i \(-0.346657\pi\)
−0.699641 + 0.714495i \(0.746657\pi\)
\(294\) 0 0
\(295\) −2.55573 + 7.86572i −0.148800 + 0.457960i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.454915 + 1.40008i −0.0263084 + 0.0809690i
\(300\) 0 0
\(301\) 1.80902 + 1.31433i 0.104270 + 0.0757566i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.16312 5.93085i 0.467419 0.339600i
\(306\) 0 0
\(307\) −0.673762 −0.0384536 −0.0192268 0.999815i \(-0.506120\pi\)
−0.0192268 + 0.999815i \(0.506120\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −23.6074 + 17.1518i −1.33865 + 0.972588i −0.339160 + 0.940729i \(0.610143\pi\)
−0.999492 + 0.0318591i \(0.989857\pi\)
\(312\) 0 0
\(313\) −0.309017 0.951057i −0.0174667 0.0537569i 0.941943 0.335772i \(-0.108997\pi\)
−0.959410 + 0.282015i \(0.908997\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.63525 + 8.11048i −0.148011 + 0.455530i −0.997386 0.0722595i \(-0.976979\pi\)
0.849375 + 0.527790i \(0.176979\pi\)
\(318\) 0 0
\(319\) −11.3820 9.51057i −0.637268 0.532489i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9.80902 7.12667i −0.545788 0.396538i
\(324\) 0 0
\(325\) −18.9894 58.4432i −1.05334 3.24185i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.854102 0.0470882
\(330\) 0 0
\(331\) 11.9443 0.656517 0.328258 0.944588i \(-0.393538\pi\)
0.328258 + 0.944588i \(0.393538\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.173762 0.534785i −0.00949364 0.0292184i
\(336\) 0 0
\(337\) 14.2361 + 10.3431i 0.775488 + 0.563425i 0.903621 0.428332i \(-0.140899\pi\)
−0.128133 + 0.991757i \(0.540899\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.88854 19.6417i 0.427189 1.06366i
\(342\) 0 0
\(343\) 1.01722 3.13068i 0.0549248 0.169041i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.47214 + 7.60845i 0.132711 + 0.408443i 0.995227 0.0975871i \(-0.0311124\pi\)
−0.862516 + 0.506030i \(0.831112\pi\)
\(348\) 0 0
\(349\) 22.8435 16.5967i 1.22278 0.888403i 0.226454 0.974022i \(-0.427287\pi\)
0.996328 + 0.0856184i \(0.0272866\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.4721 0.557376 0.278688 0.960382i \(-0.410101\pi\)
0.278688 + 0.960382i \(0.410101\pi\)
\(354\) 0 0
\(355\) −4.30902 + 3.13068i −0.228699 + 0.166159i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.7984 13.6578i −0.992140 0.720832i −0.0317515 0.999496i \(-0.510109\pi\)
−0.960389 + 0.278664i \(0.910109\pi\)
\(360\) 0 0
\(361\) 2.13525 6.57164i 0.112382 0.345876i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.85410 11.8617i 0.201733 0.620870i
\(366\) 0 0
\(367\) 4.35410 + 3.16344i 0.227282 + 0.165130i 0.695599 0.718431i \(-0.255139\pi\)
−0.468316 + 0.883561i \(0.655139\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.25329 + 0.910568i −0.0650675 + 0.0472743i
\(372\) 0 0
\(373\) −13.9443 −0.722007 −0.361004 0.932564i \(-0.617566\pi\)
−0.361004 + 0.932564i \(0.617566\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −22.5623 + 16.3925i −1.16202 + 0.844255i
\(378\) 0 0
\(379\) −3.92705 12.0862i −0.201719 0.620827i −0.999832 0.0183198i \(-0.994168\pi\)
0.798113 0.602508i \(-0.205832\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.16312 + 9.73508i −0.161628 + 0.497439i −0.998772 0.0495430i \(-0.984224\pi\)
0.837144 + 0.546982i \(0.184224\pi\)
\(384\) 0 0
\(385\) 1.12461 2.80017i 0.0573155 0.142710i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.0172 + 9.45756i 0.659999 + 0.479518i 0.866663 0.498895i \(-0.166261\pi\)
−0.206663 + 0.978412i \(0.566261\pi\)
\(390\) 0 0
\(391\) −0.173762 0.534785i −0.00878753 0.0270452i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 54.8673 2.76067
\(396\) 0 0
\(397\) 27.1803 1.36414 0.682071 0.731286i \(-0.261079\pi\)
0.682071 + 0.731286i \(0.261079\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.881966 + 2.71441i 0.0440433 + 0.135551i 0.970660 0.240456i \(-0.0772969\pi\)
−0.926617 + 0.376007i \(0.877297\pi\)
\(402\) 0 0
\(403\) −32.1976 23.3929i −1.60387 1.16528i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.57953 8.00448i −0.474840 0.396767i
\(408\) 0 0
\(409\) 3.05573 9.40456i 0.151096 0.465026i −0.846648 0.532153i \(-0.821383\pi\)
0.997744 + 0.0671269i \(0.0213832\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.156541 + 0.481784i 0.00770289 + 0.0237070i
\(414\) 0 0
\(415\) 48.2426 35.0503i 2.36814 1.72055i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.8541 −0.872230 −0.436115 0.899891i \(-0.643646\pi\)
−0.436115 + 0.899891i \(0.643646\pi\)
\(420\) 0 0
\(421\) 7.50000 5.44907i 0.365528 0.265571i −0.389826 0.920888i \(-0.627465\pi\)
0.755354 + 0.655317i \(0.227465\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.9894 + 13.7966i 0.921119 + 0.669232i
\(426\) 0 0
\(427\) 0.190983 0.587785i 0.00924232 0.0284449i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.11803 + 12.6740i −0.198359 + 0.610485i 0.801562 + 0.597911i \(0.204003\pi\)
−0.999921 + 0.0125740i \(0.995997\pi\)
\(432\) 0 0
\(433\) 12.0902 + 8.78402i 0.581016 + 0.422133i 0.839090 0.543992i \(-0.183088\pi\)
−0.258074 + 0.966125i \(0.583088\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.972136 0.706298i 0.0465036 0.0337868i
\(438\) 0 0
\(439\) −19.3607 −0.924035 −0.462017 0.886871i \(-0.652874\pi\)
−0.462017 + 0.886871i \(0.652874\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.145898 0.106001i 0.00693182 0.00503627i −0.584314 0.811528i \(-0.698636\pi\)
0.591246 + 0.806491i \(0.298636\pi\)
\(444\) 0 0
\(445\) −1.19098 3.66547i −0.0564580 0.173760i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.32624 7.15942i 0.109782 0.337874i −0.881041 0.473040i \(-0.843157\pi\)
0.990823 + 0.135166i \(0.0431567\pi\)
\(450\) 0 0
\(451\) −26.6074 + 16.7027i −1.25289 + 0.786502i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.59017 3.33495i −0.215190 0.156345i
\(456\) 0 0
\(457\) 0.354102 + 1.08981i 0.0165642 + 0.0509793i 0.958997 0.283416i \(-0.0914678\pi\)
−0.942433 + 0.334396i \(0.891468\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −19.5623 −0.911107 −0.455554 0.890208i \(-0.650559\pi\)
−0.455554 + 0.890208i \(0.650559\pi\)
\(462\) 0 0
\(463\) 21.2148 0.985935 0.492967 0.870048i \(-0.335912\pi\)
0.492967 + 0.870048i \(0.335912\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.12868 18.8621i −0.283601 0.872835i −0.986814 0.161856i \(-0.948252\pi\)
0.703213 0.710979i \(-0.251748\pi\)
\(468\) 0 0
\(469\) −0.0278640 0.0202444i −0.00128664 0.000934800i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −31.3435 2.12663i −1.44117 0.0977824i
\(474\) 0 0
\(475\) −15.5000 + 47.7041i −0.711189 + 2.18881i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.11803 12.6740i −0.188158 0.579090i 0.811831 0.583893i \(-0.198471\pi\)
−0.999988 + 0.00480282i \(0.998471\pi\)
\(480\) 0 0
\(481\) −18.9894 + 13.7966i −0.865840 + 0.629070i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.6180 −0.890809
\(486\) 0 0
\(487\) −28.9894 + 21.0620i −1.31363 + 0.954410i −0.313645 + 0.949540i \(0.601550\pi\)
−0.999988 + 0.00487004i \(0.998450\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.16312 3.02468i −0.187879 0.136502i 0.489870 0.871796i \(-0.337044\pi\)
−0.677749 + 0.735294i \(0.737044\pi\)
\(492\) 0 0
\(493\) 3.29180 10.1311i 0.148255 0.456282i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.100813 + 0.310271i −0.00452208 + 0.0139175i
\(498\) 0 0
\(499\) −12.3541 8.97578i −0.553046 0.401811i 0.275862 0.961197i \(-0.411037\pi\)
−0.828907 + 0.559386i \(0.811037\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.9443 10.1311i 0.621744 0.451724i −0.231786 0.972767i \(-0.574457\pi\)
0.853530 + 0.521043i \(0.174457\pi\)
\(504\) 0 0
\(505\) 22.9098 1.01947
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.3090 7.48994i 0.456939 0.331986i −0.335390 0.942079i \(-0.608868\pi\)
0.792329 + 0.610094i \(0.208868\pi\)
\(510\) 0 0
\(511\) −0.236068 0.726543i −0.0104430 0.0321403i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.8541 45.7162i 0.654550 2.01450i
\(516\) 0 0
\(517\) −10.1631 + 6.37988i −0.446973 + 0.280587i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000 + 8.71851i 0.525730 + 0.381965i 0.818758 0.574139i \(-0.194663\pi\)
−0.293028 + 0.956104i \(0.594663\pi\)
\(522\) 0 0
\(523\) −6.73607 20.7315i −0.294548 0.906525i −0.983373 0.181597i \(-0.941873\pi\)
0.688825 0.724927i \(-0.258127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.2016 0.662193
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18.2533 + 56.1778i 0.790638 + 2.43333i
\(534\) 0 0
\(535\) 20.3541 + 14.7881i 0.879985 + 0.639346i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.61803 + 22.3358i 0.241986 + 0.962073i
\(540\) 0 0
\(541\) −1.95492 + 6.01661i −0.0840484 + 0.258674i −0.984245 0.176809i \(-0.943423\pi\)
0.900197 + 0.435483i \(0.143423\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.52786 29.3238i −0.408129 1.25609i
\(546\) 0 0
\(547\) −10.7812 + 7.83297i −0.460969 + 0.334913i −0.793911 0.608034i \(-0.791959\pi\)
0.332942 + 0.942947i \(0.391959\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.7639 0.969776
\(552\) 0 0
\(553\) 2.71885 1.97536i 0.115617 0.0840008i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.11803 + 2.99193i 0.174487 + 0.126772i 0.671601 0.740913i \(-0.265607\pi\)
−0.497114 + 0.867685i \(0.665607\pi\)
\(558\) 0 0
\(559\) −18.2533 + 56.1778i −0.772032 + 2.37607i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.5795 + 38.7158i −0.530164 + 1.63168i 0.223709 + 0.974656i \(0.428184\pi\)
−0.753873 + 0.657021i \(0.771816\pi\)
\(564\) 0 0
\(565\) 38.1525 + 27.7194i 1.60509 + 1.16616i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.94427 2.86568i 0.165352 0.120136i −0.502032 0.864849i \(-0.667414\pi\)
0.667384 + 0.744714i \(0.267414\pi\)
\(570\) 0 0
\(571\) 24.3262 1.01802 0.509011 0.860760i \(-0.330011\pi\)
0.509011 + 0.860760i \(0.330011\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.88197 + 1.36733i −0.0784834 + 0.0570215i
\(576\) 0 0
\(577\) 9.03444 + 27.8052i 0.376109 + 1.15754i 0.942728 + 0.333564i \(0.108251\pi\)
−0.566619 + 0.823980i \(0.691749\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.12868 3.47371i 0.0468254 0.144114i
\(582\) 0 0
\(583\) 8.11146 20.1967i 0.335942 0.836462i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8435 + 15.1437i 0.860302 + 0.625046i 0.927967 0.372662i \(-0.121555\pi\)
−0.0676654 + 0.997708i \(0.521555\pi\)
\(588\) 0 0
\(589\) 10.0385 + 30.8953i 0.413629 + 1.27302i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.4508 −0.798751 −0.399375 0.916788i \(-0.630773\pi\)
−0.399375 + 0.916788i \(0.630773\pi\)
\(594\) 0 0
\(595\) 2.16718 0.0888459
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.5623 38.6628i −0.513282 1.57972i −0.786386 0.617735i \(-0.788050\pi\)
0.273105 0.961984i \(-0.411950\pi\)
\(600\) 0 0
\(601\) −16.1353 11.7229i −0.658171 0.478189i 0.207874 0.978156i \(-0.433346\pi\)
−0.866045 + 0.499967i \(0.833346\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.53444 + 41.7202i 0.306319 + 1.69617i
\(606\) 0 0
\(607\) 2.68034 8.24924i 0.108792 0.334826i −0.881810 0.471605i \(-0.843675\pi\)
0.990602 + 0.136779i \(0.0436749\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.97214 + 21.4580i 0.282062 + 0.868099i
\(612\) 0 0
\(613\) −13.8541 + 10.0656i −0.559562 + 0.406546i −0.831299 0.555826i \(-0.812402\pi\)
0.271737 + 0.962372i \(0.412402\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.00000 0.281809 0.140905 0.990023i \(-0.454999\pi\)
0.140905 + 0.990023i \(0.454999\pi\)
\(618\) 0 0
\(619\) 6.04508 4.39201i 0.242972 0.176530i −0.459634 0.888108i \(-0.652019\pi\)
0.702607 + 0.711579i \(0.252019\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.190983 0.138757i −0.00765157 0.00555919i
\(624\) 0 0
\(625\) 7.05573 21.7153i 0.282229 0.868612i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.77051 8.52675i 0.110467 0.339984i
\(630\) 0 0
\(631\) −6.25329 4.54328i −0.248940 0.180865i 0.456317 0.889817i \(-0.349168\pi\)
−0.705257 + 0.708952i \(0.749168\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −48.9787 + 35.5851i −1.94366 + 1.41215i
\(636\) 0 0
\(637\) 43.3050 1.71580
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.2082 14.6821i 0.798176 0.579909i −0.112202 0.993685i \(-0.535791\pi\)
0.910378 + 0.413777i \(0.135791\pi\)
\(642\) 0 0
\(643\) −12.4098 38.1935i −0.489396 1.50621i −0.825512 0.564385i \(-0.809113\pi\)
0.336116 0.941821i \(-0.390887\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.0279 + 33.9403i −0.433550 + 1.33433i 0.461015 + 0.887392i \(0.347485\pi\)
−0.894565 + 0.446938i \(0.852515\pi\)
\(648\) 0 0
\(649\) −5.46149 4.56352i −0.214382 0.179134i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.1074 12.4292i −0.669464 0.486394i 0.200382 0.979718i \(-0.435782\pi\)
−0.869846 + 0.493324i \(0.835782\pi\)
\(654\) 0 0
\(655\) 10.1976 + 31.3849i 0.398452 + 1.22631i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.70820 −0.378178 −0.189089 0.981960i \(-0.560553\pi\)
−0.189089 + 0.981960i \(0.560553\pi\)
\(660\) 0 0
\(661\) −13.3262 −0.518331 −0.259165 0.965833i \(-0.583447\pi\)
−0.259165 + 0.965833i \(0.583447\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.43112 + 4.40452i 0.0554963 + 0.170800i
\(666\) 0 0
\(667\) 0.854102 + 0.620541i 0.0330710 + 0.0240275i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.11803 + 8.42075i 0.0817658 + 0.325080i
\(672\) 0 0
\(673\) 10.9615 33.7360i 0.422534 1.30043i −0.482801 0.875730i \(-0.660381\pi\)
0.905335 0.424697i \(-0.139619\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.763932 2.35114i −0.0293603 0.0903617i 0.935303 0.353849i \(-0.115127\pi\)
−0.964663 + 0.263487i \(0.915127\pi\)
\(678\) 0 0
\(679\) −0.972136 + 0.706298i −0.0373072 + 0.0271052i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.6525 1.44073 0.720366 0.693594i \(-0.243974\pi\)
0.720366 + 0.693594i \(0.243974\pi\)
\(684\) 0 0
\(685\) −65.4787 + 47.5731i −2.50181 + 1.81767i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −33.1074 24.0539i −1.26129 0.916382i
\(690\) 0 0
\(691\) 10.0557 30.9483i 0.382538 1.17733i −0.555713 0.831374i \(-0.687555\pi\)
0.938251 0.345956i \(-0.112445\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.52380 13.9228i 0.171597 0.528123i
\(696\) 0 0
\(697\) −18.2533 13.2618i −0.691393 0.502326i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.0623 + 16.7557i −0.871051 + 0.632856i −0.930869 0.365354i \(-0.880948\pi\)
0.0598176 + 0.998209i \(0.480948\pi\)
\(702\) 0 0
\(703\) 19.1591 0.722597
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.13525 0.824811i 0.0426957 0.0310202i
\(708\) 0 0
\(709\) 5.17376 + 15.9232i 0.194305 + 0.598008i 0.999984 + 0.00565642i \(0.00180051\pi\)
−0.805679 + 0.592352i \(0.798199\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.465558 + 1.43284i −0.0174353 + 0.0536603i
\(714\) 0 0
\(715\) 79.5304 + 5.39607i 2.97427 + 0.201802i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.4271 + 11.2084i 0.575332 + 0.418003i 0.837038 0.547144i \(-0.184285\pi\)
−0.261706 + 0.965148i \(0.584285\pi\)
\(720\) 0 0
\(721\) −0.909830 2.80017i −0.0338838 0.104284i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −44.0689 −1.63668
\(726\) 0 0
\(727\) −8.85410 −0.328380 −0.164190 0.986429i \(-0.552501\pi\)
−0.164190 + 0.986429i \(0.552501\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.97214 21.4580i −0.257874 0.793654i
\(732\) 0 0
\(733\) −36.0344 26.1806i −1.33096 0.967001i −0.999725 0.0234534i \(-0.992534\pi\)
−0.331238 0.943547i \(-0.607466\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.482779 + 0.0327561i 0.0177834 + 0.00120659i
\(738\) 0 0
\(739\) −3.96149 + 12.1922i −0.145726 + 0.448498i −0.997104 0.0760550i \(-0.975768\pi\)
0.851378 + 0.524553i \(0.175768\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.54508 10.9106i −0.130057 0.400273i 0.864732 0.502234i \(-0.167488\pi\)
−0.994788 + 0.101961i \(0.967488\pi\)
\(744\) 0 0
\(745\) −52.6591 + 38.2590i −1.92928 + 1.40170i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.54102 0.0563076
\(750\) 0 0
\(751\) 33.6803 24.4702i 1.22901 0.892930i 0.232197 0.972669i \(-0.425409\pi\)
0.996816 + 0.0797385i \(0.0254085\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.9443 10.1311i −0.507484 0.368709i
\(756\) 0 0
\(757\) −3.21885 + 9.90659i −0.116991 + 0.360061i −0.992357 0.123399i \(-0.960620\pi\)
0.875366 + 0.483461i \(0.160620\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.03851 27.8177i 0.327646 1.00839i −0.642587 0.766213i \(-0.722139\pi\)
0.970232 0.242176i \(-0.0778613\pi\)
\(762\) 0 0
\(763\) −1.52786 1.11006i −0.0553124 0.0401868i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.8262 + 7.86572i −0.390913 + 0.284015i
\(768\) 0 0
\(769\) −33.5623 −1.21029 −0.605144 0.796116i \(-0.706884\pi\)
−0.605144 + 0.796116i \(0.706884\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.7533 17.2578i 0.854346 0.620719i −0.0719946 0.997405i \(-0.522936\pi\)
0.926341 + 0.376686i \(0.122936\pi\)
\(774\) 0 0
\(775\) −19.4336 59.8106i −0.698077 2.14846i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.8992 45.8550i 0.533819 1.64293i
\(780\) 0 0
\(781\) −1.11803 4.44501i −0.0400064 0.159055i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 53.7426 + 39.0463i 1.91816 + 1.39362i
\(786\) 0 0
\(787\) 13.8328 + 42.5730i 0.493087 + 1.51756i 0.819917 + 0.572482i \(0.194019\pi\)
−0.326831 + 0.945083i \(0.605981\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.88854 0.102705
\(792\) 0 0
\(793\) 16.3262 0.579762
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.1459 + 46.6143i 0.536495 + 1.65116i 0.740396 + 0.672171i \(0.234638\pi\)
−0.203901 + 0.978992i \(0.565362\pi\)
\(798\) 0 0
\(799\) −6.97214 5.06555i −0.246656 0.179206i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.23607 + 6.88191i 0.290645 + 0.242857i
\(804\) 0 0
\(805\) −0.0663712 + 0.204270i −0.00233928 + 0.00719956i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.8992 33.5442i −0.383195 1.17935i −0.937781 0.347227i \(-0.887123\pi\)
0.554586 0.832126i \(-0.312877\pi\)
\(810\) 0 0
\(811\) 1.78115 1.29408i 0.0625447 0.0454414i −0.556074 0.831133i \(-0.687693\pi\)
0.618618 + 0.785692i \(0.287693\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.7082 −0.655320
\(816\) 0 0
\(817\) 39.0066 28.3399i 1.36467 0.991489i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.1353 + 16.0822i 0.772526 + 0.561273i 0.902727 0.430215i \(-0.141562\pi\)
−0.130201 + 0.991488i \(0.541562\pi\)
\(822\) 0 0
\(823\) 7.16312 22.0458i 0.249691 0.768469i −0.745139 0.666909i \(-0.767617\pi\)
0.994829 0.101559i \(-0.0323832\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.7082 39.1118i 0.441908 1.36005i −0.443932 0.896060i \(-0.646417\pi\)
0.885840 0.463991i \(-0.153583\pi\)
\(828\) 0 0
\(829\) −3.83688 2.78766i −0.133260 0.0968193i 0.519158 0.854678i \(-0.326246\pi\)
−0.652419 + 0.757859i \(0.726246\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.3820 + 9.72257i −0.463658 + 0.336867i
\(834\) 0 0
\(835\) 2.38197 0.0824313
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.6074 22.2376i 1.05668 0.767726i 0.0832124 0.996532i \(-0.473482\pi\)
0.973472 + 0.228806i \(0.0734820\pi\)
\(840\) 0 0
\(841\) −2.78115 8.55951i −0.0959018 0.295155i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 30.8328 94.8936i 1.06068 3.26444i
\(846\) 0 0
\(847\) 1.87539 + 1.79611i 0.0644391 + 0.0617151i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.718847 + 0.522273i 0.0246418 + 0.0179033i
\(852\) 0 0
\(853\) 3.28773 + 10.1186i 0.112570 + 0.346454i 0.991432 0.130621i \(-0.0416970\pi\)
−0.878863 + 0.477075i \(0.841697\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 50.1935 1.71458 0.857289 0.514836i \(-0.172147\pi\)
0.857289 + 0.514836i \(0.172147\pi\)
\(858\) 0 0
\(859\) 8.81966 0.300923 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.43769 + 13.6578i 0.151061 + 0.464918i 0.997741 0.0671854i \(-0.0214019\pi\)
−0.846680 + 0.532103i \(0.821402\pi\)
\(864\) 0 0
\(865\) 17.3435 + 12.6008i 0.589695 + 0.428439i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −17.5967 + 43.8141i −0.596929 + 1.48629i
\(870\) 0 0
\(871\) 0.281153 0.865300i 0.00952650 0.0293196i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.36475 4.20025i −0.0461368 0.141994i
\(876\) 0 0
\(877\) −0.718847 + 0.522273i −0.0242737 + 0.0176359i −0.599856 0.800108i \(-0.704775\pi\)
0.575582 + 0.817744i \(0.304775\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40.5623 −1.36658 −0.683289 0.730148i \(-0.739451\pi\)
−0.683289 + 0.730148i \(0.739451\pi\)
\(882\) 0 0
\(883\) −12.0902 + 8.78402i −0.406867 + 0.295606i −0.772332 0.635219i \(-0.780910\pi\)
0.365465 + 0.930825i \(0.380910\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −26.9336 19.5684i −0.904343 0.657043i 0.0352350 0.999379i \(-0.488782\pi\)
−0.939578 + 0.342336i \(0.888782\pi\)
\(888\) 0 0
\(889\) −1.14590 + 3.52671i −0.0384322 + 0.118282i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.69098 17.5150i 0.190441 0.586119i
\(894\) 0 0
\(895\) −55.9508 40.6507i −1.87023 1.35880i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −23.0902 + 16.7760i −0.770100 + 0.559511i
\(900\) 0 0
\(901\) 15.6312 0.520750
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.5344 + 13.4661i −0.616106 + 0.447627i
\(906\) 0 0
\(907\) −13.2467 40.7692i −0.439850 1.35372i −0.888034 0.459777i \(-0.847929\pi\)
0.448184 0.893941i \(-0.352071\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.89261 + 24.2910i −0.261494 + 0.804795i 0.730987 + 0.682392i \(0.239060\pi\)
−0.992480 + 0.122403i \(0.960940\pi\)
\(912\) 0 0
\(913\) 12.5172 + 49.7652i 0.414260 + 1.64699i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.63525 + 1.18808i 0.0540009 + 0.0392339i
\(918\) 0 0
\(919\) −4.89261 15.0579i −0.161392 0.496714i 0.837360 0.546652i \(-0.184098\pi\)
−0.998752 + 0.0499374i \(0.984098\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.61803 −0.283666
\(924\) 0 0
\(925\) −37.0902 −1.21952
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.05166 18.6251i −0.198549 0.611070i −0.999917 0.0128984i \(-0.995894\pi\)
0.801368 0.598171i \(-0.204106\pi\)
\(930\) 0 0
\(931\) −28.5967 20.7768i −0.937221 0.680931i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.7877 + 16.1882i −0.843349 + 0.529411i
\(936\) 0 0
\(937\) 6.10739 18.7966i 0.199520 0.614059i −0.800374 0.599501i \(-0.795366\pi\)
0.999894 0.0145580i \(-0.00463413\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.791796 + 2.43690i 0.0258118 + 0.0794406i 0.963133 0.269027i \(-0.0867021\pi\)
−0.937321 + 0.348468i \(0.886702\pi\)
\(942\) 0 0
\(943\) 1.80902 1.31433i 0.0589097 0.0428004i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.79837 0.0909349 0.0454675 0.998966i \(-0.485522\pi\)
0.0454675 + 0.998966i \(0.485522\pi\)
\(948\) 0 0
\(949\) 16.3262 11.8617i 0.529972 0.385047i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.1246 + 20.4337i 0.911046 + 0.661913i 0.941279 0.337630i \(-0.109625\pi\)
−0.0302335 + 0.999543i \(0.509625\pi\)
\(954\) 0 0
\(955\) 25.7877 79.3665i 0.834471 2.56824i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.53193 + 4.71479i −0.0494686 + 0.152249i
\(960\) 0 0
\(961\) −7.87132 5.71885i −0.253914 0.184479i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −47.7877 + 34.7198i −1.53834 + 1.11767i
\(966\) 0 0
\(967\) 14.7295 0.473668 0.236834 0.971550i \(-0.423890\pi\)
0.236834 + 0.971550i \(0.423890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.90983 1.38757i 0.0612894 0.0445293i −0.556719 0.830701i \(-0.687940\pi\)
0.618008 + 0.786172i \(0.287940\pi\)
\(972\) 0 0
\(973\) −0.277088 0.852788i −0.00888302 0.0273391i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.1631 31.2789i 0.325147 1.00070i −0.646227 0.763145i \(-0.723654\pi\)
0.971374 0.237554i \(-0.0763458\pi\)
\(978\) 0 0
\(979\) 3.30902 + 0.224514i 0.105757 + 0.00717550i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −29.7984 21.6498i −0.950421 0.690521i 0.000485770 1.00000i \(-0.499845\pi\)
−0.950906 + 0.309479i \(0.899845\pi\)
\(984\) 0 0
\(985\) 7.03851 + 21.6623i 0.224265 + 0.690218i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.23607 0.0711028
\(990\) 0 0
\(991\) 43.2705 1.37453 0.687267 0.726405i \(-0.258810\pi\)
0.687267 + 0.726405i \(0.258810\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12.4058 38.1810i −0.393289 1.21042i
\(996\) 0 0
\(997\) −23.6803 17.2048i −0.749964 0.544881i 0.145852 0.989306i \(-0.453408\pi\)
−0.895816 + 0.444426i \(0.853408\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.j.c.361.1 4
3.2 odd 2 132.2.i.b.97.1 yes 4
11.4 even 5 4356.2.a.v.1.2 2
11.5 even 5 inner 396.2.j.c.181.1 4
11.7 odd 10 4356.2.a.s.1.2 2
12.11 even 2 528.2.y.a.97.1 4
33.2 even 10 1452.2.i.p.1213.1 4
33.5 odd 10 132.2.i.b.49.1 4
33.8 even 10 1452.2.i.p.565.1 4
33.14 odd 10 1452.2.i.o.565.1 4
33.17 even 10 1452.2.i.j.1237.1 4
33.20 odd 10 1452.2.i.o.1213.1 4
33.26 odd 10 1452.2.a.j.1.1 2
33.29 even 10 1452.2.a.i.1.1 2
33.32 even 2 1452.2.i.j.493.1 4
132.59 even 10 5808.2.a.cc.1.1 2
132.71 even 10 528.2.y.a.49.1 4
132.95 odd 10 5808.2.a.cf.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.49.1 4 33.5 odd 10
132.2.i.b.97.1 yes 4 3.2 odd 2
396.2.j.c.181.1 4 11.5 even 5 inner
396.2.j.c.361.1 4 1.1 even 1 trivial
528.2.y.a.49.1 4 132.71 even 10
528.2.y.a.97.1 4 12.11 even 2
1452.2.a.i.1.1 2 33.29 even 10
1452.2.a.j.1.1 2 33.26 odd 10
1452.2.i.j.493.1 4 33.32 even 2
1452.2.i.j.1237.1 4 33.17 even 10
1452.2.i.o.565.1 4 33.14 odd 10
1452.2.i.o.1213.1 4 33.20 odd 10
1452.2.i.p.565.1 4 33.8 even 10
1452.2.i.p.1213.1 4 33.2 even 10
4356.2.a.s.1.2 2 11.7 odd 10
4356.2.a.v.1.2 2 11.4 even 5
5808.2.a.cc.1.1 2 132.59 even 10
5808.2.a.cf.1.1 2 132.95 odd 10