Properties

Label 396.2.j.c.181.1
Level $396$
Weight $2$
Character 396.181
Analytic conductor $3.162$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,2,Mod(37,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,7,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 396.181
Dual form 396.2.j.c.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19098 - 3.66547i) q^{5} +(0.190983 - 0.138757i) q^{7} +(-3.30902 + 0.224514i) q^{11} +(-1.92705 - 5.93085i) q^{13} +(-0.736068 + 2.26538i) q^{17} +(4.11803 + 2.99193i) q^{19} +0.236068 q^{23} +(-7.97214 - 5.79210i) q^{25} +(3.61803 - 2.62866i) q^{29} +(-1.97214 - 6.06961i) q^{31} +(-0.281153 - 0.865300i) q^{35} +(3.04508 - 2.21238i) q^{37} +(7.66312 + 5.56758i) q^{41} +9.47214 q^{43} +(2.92705 + 2.12663i) q^{47} +(-2.14590 + 6.60440i) q^{49} +(-2.02786 - 6.24112i) q^{53} +(-3.11803 + 12.3965i) q^{55} +(1.73607 - 1.26133i) q^{59} +(-0.809017 + 2.48990i) q^{61} -24.0344 q^{65} -0.145898 q^{67} +(0.427051 - 1.31433i) q^{71} +(-2.61803 + 1.90211i) q^{73} +(-0.600813 + 0.502029i) q^{77} +(4.39919 + 13.5393i) q^{79} +(-4.78115 + 14.7149i) q^{83} +(7.42705 + 5.39607i) q^{85} -1.00000 q^{89} +(-1.19098 - 0.865300i) q^{91} +(15.8713 - 11.5312i) q^{95} +(-1.57295 - 4.84104i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{5} + 3 q^{7} - 11 q^{11} - q^{13} + 6 q^{17} + 12 q^{19} - 8 q^{23} - 14 q^{25} + 10 q^{29} + 10 q^{31} + 19 q^{35} + q^{37} + 15 q^{41} + 20 q^{43} + 5 q^{47} - 22 q^{49} - 26 q^{53} - 8 q^{55}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.19098 3.66547i 0.532624 1.63925i −0.216104 0.976370i \(-0.569335\pi\)
0.748728 0.662877i \(-0.230665\pi\)
\(6\) 0 0
\(7\) 0.190983 0.138757i 0.0721848 0.0524453i −0.551108 0.834434i \(-0.685795\pi\)
0.623292 + 0.781989i \(0.285795\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.30902 + 0.224514i −0.997706 + 0.0676935i
\(12\) 0 0
\(13\) −1.92705 5.93085i −0.534468 1.64492i −0.744796 0.667292i \(-0.767453\pi\)
0.210329 0.977631i \(-0.432547\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.736068 + 2.26538i −0.178523 + 0.549436i −0.999777 0.0211262i \(-0.993275\pi\)
0.821254 + 0.570563i \(0.193275\pi\)
\(18\) 0 0
\(19\) 4.11803 + 2.99193i 0.944742 + 0.686395i 0.949557 0.313593i \(-0.101533\pi\)
−0.00481560 + 0.999988i \(0.501533\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.236068 0.0492236 0.0246118 0.999697i \(-0.492165\pi\)
0.0246118 + 0.999697i \(0.492165\pi\)
\(24\) 0 0
\(25\) −7.97214 5.79210i −1.59443 1.15842i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.61803 2.62866i 0.671852 0.488129i −0.198793 0.980042i \(-0.563702\pi\)
0.870645 + 0.491912i \(0.163702\pi\)
\(30\) 0 0
\(31\) −1.97214 6.06961i −0.354206 1.09013i −0.956468 0.291836i \(-0.905734\pi\)
0.602262 0.798298i \(-0.294266\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.281153 0.865300i −0.0475235 0.146262i
\(36\) 0 0
\(37\) 3.04508 2.21238i 0.500609 0.363714i −0.308641 0.951179i \(-0.599874\pi\)
0.809250 + 0.587465i \(0.199874\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.66312 + 5.56758i 1.19678 + 0.869510i 0.993964 0.109707i \(-0.0349913\pi\)
0.202814 + 0.979217i \(0.434991\pi\)
\(42\) 0 0
\(43\) 9.47214 1.44449 0.722244 0.691639i \(-0.243111\pi\)
0.722244 + 0.691639i \(0.243111\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.92705 + 2.12663i 0.426954 + 0.310200i 0.780430 0.625243i \(-0.215000\pi\)
−0.353476 + 0.935444i \(0.615000\pi\)
\(48\) 0 0
\(49\) −2.14590 + 6.60440i −0.306557 + 0.943485i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.02786 6.24112i −0.278549 0.857284i −0.988259 0.152790i \(-0.951174\pi\)
0.709710 0.704494i \(-0.248826\pi\)
\(54\) 0 0
\(55\) −3.11803 + 12.3965i −0.420436 + 1.67154i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.73607 1.26133i 0.226017 0.164211i −0.469014 0.883191i \(-0.655391\pi\)
0.695031 + 0.718980i \(0.255391\pi\)
\(60\) 0 0
\(61\) −0.809017 + 2.48990i −0.103584 + 0.318799i −0.989396 0.145246i \(-0.953602\pi\)
0.885811 + 0.464045i \(0.153602\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −24.0344 −2.98111
\(66\) 0 0
\(67\) −0.145898 −0.0178243 −0.00891214 0.999960i \(-0.502837\pi\)
−0.00891214 + 0.999960i \(0.502837\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.427051 1.31433i 0.0506816 0.155982i −0.922512 0.385967i \(-0.873868\pi\)
0.973194 + 0.229985i \(0.0738678\pi\)
\(72\) 0 0
\(73\) −2.61803 + 1.90211i −0.306418 + 0.222625i −0.730358 0.683065i \(-0.760647\pi\)
0.423940 + 0.905690i \(0.360647\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.600813 + 0.502029i −0.0684690 + 0.0572115i
\(78\) 0 0
\(79\) 4.39919 + 13.5393i 0.494947 + 1.52329i 0.817039 + 0.576582i \(0.195614\pi\)
−0.322092 + 0.946708i \(0.604386\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.78115 + 14.7149i −0.524800 + 1.61517i 0.239912 + 0.970795i \(0.422881\pi\)
−0.764712 + 0.644373i \(0.777119\pi\)
\(84\) 0 0
\(85\) 7.42705 + 5.39607i 0.805577 + 0.585286i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) −1.19098 0.865300i −0.124849 0.0907081i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.8713 11.5312i 1.62836 1.18308i
\(96\) 0 0
\(97\) −1.57295 4.84104i −0.159709 0.491533i 0.838899 0.544288i \(-0.183200\pi\)
−0.998608 + 0.0527545i \(0.983200\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.83688 + 5.65334i 0.182776 + 0.562528i 0.999903 0.0139302i \(-0.00443427\pi\)
−0.817126 + 0.576458i \(0.804434\pi\)
\(102\) 0 0
\(103\) −10.0902 + 7.33094i −0.994214 + 0.722339i −0.960840 0.277104i \(-0.910625\pi\)
−0.0333741 + 0.999443i \(0.510625\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.28115 + 3.83698i 0.510548 + 0.370935i 0.813032 0.582220i \(-0.197816\pi\)
−0.302483 + 0.953155i \(0.597816\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.89919 + 7.19218i 0.931237 + 0.676583i 0.946295 0.323303i \(-0.104793\pi\)
−0.0150583 + 0.999887i \(0.504793\pi\)
\(114\) 0 0
\(115\) 0.281153 0.865300i 0.0262176 0.0806896i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.173762 + 0.534785i 0.0159287 + 0.0490236i
\(120\) 0 0
\(121\) 10.8992 1.48584i 0.990835 0.135076i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −15.1353 + 10.9964i −1.35374 + 0.983548i
\(126\) 0 0
\(127\) 4.85410 14.9394i 0.430732 1.32566i −0.466666 0.884434i \(-0.654545\pi\)
0.897398 0.441223i \(-0.145455\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.56231 0.748092 0.374046 0.927410i \(-0.377970\pi\)
0.374046 + 0.927410i \(0.377970\pi\)
\(132\) 0 0
\(133\) 1.20163 0.104194
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.48936 19.9722i 0.554423 1.70634i −0.143039 0.989717i \(-0.545687\pi\)
0.697462 0.716622i \(-0.254313\pi\)
\(138\) 0 0
\(139\) −3.07295 + 2.23263i −0.260644 + 0.189369i −0.710431 0.703767i \(-0.751500\pi\)
0.449787 + 0.893136i \(0.351500\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.70820 + 19.1926i 0.644592 + 1.60497i
\(144\) 0 0
\(145\) −5.32624 16.3925i −0.442320 1.36132i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.21885 16.0620i 0.427545 1.31585i −0.472992 0.881067i \(-0.656826\pi\)
0.900537 0.434780i \(-0.143174\pi\)
\(150\) 0 0
\(151\) −3.61803 2.62866i −0.294431 0.213917i 0.430756 0.902468i \(-0.358247\pi\)
−0.725188 + 0.688551i \(0.758247\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −24.5967 −1.97566
\(156\) 0 0
\(157\) 13.9443 + 10.1311i 1.11287 + 0.808550i 0.983114 0.182995i \(-0.0585792\pi\)
0.129760 + 0.991545i \(0.458579\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.0450850 0.0327561i 0.00355319 0.00258155i
\(162\) 0 0
\(163\) −1.50000 4.61653i −0.117489 0.361594i 0.874969 0.484179i \(-0.160882\pi\)
−0.992458 + 0.122585i \(0.960882\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.190983 + 0.587785i 0.0147787 + 0.0454842i 0.958174 0.286187i \(-0.0923877\pi\)
−0.943395 + 0.331671i \(0.892388\pi\)
\(168\) 0 0
\(169\) −20.9443 + 15.2169i −1.61110 + 1.17053i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.50000 + 3.26944i 0.342129 + 0.248571i 0.745559 0.666439i \(-0.232182\pi\)
−0.403431 + 0.915010i \(0.632182\pi\)
\(174\) 0 0
\(175\) −2.32624 −0.175847
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.5172 10.5474i −1.08507 0.788348i −0.106508 0.994312i \(-0.533967\pi\)
−0.978560 + 0.205964i \(0.933967\pi\)
\(180\) 0 0
\(181\) 1.83688 5.65334i 0.136534 0.420209i −0.859291 0.511487i \(-0.829095\pi\)
0.995826 + 0.0912773i \(0.0290950\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.48278 13.7966i −0.329580 1.01434i
\(186\) 0 0
\(187\) 1.92705 7.66145i 0.140920 0.560261i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.5172 + 12.7270i −1.26750 + 0.920894i −0.999100 0.0424133i \(-0.986495\pi\)
−0.268401 + 0.963307i \(0.586495\pi\)
\(192\) 0 0
\(193\) 4.73607 14.5761i 0.340910 1.04921i −0.622828 0.782359i \(-0.714016\pi\)
0.963737 0.266853i \(-0.0859838\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.90983 0.421058 0.210529 0.977588i \(-0.432481\pi\)
0.210529 + 0.977588i \(0.432481\pi\)
\(198\) 0 0
\(199\) −10.4164 −0.738400 −0.369200 0.929350i \(-0.620368\pi\)
−0.369200 + 0.929350i \(0.620368\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.326238 1.00406i 0.0228974 0.0704710i
\(204\) 0 0
\(205\) 29.5344 21.4580i 2.06277 1.49869i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −14.2984 8.97578i −0.989039 0.620868i
\(210\) 0 0
\(211\) 5.79180 + 17.8253i 0.398724 + 1.22715i 0.926023 + 0.377466i \(0.123204\pi\)
−0.527300 + 0.849679i \(0.676796\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.2812 34.7198i 0.769368 2.36787i
\(216\) 0 0
\(217\) −1.21885 0.885544i −0.0827407 0.0601147i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.8541 0.999195
\(222\) 0 0
\(223\) 6.04508 + 4.39201i 0.404809 + 0.294111i 0.771497 0.636233i \(-0.219508\pi\)
−0.366688 + 0.930344i \(0.619508\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.2812 7.46969i 0.682384 0.495781i −0.191764 0.981441i \(-0.561421\pi\)
0.874148 + 0.485660i \(0.161421\pi\)
\(228\) 0 0
\(229\) 3.38197 + 10.4086i 0.223487 + 0.687821i 0.998442 + 0.0558047i \(0.0177724\pi\)
−0.774955 + 0.632016i \(0.782228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.371323 1.14281i −0.0243262 0.0748683i 0.938156 0.346212i \(-0.112532\pi\)
−0.962483 + 0.271343i \(0.912532\pi\)
\(234\) 0 0
\(235\) 11.2812 8.19624i 0.735901 0.534664i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.1631 + 10.2901i 0.916136 + 0.665612i 0.942559 0.334039i \(-0.108412\pi\)
−0.0264232 + 0.999651i \(0.508412\pi\)
\(240\) 0 0
\(241\) −23.7082 −1.52718 −0.763590 0.645702i \(-0.776565\pi\)
−0.763590 + 0.645702i \(0.776565\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 21.6525 + 15.7314i 1.38333 + 1.00505i
\(246\) 0 0
\(247\) 9.80902 30.1891i 0.624133 1.92088i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.44427 22.9111i −0.469878 1.44614i −0.852742 0.522332i \(-0.825062\pi\)
0.382864 0.923805i \(-0.374938\pi\)
\(252\) 0 0
\(253\) −0.781153 + 0.0530006i −0.0491107 + 0.00333212i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.26393 + 1.64484i −0.141220 + 0.102602i −0.656152 0.754628i \(-0.727817\pi\)
0.514932 + 0.857231i \(0.327817\pi\)
\(258\) 0 0
\(259\) 0.274575 0.845055i 0.0170613 0.0525092i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.8541 −1.47091 −0.735453 0.677575i \(-0.763031\pi\)
−0.735453 + 0.677575i \(0.763031\pi\)
\(264\) 0 0
\(265\) −25.2918 −1.55366
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.79837 + 27.0786i −0.536446 + 1.65101i 0.204057 + 0.978959i \(0.434587\pi\)
−0.740503 + 0.672053i \(0.765413\pi\)
\(270\) 0 0
\(271\) 1.97214 1.43284i 0.119799 0.0870389i −0.526273 0.850316i \(-0.676411\pi\)
0.646071 + 0.763277i \(0.276411\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 27.6803 + 17.3763i 1.66919 + 1.04783i
\(276\) 0 0
\(277\) 0.791796 + 2.43690i 0.0475744 + 0.146419i 0.972022 0.234891i \(-0.0754732\pi\)
−0.924447 + 0.381310i \(0.875473\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.29180 + 16.2865i −0.315682 + 0.971570i 0.659791 + 0.751449i \(0.270645\pi\)
−0.975473 + 0.220120i \(0.929355\pi\)
\(282\) 0 0
\(283\) −18.7984 13.6578i −1.11745 0.811873i −0.133627 0.991032i \(-0.542662\pi\)
−0.983820 + 0.179159i \(0.942662\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.23607 0.131991
\(288\) 0 0
\(289\) 9.16312 + 6.65740i 0.539007 + 0.391612i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.04508 + 2.93893i −0.236316 + 0.171694i −0.699641 0.714495i \(-0.746657\pi\)
0.463324 + 0.886189i \(0.346657\pi\)
\(294\) 0 0
\(295\) −2.55573 7.86572i −0.148800 0.457960i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.454915 1.40008i −0.0263084 0.0809690i
\(300\) 0 0
\(301\) 1.80902 1.31433i 0.104270 0.0757566i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.16312 + 5.93085i 0.467419 + 0.339600i
\(306\) 0 0
\(307\) −0.673762 −0.0384536 −0.0192268 0.999815i \(-0.506120\pi\)
−0.0192268 + 0.999815i \(0.506120\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −23.6074 17.1518i −1.33865 0.972588i −0.999492 0.0318591i \(-0.989857\pi\)
−0.339160 0.940729i \(-0.610143\pi\)
\(312\) 0 0
\(313\) −0.309017 + 0.951057i −0.0174667 + 0.0537569i −0.959410 0.282015i \(-0.908997\pi\)
0.941943 + 0.335772i \(0.108997\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.63525 8.11048i −0.148011 0.455530i 0.849375 0.527790i \(-0.176979\pi\)
−0.997386 + 0.0722595i \(0.976979\pi\)
\(318\) 0 0
\(319\) −11.3820 + 9.51057i −0.637268 + 0.532489i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9.80902 + 7.12667i −0.545788 + 0.396538i
\(324\) 0 0
\(325\) −18.9894 + 58.4432i −1.05334 + 3.24185i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.854102 0.0470882
\(330\) 0 0
\(331\) 11.9443 0.656517 0.328258 0.944588i \(-0.393538\pi\)
0.328258 + 0.944588i \(0.393538\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.173762 + 0.534785i −0.00949364 + 0.0292184i
\(336\) 0 0
\(337\) 14.2361 10.3431i 0.775488 0.563425i −0.128133 0.991757i \(-0.540899\pi\)
0.903621 + 0.428332i \(0.140899\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.88854 + 19.6417i 0.427189 + 1.06366i
\(342\) 0 0
\(343\) 1.01722 + 3.13068i 0.0549248 + 0.169041i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.47214 7.60845i 0.132711 0.408443i −0.862516 0.506030i \(-0.831112\pi\)
0.995227 + 0.0975871i \(0.0311124\pi\)
\(348\) 0 0
\(349\) 22.8435 + 16.5967i 1.22278 + 0.888403i 0.996328 0.0856184i \(-0.0272866\pi\)
0.226454 + 0.974022i \(0.427287\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.4721 0.557376 0.278688 0.960382i \(-0.410101\pi\)
0.278688 + 0.960382i \(0.410101\pi\)
\(354\) 0 0
\(355\) −4.30902 3.13068i −0.228699 0.166159i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.7984 + 13.6578i −0.992140 + 0.720832i −0.960389 0.278664i \(-0.910109\pi\)
−0.0317515 + 0.999496i \(0.510109\pi\)
\(360\) 0 0
\(361\) 2.13525 + 6.57164i 0.112382 + 0.345876i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.85410 + 11.8617i 0.201733 + 0.620870i
\(366\) 0 0
\(367\) 4.35410 3.16344i 0.227282 0.165130i −0.468316 0.883561i \(-0.655139\pi\)
0.695599 + 0.718431i \(0.255139\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.25329 0.910568i −0.0650675 0.0472743i
\(372\) 0 0
\(373\) −13.9443 −0.722007 −0.361004 0.932564i \(-0.617566\pi\)
−0.361004 + 0.932564i \(0.617566\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −22.5623 16.3925i −1.16202 0.844255i
\(378\) 0 0
\(379\) −3.92705 + 12.0862i −0.201719 + 0.620827i 0.798113 + 0.602508i \(0.205832\pi\)
−0.999832 + 0.0183198i \(0.994168\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.16312 9.73508i −0.161628 0.497439i 0.837144 0.546982i \(-0.184224\pi\)
−0.998772 + 0.0495430i \(0.984224\pi\)
\(384\) 0 0
\(385\) 1.12461 + 2.80017i 0.0573155 + 0.142710i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.0172 9.45756i 0.659999 0.479518i −0.206663 0.978412i \(-0.566261\pi\)
0.866663 + 0.498895i \(0.166261\pi\)
\(390\) 0 0
\(391\) −0.173762 + 0.534785i −0.00878753 + 0.0270452i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 54.8673 2.76067
\(396\) 0 0
\(397\) 27.1803 1.36414 0.682071 0.731286i \(-0.261079\pi\)
0.682071 + 0.731286i \(0.261079\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.881966 2.71441i 0.0440433 0.135551i −0.926617 0.376007i \(-0.877297\pi\)
0.970660 + 0.240456i \(0.0772969\pi\)
\(402\) 0 0
\(403\) −32.1976 + 23.3929i −1.60387 + 1.16528i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.57953 + 8.00448i −0.474840 + 0.396767i
\(408\) 0 0
\(409\) 3.05573 + 9.40456i 0.151096 + 0.465026i 0.997744 0.0671269i \(-0.0213832\pi\)
−0.846648 + 0.532153i \(0.821383\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.156541 0.481784i 0.00770289 0.0237070i
\(414\) 0 0
\(415\) 48.2426 + 35.0503i 2.36814 + 1.72055i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.8541 −0.872230 −0.436115 0.899891i \(-0.643646\pi\)
−0.436115 + 0.899891i \(0.643646\pi\)
\(420\) 0 0
\(421\) 7.50000 + 5.44907i 0.365528 + 0.265571i 0.755354 0.655317i \(-0.227465\pi\)
−0.389826 + 0.920888i \(0.627465\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.9894 13.7966i 0.921119 0.669232i
\(426\) 0 0
\(427\) 0.190983 + 0.587785i 0.00924232 + 0.0284449i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.11803 12.6740i −0.198359 0.610485i −0.999921 0.0125740i \(-0.995997\pi\)
0.801562 0.597911i \(-0.204003\pi\)
\(432\) 0 0
\(433\) 12.0902 8.78402i 0.581016 0.422133i −0.258074 0.966125i \(-0.583088\pi\)
0.839090 + 0.543992i \(0.183088\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.972136 + 0.706298i 0.0465036 + 0.0337868i
\(438\) 0 0
\(439\) −19.3607 −0.924035 −0.462017 0.886871i \(-0.652874\pi\)
−0.462017 + 0.886871i \(0.652874\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.145898 + 0.106001i 0.00693182 + 0.00503627i 0.591246 0.806491i \(-0.298636\pi\)
−0.584314 + 0.811528i \(0.698636\pi\)
\(444\) 0 0
\(445\) −1.19098 + 3.66547i −0.0564580 + 0.173760i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.32624 + 7.15942i 0.109782 + 0.337874i 0.990823 0.135166i \(-0.0431567\pi\)
−0.881041 + 0.473040i \(0.843157\pi\)
\(450\) 0 0
\(451\) −26.6074 16.7027i −1.25289 0.786502i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.59017 + 3.33495i −0.215190 + 0.156345i
\(456\) 0 0
\(457\) 0.354102 1.08981i 0.0165642 0.0509793i −0.942433 0.334396i \(-0.891468\pi\)
0.958997 + 0.283416i \(0.0914678\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −19.5623 −0.911107 −0.455554 0.890208i \(-0.650559\pi\)
−0.455554 + 0.890208i \(0.650559\pi\)
\(462\) 0 0
\(463\) 21.2148 0.985935 0.492967 0.870048i \(-0.335912\pi\)
0.492967 + 0.870048i \(0.335912\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.12868 + 18.8621i −0.283601 + 0.872835i 0.703213 + 0.710979i \(0.251748\pi\)
−0.986814 + 0.161856i \(0.948252\pi\)
\(468\) 0 0
\(469\) −0.0278640 + 0.0202444i −0.00128664 + 0.000934800i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −31.3435 + 2.12663i −1.44117 + 0.0977824i
\(474\) 0 0
\(475\) −15.5000 47.7041i −0.711189 2.18881i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.11803 + 12.6740i −0.188158 + 0.579090i −0.999988 0.00480282i \(-0.998471\pi\)
0.811831 + 0.583893i \(0.198471\pi\)
\(480\) 0 0
\(481\) −18.9894 13.7966i −0.865840 0.629070i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.6180 −0.890809
\(486\) 0 0
\(487\) −28.9894 21.0620i −1.31363 0.954410i −0.999988 0.00487004i \(-0.998450\pi\)
−0.313645 0.949540i \(-0.601550\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.16312 + 3.02468i −0.187879 + 0.136502i −0.677749 0.735294i \(-0.737044\pi\)
0.489870 + 0.871796i \(0.337044\pi\)
\(492\) 0 0
\(493\) 3.29180 + 10.1311i 0.148255 + 0.456282i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.100813 0.310271i −0.00452208 0.0139175i
\(498\) 0 0
\(499\) −12.3541 + 8.97578i −0.553046 + 0.401811i −0.828907 0.559386i \(-0.811037\pi\)
0.275862 + 0.961197i \(0.411037\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.9443 + 10.1311i 0.621744 + 0.451724i 0.853530 0.521043i \(-0.174457\pi\)
−0.231786 + 0.972767i \(0.574457\pi\)
\(504\) 0 0
\(505\) 22.9098 1.01947
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.3090 + 7.48994i 0.456939 + 0.331986i 0.792329 0.610094i \(-0.208868\pi\)
−0.335390 + 0.942079i \(0.608868\pi\)
\(510\) 0 0
\(511\) −0.236068 + 0.726543i −0.0104430 + 0.0321403i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.8541 + 45.7162i 0.654550 + 2.01450i
\(516\) 0 0
\(517\) −10.1631 6.37988i −0.446973 0.280587i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000 8.71851i 0.525730 0.381965i −0.293028 0.956104i \(-0.594663\pi\)
0.818758 + 0.574139i \(0.194663\pi\)
\(522\) 0 0
\(523\) −6.73607 + 20.7315i −0.294548 + 0.906525i 0.688825 + 0.724927i \(0.258127\pi\)
−0.983373 + 0.181597i \(0.941873\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.2016 0.662193
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18.2533 56.1778i 0.790638 2.43333i
\(534\) 0 0
\(535\) 20.3541 14.7881i 0.879985 0.639346i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.61803 22.3358i 0.241986 0.962073i
\(540\) 0 0
\(541\) −1.95492 6.01661i −0.0840484 0.258674i 0.900197 0.435483i \(-0.143423\pi\)
−0.984245 + 0.176809i \(0.943423\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.52786 + 29.3238i −0.408129 + 1.25609i
\(546\) 0 0
\(547\) −10.7812 7.83297i −0.460969 0.334913i 0.332942 0.942947i \(-0.391959\pi\)
−0.793911 + 0.608034i \(0.791959\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.7639 0.969776
\(552\) 0 0
\(553\) 2.71885 + 1.97536i 0.115617 + 0.0840008i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.11803 2.99193i 0.174487 0.126772i −0.497114 0.867685i \(-0.665607\pi\)
0.671601 + 0.740913i \(0.265607\pi\)
\(558\) 0 0
\(559\) −18.2533 56.1778i −0.772032 2.37607i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.5795 38.7158i −0.530164 1.63168i −0.753873 0.657021i \(-0.771816\pi\)
0.223709 0.974656i \(-0.428184\pi\)
\(564\) 0 0
\(565\) 38.1525 27.7194i 1.60509 1.16616i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.94427 + 2.86568i 0.165352 + 0.120136i 0.667384 0.744714i \(-0.267414\pi\)
−0.502032 + 0.864849i \(0.667414\pi\)
\(570\) 0 0
\(571\) 24.3262 1.01802 0.509011 0.860760i \(-0.330011\pi\)
0.509011 + 0.860760i \(0.330011\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.88197 1.36733i −0.0784834 0.0570215i
\(576\) 0 0
\(577\) 9.03444 27.8052i 0.376109 1.15754i −0.566619 0.823980i \(-0.691749\pi\)
0.942728 0.333564i \(-0.108251\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.12868 + 3.47371i 0.0468254 + 0.144114i
\(582\) 0 0
\(583\) 8.11146 + 20.1967i 0.335942 + 0.836462i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8435 15.1437i 0.860302 0.625046i −0.0676654 0.997708i \(-0.521555\pi\)
0.927967 + 0.372662i \(0.121555\pi\)
\(588\) 0 0
\(589\) 10.0385 30.8953i 0.413629 1.27302i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.4508 −0.798751 −0.399375 0.916788i \(-0.630773\pi\)
−0.399375 + 0.916788i \(0.630773\pi\)
\(594\) 0 0
\(595\) 2.16718 0.0888459
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.5623 + 38.6628i −0.513282 + 1.57972i 0.273105 + 0.961984i \(0.411950\pi\)
−0.786386 + 0.617735i \(0.788050\pi\)
\(600\) 0 0
\(601\) −16.1353 + 11.7229i −0.658171 + 0.478189i −0.866045 0.499967i \(-0.833346\pi\)
0.207874 + 0.978156i \(0.433346\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.53444 41.7202i 0.306319 1.69617i
\(606\) 0 0
\(607\) 2.68034 + 8.24924i 0.108792 + 0.334826i 0.990602 0.136779i \(-0.0436749\pi\)
−0.881810 + 0.471605i \(0.843675\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.97214 21.4580i 0.282062 0.868099i
\(612\) 0 0
\(613\) −13.8541 10.0656i −0.559562 0.406546i 0.271737 0.962372i \(-0.412402\pi\)
−0.831299 + 0.555826i \(0.812402\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.00000 0.281809 0.140905 0.990023i \(-0.454999\pi\)
0.140905 + 0.990023i \(0.454999\pi\)
\(618\) 0 0
\(619\) 6.04508 + 4.39201i 0.242972 + 0.176530i 0.702607 0.711579i \(-0.252019\pi\)
−0.459634 + 0.888108i \(0.652019\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.190983 + 0.138757i −0.00765157 + 0.00555919i
\(624\) 0 0
\(625\) 7.05573 + 21.7153i 0.282229 + 0.868612i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.77051 + 8.52675i 0.110467 + 0.339984i
\(630\) 0 0
\(631\) −6.25329 + 4.54328i −0.248940 + 0.180865i −0.705257 0.708952i \(-0.749168\pi\)
0.456317 + 0.889817i \(0.349168\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −48.9787 35.5851i −1.94366 1.41215i
\(636\) 0 0
\(637\) 43.3050 1.71580
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.2082 + 14.6821i 0.798176 + 0.579909i 0.910378 0.413777i \(-0.135791\pi\)
−0.112202 + 0.993685i \(0.535791\pi\)
\(642\) 0 0
\(643\) −12.4098 + 38.1935i −0.489396 + 1.50621i 0.336116 + 0.941821i \(0.390887\pi\)
−0.825512 + 0.564385i \(0.809113\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.0279 33.9403i −0.433550 1.33433i −0.894565 0.446938i \(-0.852515\pi\)
0.461015 0.887392i \(-0.347485\pi\)
\(648\) 0 0
\(649\) −5.46149 + 4.56352i −0.214382 + 0.179134i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.1074 + 12.4292i −0.669464 + 0.486394i −0.869846 0.493324i \(-0.835782\pi\)
0.200382 + 0.979718i \(0.435782\pi\)
\(654\) 0 0
\(655\) 10.1976 31.3849i 0.398452 1.22631i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.70820 −0.378178 −0.189089 0.981960i \(-0.560553\pi\)
−0.189089 + 0.981960i \(0.560553\pi\)
\(660\) 0 0
\(661\) −13.3262 −0.518331 −0.259165 0.965833i \(-0.583447\pi\)
−0.259165 + 0.965833i \(0.583447\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.43112 4.40452i 0.0554963 0.170800i
\(666\) 0 0
\(667\) 0.854102 0.620541i 0.0330710 0.0240275i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.11803 8.42075i 0.0817658 0.325080i
\(672\) 0 0
\(673\) 10.9615 + 33.7360i 0.422534 + 1.30043i 0.905335 + 0.424697i \(0.139619\pi\)
−0.482801 + 0.875730i \(0.660381\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.763932 + 2.35114i −0.0293603 + 0.0903617i −0.964663 0.263487i \(-0.915127\pi\)
0.935303 + 0.353849i \(0.115127\pi\)
\(678\) 0 0
\(679\) −0.972136 0.706298i −0.0373072 0.0271052i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.6525 1.44073 0.720366 0.693594i \(-0.243974\pi\)
0.720366 + 0.693594i \(0.243974\pi\)
\(684\) 0 0
\(685\) −65.4787 47.5731i −2.50181 1.81767i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −33.1074 + 24.0539i −1.26129 + 0.916382i
\(690\) 0 0
\(691\) 10.0557 + 30.9483i 0.382538 + 1.17733i 0.938251 + 0.345956i \(0.112445\pi\)
−0.555713 + 0.831374i \(0.687555\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.52380 + 13.9228i 0.171597 + 0.528123i
\(696\) 0 0
\(697\) −18.2533 + 13.2618i −0.691393 + 0.502326i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.0623 16.7557i −0.871051 0.632856i 0.0598176 0.998209i \(-0.480948\pi\)
−0.930869 + 0.365354i \(0.880948\pi\)
\(702\) 0 0
\(703\) 19.1591 0.722597
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.13525 + 0.824811i 0.0426957 + 0.0310202i
\(708\) 0 0
\(709\) 5.17376 15.9232i 0.194305 0.598008i −0.805679 0.592352i \(-0.798199\pi\)
0.999984 0.00565642i \(-0.00180051\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.465558 1.43284i −0.0174353 0.0536603i
\(714\) 0 0
\(715\) 79.5304 5.39607i 2.97427 0.201802i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.4271 11.2084i 0.575332 0.418003i −0.261706 0.965148i \(-0.584285\pi\)
0.837038 + 0.547144i \(0.184285\pi\)
\(720\) 0 0
\(721\) −0.909830 + 2.80017i −0.0338838 + 0.104284i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −44.0689 −1.63668
\(726\) 0 0
\(727\) −8.85410 −0.328380 −0.164190 0.986429i \(-0.552501\pi\)
−0.164190 + 0.986429i \(0.552501\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.97214 + 21.4580i −0.257874 + 0.793654i
\(732\) 0 0
\(733\) −36.0344 + 26.1806i −1.33096 + 0.967001i −0.331238 + 0.943547i \(0.607466\pi\)
−0.999725 + 0.0234534i \(0.992534\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.482779 0.0327561i 0.0177834 0.00120659i
\(738\) 0 0
\(739\) −3.96149 12.1922i −0.145726 0.448498i 0.851378 0.524553i \(-0.175768\pi\)
−0.997104 + 0.0760550i \(0.975768\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.54508 + 10.9106i −0.130057 + 0.400273i −0.994788 0.101961i \(-0.967488\pi\)
0.864732 + 0.502234i \(0.167488\pi\)
\(744\) 0 0
\(745\) −52.6591 38.2590i −1.92928 1.40170i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.54102 0.0563076
\(750\) 0 0
\(751\) 33.6803 + 24.4702i 1.22901 + 0.892930i 0.996816 0.0797385i \(-0.0254085\pi\)
0.232197 + 0.972669i \(0.425409\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.9443 + 10.1311i −0.507484 + 0.368709i
\(756\) 0 0
\(757\) −3.21885 9.90659i −0.116991 0.360061i 0.875366 0.483461i \(-0.160620\pi\)
−0.992357 + 0.123399i \(0.960620\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.03851 + 27.8177i 0.327646 + 1.00839i 0.970232 + 0.242176i \(0.0778613\pi\)
−0.642587 + 0.766213i \(0.722139\pi\)
\(762\) 0 0
\(763\) −1.52786 + 1.11006i −0.0553124 + 0.0401868i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.8262 7.86572i −0.390913 0.284015i
\(768\) 0 0
\(769\) −33.5623 −1.21029 −0.605144 0.796116i \(-0.706884\pi\)
−0.605144 + 0.796116i \(0.706884\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.7533 + 17.2578i 0.854346 + 0.620719i 0.926341 0.376686i \(-0.122936\pi\)
−0.0719946 + 0.997405i \(0.522936\pi\)
\(774\) 0 0
\(775\) −19.4336 + 59.8106i −0.698077 + 2.14846i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.8992 + 45.8550i 0.533819 + 1.64293i
\(780\) 0 0
\(781\) −1.11803 + 4.44501i −0.0400064 + 0.159055i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 53.7426 39.0463i 1.91816 1.39362i
\(786\) 0 0
\(787\) 13.8328 42.5730i 0.493087 1.51756i −0.326831 0.945083i \(-0.605981\pi\)
0.819917 0.572482i \(-0.194019\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.88854 0.102705
\(792\) 0 0
\(793\) 16.3262 0.579762
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.1459 46.6143i 0.536495 1.65116i −0.203901 0.978992i \(-0.565362\pi\)
0.740396 0.672171i \(-0.234638\pi\)
\(798\) 0 0
\(799\) −6.97214 + 5.06555i −0.246656 + 0.179206i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.23607 6.88191i 0.290645 0.242857i
\(804\) 0 0
\(805\) −0.0663712 0.204270i −0.00233928 0.00719956i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.8992 + 33.5442i −0.383195 + 1.17935i 0.554586 + 0.832126i \(0.312877\pi\)
−0.937781 + 0.347227i \(0.887123\pi\)
\(810\) 0 0
\(811\) 1.78115 + 1.29408i 0.0625447 + 0.0454414i 0.618618 0.785692i \(-0.287693\pi\)
−0.556074 + 0.831133i \(0.687693\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.7082 −0.655320
\(816\) 0 0
\(817\) 39.0066 + 28.3399i 1.36467 + 0.991489i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.1353 16.0822i 0.772526 0.561273i −0.130201 0.991488i \(-0.541562\pi\)
0.902727 + 0.430215i \(0.141562\pi\)
\(822\) 0 0
\(823\) 7.16312 + 22.0458i 0.249691 + 0.768469i 0.994829 + 0.101559i \(0.0323832\pi\)
−0.745139 + 0.666909i \(0.767617\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.7082 + 39.1118i 0.441908 + 1.36005i 0.885840 + 0.463991i \(0.153583\pi\)
−0.443932 + 0.896060i \(0.646417\pi\)
\(828\) 0 0
\(829\) −3.83688 + 2.78766i −0.133260 + 0.0968193i −0.652419 0.757859i \(-0.726246\pi\)
0.519158 + 0.854678i \(0.326246\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.3820 9.72257i −0.463658 0.336867i
\(834\) 0 0
\(835\) 2.38197 0.0824313
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.6074 + 22.2376i 1.05668 + 0.767726i 0.973472 0.228806i \(-0.0734820\pi\)
0.0832124 + 0.996532i \(0.473482\pi\)
\(840\) 0 0
\(841\) −2.78115 + 8.55951i −0.0959018 + 0.295155i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 30.8328 + 94.8936i 1.06068 + 3.26444i
\(846\) 0 0
\(847\) 1.87539 1.79611i 0.0644391 0.0617151i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.718847 0.522273i 0.0246418 0.0179033i
\(852\) 0 0
\(853\) 3.28773 10.1186i 0.112570 0.346454i −0.878863 0.477075i \(-0.841697\pi\)
0.991432 + 0.130621i \(0.0416970\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 50.1935 1.71458 0.857289 0.514836i \(-0.172147\pi\)
0.857289 + 0.514836i \(0.172147\pi\)
\(858\) 0 0
\(859\) 8.81966 0.300923 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.43769 13.6578i 0.151061 0.464918i −0.846680 0.532103i \(-0.821402\pi\)
0.997741 + 0.0671854i \(0.0214019\pi\)
\(864\) 0 0
\(865\) 17.3435 12.6008i 0.589695 0.428439i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −17.5967 43.8141i −0.596929 1.48629i
\(870\) 0 0
\(871\) 0.281153 + 0.865300i 0.00952650 + 0.0293196i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.36475 + 4.20025i −0.0461368 + 0.141994i
\(876\) 0 0
\(877\) −0.718847 0.522273i −0.0242737 0.0176359i 0.575582 0.817744i \(-0.304775\pi\)
−0.599856 + 0.800108i \(0.704775\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40.5623 −1.36658 −0.683289 0.730148i \(-0.739451\pi\)
−0.683289 + 0.730148i \(0.739451\pi\)
\(882\) 0 0
\(883\) −12.0902 8.78402i −0.406867 0.295606i 0.365465 0.930825i \(-0.380910\pi\)
−0.772332 + 0.635219i \(0.780910\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −26.9336 + 19.5684i −0.904343 + 0.657043i −0.939578 0.342336i \(-0.888782\pi\)
0.0352350 + 0.999379i \(0.488782\pi\)
\(888\) 0 0
\(889\) −1.14590 3.52671i −0.0384322 0.118282i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.69098 + 17.5150i 0.190441 + 0.586119i
\(894\) 0 0
\(895\) −55.9508 + 40.6507i −1.87023 + 1.35880i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −23.0902 16.7760i −0.770100 0.559511i
\(900\) 0 0
\(901\) 15.6312 0.520750
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.5344 13.4661i −0.616106 0.447627i
\(906\) 0 0
\(907\) −13.2467 + 40.7692i −0.439850 + 1.35372i 0.448184 + 0.893941i \(0.352071\pi\)
−0.888034 + 0.459777i \(0.847929\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.89261 24.2910i −0.261494 0.804795i −0.992480 0.122403i \(-0.960940\pi\)
0.730987 0.682392i \(-0.239060\pi\)
\(912\) 0 0
\(913\) 12.5172 49.7652i 0.414260 1.64699i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.63525 1.18808i 0.0540009 0.0392339i
\(918\) 0 0
\(919\) −4.89261 + 15.0579i −0.161392 + 0.496714i −0.998752 0.0499374i \(-0.984098\pi\)
0.837360 + 0.546652i \(0.184098\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.61803 −0.283666
\(924\) 0 0
\(925\) −37.0902 −1.21952
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.05166 + 18.6251i −0.198549 + 0.611070i 0.801368 + 0.598171i \(0.204106\pi\)
−0.999917 + 0.0128984i \(0.995894\pi\)
\(930\) 0 0
\(931\) −28.5967 + 20.7768i −0.937221 + 0.680931i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.7877 16.1882i −0.843349 0.529411i
\(936\) 0 0
\(937\) 6.10739 + 18.7966i 0.199520 + 0.614059i 0.999894 + 0.0145580i \(0.00463413\pi\)
−0.800374 + 0.599501i \(0.795366\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.791796 2.43690i 0.0258118 0.0794406i −0.937321 0.348468i \(-0.886702\pi\)
0.963133 + 0.269027i \(0.0867021\pi\)
\(942\) 0 0
\(943\) 1.80902 + 1.31433i 0.0589097 + 0.0428004i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.79837 0.0909349 0.0454675 0.998966i \(-0.485522\pi\)
0.0454675 + 0.998966i \(0.485522\pi\)
\(948\) 0 0
\(949\) 16.3262 + 11.8617i 0.529972 + 0.385047i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.1246 20.4337i 0.911046 0.661913i −0.0302335 0.999543i \(-0.509625\pi\)
0.941279 + 0.337630i \(0.109625\pi\)
\(954\) 0 0
\(955\) 25.7877 + 79.3665i 0.834471 + 2.56824i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.53193 4.71479i −0.0494686 0.152249i
\(960\) 0 0
\(961\) −7.87132 + 5.71885i −0.253914 + 0.184479i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −47.7877 34.7198i −1.53834 1.11767i
\(966\) 0 0
\(967\) 14.7295 0.473668 0.236834 0.971550i \(-0.423890\pi\)
0.236834 + 0.971550i \(0.423890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.90983 + 1.38757i 0.0612894 + 0.0445293i 0.618008 0.786172i \(-0.287940\pi\)
−0.556719 + 0.830701i \(0.687940\pi\)
\(972\) 0 0
\(973\) −0.277088 + 0.852788i −0.00888302 + 0.0273391i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.1631 + 31.2789i 0.325147 + 1.00070i 0.971374 + 0.237554i \(0.0763458\pi\)
−0.646227 + 0.763145i \(0.723654\pi\)
\(978\) 0 0
\(979\) 3.30902 0.224514i 0.105757 0.00717550i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −29.7984 + 21.6498i −0.950421 + 0.690521i −0.950906 0.309479i \(-0.899845\pi\)
0.000485770 1.00000i \(0.499845\pi\)
\(984\) 0 0
\(985\) 7.03851 21.6623i 0.224265 0.690218i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.23607 0.0711028
\(990\) 0 0
\(991\) 43.2705 1.37453 0.687267 0.726405i \(-0.258810\pi\)
0.687267 + 0.726405i \(0.258810\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12.4058 + 38.1810i −0.393289 + 1.21042i
\(996\) 0 0
\(997\) −23.6803 + 17.2048i −0.749964 + 0.544881i −0.895816 0.444426i \(-0.853408\pi\)
0.145852 + 0.989306i \(0.453408\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.j.c.181.1 4
3.2 odd 2 132.2.i.b.49.1 4
11.3 even 5 4356.2.a.v.1.2 2
11.8 odd 10 4356.2.a.s.1.2 2
11.9 even 5 inner 396.2.j.c.361.1 4
12.11 even 2 528.2.y.a.49.1 4
33.2 even 10 1452.2.i.j.493.1 4
33.5 odd 10 1452.2.i.o.565.1 4
33.8 even 10 1452.2.a.i.1.1 2
33.14 odd 10 1452.2.a.j.1.1 2
33.17 even 10 1452.2.i.p.565.1 4
33.20 odd 10 132.2.i.b.97.1 yes 4
33.26 odd 10 1452.2.i.o.1213.1 4
33.29 even 10 1452.2.i.p.1213.1 4
33.32 even 2 1452.2.i.j.1237.1 4
132.47 even 10 5808.2.a.cc.1.1 2
132.107 odd 10 5808.2.a.cf.1.1 2
132.119 even 10 528.2.y.a.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.49.1 4 3.2 odd 2
132.2.i.b.97.1 yes 4 33.20 odd 10
396.2.j.c.181.1 4 1.1 even 1 trivial
396.2.j.c.361.1 4 11.9 even 5 inner
528.2.y.a.49.1 4 12.11 even 2
528.2.y.a.97.1 4 132.119 even 10
1452.2.a.i.1.1 2 33.8 even 10
1452.2.a.j.1.1 2 33.14 odd 10
1452.2.i.j.493.1 4 33.2 even 10
1452.2.i.j.1237.1 4 33.32 even 2
1452.2.i.o.565.1 4 33.5 odd 10
1452.2.i.o.1213.1 4 33.26 odd 10
1452.2.i.p.565.1 4 33.17 even 10
1452.2.i.p.1213.1 4 33.29 even 10
4356.2.a.s.1.2 2 11.8 odd 10
4356.2.a.v.1.2 2 11.3 even 5
5808.2.a.cc.1.1 2 132.47 even 10
5808.2.a.cf.1.1 2 132.107 odd 10