Properties

Label 396.2.j.b.181.1
Level $396$
Weight $2$
Character 396.181
Analytic conductor $3.162$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,2,Mod(37,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-3,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 396.181
Dual form 396.2.j.b.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 + 0.587785i) q^{5} +(3.42705 - 2.48990i) q^{7} +(-0.309017 + 3.30220i) q^{11} +(0.0729490 + 0.224514i) q^{13} +(2.11803 - 6.51864i) q^{17} +(0.118034 + 0.0857567i) q^{19} +5.00000 q^{23} +(3.73607 + 2.71441i) q^{25} +(1.61803 - 1.17557i) q^{29} +(1.73607 + 5.34307i) q^{31} +(0.809017 + 2.48990i) q^{35} +(1.80902 - 1.31433i) q^{37} +(3.80902 + 2.76741i) q^{41} -11.4721 q^{43} +(-8.54508 - 6.20837i) q^{47} +(3.38197 - 10.4086i) q^{49} +(-1.35410 - 4.16750i) q^{53} +(-1.88197 - 0.812299i) q^{55} +(-10.3541 + 7.52270i) q^{59} +(-1.28115 + 3.94298i) q^{61} -0.145898 q^{65} -6.61803 q^{67} +(-1.71885 + 5.29007i) q^{71} +(1.85410 - 1.34708i) q^{73} +(7.16312 + 12.0862i) q^{77} +(1.45492 + 4.47777i) q^{79} +(1.92705 - 5.93085i) q^{83} +(3.42705 + 2.48990i) q^{85} -17.1803 q^{89} +(0.809017 + 0.587785i) q^{91} +(-0.0729490 + 0.0530006i) q^{95} +(-4.33688 - 13.3475i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} + 7 q^{7} + q^{11} + 7 q^{13} + 4 q^{17} - 4 q^{19} + 20 q^{23} + 6 q^{25} + 2 q^{29} - 2 q^{31} + q^{35} + 5 q^{37} + 13 q^{41} - 28 q^{43} - 23 q^{47} + 18 q^{49} + 8 q^{53} - 12 q^{55}+ \cdots - 33 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.190983 + 0.587785i −0.0854102 + 0.262866i −0.984636 0.174619i \(-0.944131\pi\)
0.899226 + 0.437485i \(0.144131\pi\)
\(6\) 0 0
\(7\) 3.42705 2.48990i 1.29530 0.941093i 0.295405 0.955372i \(-0.404545\pi\)
0.999898 + 0.0142789i \(0.00454526\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.309017 + 3.30220i −0.0931721 + 0.995650i
\(12\) 0 0
\(13\) 0.0729490 + 0.224514i 0.0202324 + 0.0622690i 0.960663 0.277717i \(-0.0895777\pi\)
−0.940431 + 0.339986i \(0.889578\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.11803 6.51864i 0.513699 1.58100i −0.271939 0.962315i \(-0.587665\pi\)
0.785637 0.618687i \(-0.212335\pi\)
\(18\) 0 0
\(19\) 0.118034 + 0.0857567i 0.0270789 + 0.0196739i 0.601242 0.799067i \(-0.294673\pi\)
−0.574164 + 0.818741i \(0.694673\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.00000 1.04257 0.521286 0.853382i \(-0.325452\pi\)
0.521286 + 0.853382i \(0.325452\pi\)
\(24\) 0 0
\(25\) 3.73607 + 2.71441i 0.747214 + 0.542882i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.61803 1.17557i 0.300461 0.218298i −0.427331 0.904095i \(-0.640546\pi\)
0.727793 + 0.685797i \(0.240546\pi\)
\(30\) 0 0
\(31\) 1.73607 + 5.34307i 0.311807 + 0.959643i 0.977049 + 0.213015i \(0.0683284\pi\)
−0.665242 + 0.746628i \(0.731672\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.809017 + 2.48990i 0.136749 + 0.420870i
\(36\) 0 0
\(37\) 1.80902 1.31433i 0.297401 0.216074i −0.429071 0.903271i \(-0.641159\pi\)
0.726471 + 0.687197i \(0.241159\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.80902 + 2.76741i 0.594869 + 0.432197i 0.844054 0.536259i \(-0.180163\pi\)
−0.249185 + 0.968456i \(0.580163\pi\)
\(42\) 0 0
\(43\) −11.4721 −1.74948 −0.874742 0.484589i \(-0.838969\pi\)
−0.874742 + 0.484589i \(0.838969\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.54508 6.20837i −1.24643 0.905583i −0.248420 0.968653i \(-0.579911\pi\)
−0.998009 + 0.0630690i \(0.979911\pi\)
\(48\) 0 0
\(49\) 3.38197 10.4086i 0.483138 1.48695i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.35410 4.16750i −0.186000 0.572450i 0.813964 0.580915i \(-0.197305\pi\)
−0.999964 + 0.00846560i \(0.997305\pi\)
\(54\) 0 0
\(55\) −1.88197 0.812299i −0.253764 0.109530i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.3541 + 7.52270i −1.34799 + 0.979372i −0.348880 + 0.937167i \(0.613438\pi\)
−0.999109 + 0.0422042i \(0.986562\pi\)
\(60\) 0 0
\(61\) −1.28115 + 3.94298i −0.164035 + 0.504847i −0.998964 0.0455103i \(-0.985509\pi\)
0.834929 + 0.550358i \(0.185509\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.145898 −0.0180964
\(66\) 0 0
\(67\) −6.61803 −0.808522 −0.404261 0.914644i \(-0.632471\pi\)
−0.404261 + 0.914644i \(0.632471\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.71885 + 5.29007i −0.203990 + 0.627815i 0.795764 + 0.605607i \(0.207070\pi\)
−0.999753 + 0.0222083i \(0.992930\pi\)
\(72\) 0 0
\(73\) 1.85410 1.34708i 0.217006 0.157664i −0.473972 0.880540i \(-0.657180\pi\)
0.690978 + 0.722876i \(0.257180\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.16312 + 12.0862i 0.816313 + 1.37735i
\(78\) 0 0
\(79\) 1.45492 + 4.47777i 0.163691 + 0.503788i 0.998937 0.0460871i \(-0.0146752\pi\)
−0.835247 + 0.549875i \(0.814675\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.92705 5.93085i 0.211521 0.650996i −0.787861 0.615853i \(-0.788811\pi\)
0.999382 0.0351426i \(-0.0111885\pi\)
\(84\) 0 0
\(85\) 3.42705 + 2.48990i 0.371716 + 0.270067i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −17.1803 −1.82111 −0.910556 0.413385i \(-0.864346\pi\)
−0.910556 + 0.413385i \(0.864346\pi\)
\(90\) 0 0
\(91\) 0.809017 + 0.587785i 0.0848080 + 0.0616166i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0729490 + 0.0530006i −0.00748441 + 0.00543774i
\(96\) 0 0
\(97\) −4.33688 13.3475i −0.440344 1.35524i −0.887510 0.460788i \(-0.847567\pi\)
0.447167 0.894451i \(-0.352433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.63525 11.1882i −0.361721 1.11326i −0.952009 0.306071i \(-0.900986\pi\)
0.590287 0.807193i \(-0.299014\pi\)
\(102\) 0 0
\(103\) −14.0902 + 10.2371i −1.38835 + 1.00869i −0.392301 + 0.919837i \(0.628321\pi\)
−0.996045 + 0.0888554i \(0.971679\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.6631 + 9.20029i 1.22419 + 0.889426i 0.996441 0.0842938i \(-0.0268634\pi\)
0.227749 + 0.973720i \(0.426863\pi\)
\(108\) 0 0
\(109\) −8.94427 −0.856706 −0.428353 0.903612i \(-0.640906\pi\)
−0.428353 + 0.903612i \(0.640906\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.04508 + 5.84510i 0.756818 + 0.549860i 0.897933 0.440133i \(-0.145069\pi\)
−0.141115 + 0.989993i \(0.545069\pi\)
\(114\) 0 0
\(115\) −0.954915 + 2.93893i −0.0890463 + 0.274056i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.97214 27.6134i −0.822474 2.53132i
\(120\) 0 0
\(121\) −10.8090 2.04087i −0.982638 0.185534i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.80902 + 3.49396i −0.430132 + 0.312509i
\(126\) 0 0
\(127\) −3.61803 + 11.1352i −0.321049 + 0.988086i 0.652144 + 0.758095i \(0.273870\pi\)
−0.973193 + 0.229991i \(0.926130\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.85410 0.773586 0.386793 0.922166i \(-0.373583\pi\)
0.386793 + 0.922166i \(0.373583\pi\)
\(132\) 0 0
\(133\) 0.618034 0.0535903
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.01722 9.28605i 0.257779 0.793361i −0.735491 0.677535i \(-0.763048\pi\)
0.993269 0.115826i \(-0.0369516\pi\)
\(138\) 0 0
\(139\) 6.92705 5.03280i 0.587545 0.426876i −0.253891 0.967233i \(-0.581711\pi\)
0.841436 + 0.540356i \(0.181711\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.763932 + 0.171513i −0.0638832 + 0.0143427i
\(144\) 0 0
\(145\) 0.381966 + 1.17557i 0.0317206 + 0.0976258i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.48936 + 16.8945i −0.449706 + 1.38405i 0.427534 + 0.903999i \(0.359382\pi\)
−0.877240 + 0.480052i \(0.840618\pi\)
\(150\) 0 0
\(151\) 3.61803 + 2.62866i 0.294431 + 0.213917i 0.725188 0.688551i \(-0.241753\pi\)
−0.430756 + 0.902468i \(0.641753\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.47214 −0.278889
\(156\) 0 0
\(157\) 12.7082 + 9.23305i 1.01423 + 0.736878i 0.965091 0.261915i \(-0.0843539\pi\)
0.0491340 + 0.998792i \(0.484354\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 17.1353 12.4495i 1.35045 0.981157i
\(162\) 0 0
\(163\) −3.20820 9.87384i −0.251286 0.773379i −0.994539 0.104368i \(-0.966718\pi\)
0.743253 0.669011i \(-0.233282\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.80902 + 14.8006i 0.372133 + 1.14531i 0.945393 + 0.325934i \(0.105679\pi\)
−0.573260 + 0.819374i \(0.694321\pi\)
\(168\) 0 0
\(169\) 10.4721 7.60845i 0.805549 0.585266i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.82624 + 5.68609i 0.595018 + 0.432306i 0.844107 0.536175i \(-0.180131\pi\)
−0.249089 + 0.968481i \(0.580131\pi\)
\(174\) 0 0
\(175\) 19.5623 1.47877
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.04508 + 0.759299i 0.0781133 + 0.0567526i 0.626157 0.779697i \(-0.284627\pi\)
−0.548043 + 0.836450i \(0.684627\pi\)
\(180\) 0 0
\(181\) 1.54508 4.75528i 0.114845 0.353457i −0.877069 0.480364i \(-0.840505\pi\)
0.991915 + 0.126906i \(0.0405047\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.427051 + 1.31433i 0.0313974 + 0.0966313i
\(186\) 0 0
\(187\) 20.8713 + 9.00854i 1.52626 + 0.658769i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.8992 + 7.91872i −0.788637 + 0.572979i −0.907559 0.419925i \(-0.862056\pi\)
0.118921 + 0.992904i \(0.462056\pi\)
\(192\) 0 0
\(193\) 5.50000 16.9273i 0.395899 1.21845i −0.532361 0.846518i \(-0.678695\pi\)
0.928259 0.371933i \(-0.121305\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19.3262 −1.37694 −0.688469 0.725266i \(-0.741717\pi\)
−0.688469 + 0.725266i \(0.741717\pi\)
\(198\) 0 0
\(199\) 0.0557281 0.00395046 0.00197523 0.999998i \(-0.499371\pi\)
0.00197523 + 0.999998i \(0.499371\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.61803 8.05748i 0.183750 0.565524i
\(204\) 0 0
\(205\) −2.35410 + 1.71036i −0.164418 + 0.119456i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.319660 + 0.363271i −0.0221114 + 0.0251280i
\(210\) 0 0
\(211\) −6.20820 19.1069i −0.427390 1.31537i −0.900687 0.434469i \(-0.856936\pi\)
0.473296 0.880903i \(-0.343064\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.19098 6.74315i 0.149424 0.459879i
\(216\) 0 0
\(217\) 19.2533 + 13.9883i 1.30700 + 0.949590i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.61803 0.108841
\(222\) 0 0
\(223\) −16.1353 11.7229i −1.08050 0.785027i −0.102727 0.994710i \(-0.532757\pi\)
−0.977769 + 0.209683i \(0.932757\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.42705 3.21644i 0.293834 0.213483i −0.431095 0.902307i \(-0.641873\pi\)
0.724929 + 0.688824i \(0.241873\pi\)
\(228\) 0 0
\(229\) 2.90983 + 8.95554i 0.192287 + 0.591798i 0.999998 + 0.00221926i \(0.000706412\pi\)
−0.807711 + 0.589579i \(0.799294\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.246711 + 0.759299i 0.0161626 + 0.0497433i 0.958813 0.284040i \(-0.0916747\pi\)
−0.942650 + 0.333783i \(0.891675\pi\)
\(234\) 0 0
\(235\) 5.28115 3.83698i 0.344504 0.250297i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.3992 + 13.3678i 1.19014 + 0.864691i 0.993280 0.115740i \(-0.0369240\pi\)
0.196865 + 0.980431i \(0.436924\pi\)
\(240\) 0 0
\(241\) −5.23607 −0.337285 −0.168642 0.985677i \(-0.553938\pi\)
−0.168642 + 0.985677i \(0.553938\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.47214 + 3.97574i 0.349602 + 0.254001i
\(246\) 0 0
\(247\) −0.0106431 + 0.0327561i −0.000677205 + 0.00208422i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.88197 8.86978i −0.181908 0.559856i 0.817973 0.575256i \(-0.195098\pi\)
−0.999881 + 0.0154006i \(0.995098\pi\)
\(252\) 0 0
\(253\) −1.54508 + 16.5110i −0.0971387 + 1.03804i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.35410 2.43690i 0.209223 0.152010i −0.478239 0.878230i \(-0.658725\pi\)
0.687462 + 0.726220i \(0.258725\pi\)
\(258\) 0 0
\(259\) 2.92705 9.00854i 0.181878 0.559763i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −19.7426 −1.21738 −0.608692 0.793407i \(-0.708305\pi\)
−0.608692 + 0.793407i \(0.708305\pi\)
\(264\) 0 0
\(265\) 2.70820 0.166364
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.85410 24.1724i 0.478873 1.47382i −0.361789 0.932260i \(-0.617834\pi\)
0.840662 0.541560i \(-0.182166\pi\)
\(270\) 0 0
\(271\) 9.20820 6.69015i 0.559359 0.406398i −0.271866 0.962335i \(-0.587641\pi\)
0.831224 + 0.555937i \(0.187641\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.1180 + 11.4984i −0.610140 + 0.693382i
\(276\) 0 0
\(277\) 8.20820 + 25.2623i 0.493183 + 1.51786i 0.819769 + 0.572694i \(0.194102\pi\)
−0.326586 + 0.945168i \(0.605898\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.29180 3.97574i 0.0770621 0.237173i −0.905103 0.425192i \(-0.860207\pi\)
0.982165 + 0.188019i \(0.0602067\pi\)
\(282\) 0 0
\(283\) 5.38197 + 3.91023i 0.319925 + 0.232439i 0.736143 0.676826i \(-0.236645\pi\)
−0.416219 + 0.909265i \(0.636645\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 19.9443 1.17727
\(288\) 0 0
\(289\) −24.2533 17.6210i −1.42666 1.03653i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.9894 13.0700i 1.05095 0.763559i 0.0785567 0.996910i \(-0.474969\pi\)
0.972393 + 0.233350i \(0.0749688\pi\)
\(294\) 0 0
\(295\) −2.44427 7.52270i −0.142311 0.437988i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.364745 + 1.12257i 0.0210938 + 0.0649199i
\(300\) 0 0
\(301\) −39.3156 + 28.5645i −2.26611 + 1.64643i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.07295 1.50609i −0.118697 0.0862382i
\(306\) 0 0
\(307\) 10.7426 0.613115 0.306558 0.951852i \(-0.400823\pi\)
0.306558 + 0.951852i \(0.400823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.8992 + 7.91872i 0.618036 + 0.449030i 0.852235 0.523159i \(-0.175247\pi\)
−0.234199 + 0.972189i \(0.575247\pi\)
\(312\) 0 0
\(313\) −5.07295 + 15.6129i −0.286740 + 0.882495i 0.699132 + 0.714993i \(0.253570\pi\)
−0.985872 + 0.167502i \(0.946430\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.72542 + 20.6987i 0.377737 + 1.16256i 0.941613 + 0.336697i \(0.109310\pi\)
−0.563876 + 0.825860i \(0.690690\pi\)
\(318\) 0 0
\(319\) 3.38197 + 5.70634i 0.189354 + 0.319494i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.809017 0.587785i 0.0450149 0.0327052i
\(324\) 0 0
\(325\) −0.336881 + 1.03681i −0.0186868 + 0.0575121i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −44.7426 −2.46674
\(330\) 0 0
\(331\) −5.94427 −0.326727 −0.163363 0.986566i \(-0.552234\pi\)
−0.163363 + 0.986566i \(0.552234\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.26393 3.88998i 0.0690560 0.212532i
\(336\) 0 0
\(337\) −8.23607 + 5.98385i −0.448647 + 0.325961i −0.789061 0.614314i \(-0.789433\pi\)
0.340414 + 0.940276i \(0.389433\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −18.1803 + 4.08174i −0.984521 + 0.221039i
\(342\) 0 0
\(343\) −5.16312 15.8904i −0.278782 0.858003i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.47214 13.7638i 0.240077 0.738881i −0.756330 0.654190i \(-0.773010\pi\)
0.996407 0.0846908i \(-0.0269902\pi\)
\(348\) 0 0
\(349\) −26.4615 19.2254i −1.41645 1.02911i −0.992345 0.123500i \(-0.960588\pi\)
−0.424107 0.905612i \(-0.639412\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.0557 −0.801336 −0.400668 0.916223i \(-0.631222\pi\)
−0.400668 + 0.916223i \(0.631222\pi\)
\(354\) 0 0
\(355\) −2.78115 2.02063i −0.147608 0.107244i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.38197 + 2.45714i −0.178493 + 0.129683i −0.673444 0.739238i \(-0.735186\pi\)
0.494951 + 0.868921i \(0.335186\pi\)
\(360\) 0 0
\(361\) −5.86475 18.0498i −0.308671 0.949991i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.437694 + 1.34708i 0.0229100 + 0.0705096i
\(366\) 0 0
\(367\) 8.82624 6.41264i 0.460726 0.334737i −0.333090 0.942895i \(-0.608091\pi\)
0.793816 + 0.608158i \(0.208091\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.0172 10.9106i −0.779655 0.566453i
\(372\) 0 0
\(373\) −4.41641 −0.228673 −0.114336 0.993442i \(-0.536474\pi\)
−0.114336 + 0.993442i \(0.536474\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.381966 + 0.277515i 0.0196723 + 0.0142927i
\(378\) 0 0
\(379\) −8.10739 + 24.9520i −0.416449 + 1.28170i 0.494500 + 0.869178i \(0.335351\pi\)
−0.910949 + 0.412520i \(0.864649\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.54508 + 4.75528i 0.0789502 + 0.242984i 0.982740 0.184993i \(-0.0592264\pi\)
−0.903790 + 0.427977i \(0.859226\pi\)
\(384\) 0 0
\(385\) −8.47214 + 1.90211i −0.431780 + 0.0969407i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.16312 + 4.47777i −0.312483 + 0.227032i −0.732961 0.680271i \(-0.761862\pi\)
0.420478 + 0.907303i \(0.361862\pi\)
\(390\) 0 0
\(391\) 10.5902 32.5932i 0.535568 1.64831i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.90983 −0.146409
\(396\) 0 0
\(397\) 10.2361 0.513734 0.256867 0.966447i \(-0.417310\pi\)
0.256867 + 0.966447i \(0.417310\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.97214 + 12.2250i −0.198359 + 0.610486i 0.801562 + 0.597912i \(0.204003\pi\)
−0.999921 + 0.0125745i \(0.995997\pi\)
\(402\) 0 0
\(403\) −1.07295 + 0.779543i −0.0534474 + 0.0388318i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.78115 + 6.37988i 0.187425 + 0.316239i
\(408\) 0 0
\(409\) −1.05573 3.24920i −0.0522024 0.160662i 0.921557 0.388244i \(-0.126918\pi\)
−0.973759 + 0.227581i \(0.926918\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.7533 + 51.5613i −0.824375 + 2.53717i
\(414\) 0 0
\(415\) 3.11803 + 2.26538i 0.153058 + 0.111203i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.7984 −0.625241 −0.312621 0.949878i \(-0.601207\pi\)
−0.312621 + 0.949878i \(0.601207\pi\)
\(420\) 0 0
\(421\) 19.6803 + 14.2986i 0.959161 + 0.696871i 0.952956 0.303109i \(-0.0980248\pi\)
0.00620532 + 0.999981i \(0.498025\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 25.6074 18.6049i 1.24214 0.902468i
\(426\) 0 0
\(427\) 5.42705 + 16.7027i 0.262633 + 0.808303i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.31966 7.13918i −0.111734 0.343882i 0.879518 0.475866i \(-0.157865\pi\)
−0.991252 + 0.131984i \(0.957865\pi\)
\(432\) 0 0
\(433\) 10.0902 7.33094i 0.484903 0.352302i −0.318318 0.947984i \(-0.603118\pi\)
0.803221 + 0.595682i \(0.203118\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.590170 + 0.428784i 0.0282317 + 0.0205115i
\(438\) 0 0
\(439\) −5.47214 −0.261171 −0.130585 0.991437i \(-0.541686\pi\)
−0.130585 + 0.991437i \(0.541686\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.09017 3.69822i −0.241841 0.175708i 0.460262 0.887783i \(-0.347755\pi\)
−0.702103 + 0.712075i \(0.747755\pi\)
\(444\) 0 0
\(445\) 3.28115 10.0984i 0.155542 0.478708i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.14590 + 6.60440i 0.101271 + 0.311681i 0.988837 0.149000i \(-0.0476054\pi\)
−0.887566 + 0.460681i \(0.847605\pi\)
\(450\) 0 0
\(451\) −10.3156 + 11.7229i −0.485742 + 0.552012i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.500000 + 0.363271i −0.0234404 + 0.0170304i
\(456\) 0 0
\(457\) −2.40983 + 7.41669i −0.112727 + 0.346938i −0.991466 0.130364i \(-0.958385\pi\)
0.878739 + 0.477302i \(0.158385\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.2705 0.804368 0.402184 0.915559i \(-0.368251\pi\)
0.402184 + 0.915559i \(0.368251\pi\)
\(462\) 0 0
\(463\) −13.0344 −0.605762 −0.302881 0.953028i \(-0.597948\pi\)
−0.302881 + 0.953028i \(0.597948\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.39919 7.38394i 0.111021 0.341688i −0.880075 0.474834i \(-0.842508\pi\)
0.991096 + 0.133146i \(0.0425080\pi\)
\(468\) 0 0
\(469\) −22.6803 + 16.4782i −1.04728 + 0.760894i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.54508 37.8833i 0.163003 1.74187i
\(474\) 0 0
\(475\) 0.208204 + 0.640786i 0.00955305 + 0.0294013i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.79180 23.9807i 0.356016 1.09571i −0.599402 0.800448i \(-0.704595\pi\)
0.955418 0.295257i \(-0.0954052\pi\)
\(480\) 0 0
\(481\) 0.427051 + 0.310271i 0.0194718 + 0.0141471i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.67376 0.393855
\(486\) 0 0
\(487\) −7.57295 5.50207i −0.343163 0.249323i 0.402832 0.915274i \(-0.368026\pi\)
−0.745995 + 0.665951i \(0.768026\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.63525 + 7.00042i −0.434833 + 0.315925i −0.783578 0.621293i \(-0.786608\pi\)
0.348746 + 0.937217i \(0.386608\pi\)
\(492\) 0 0
\(493\) −4.23607 13.0373i −0.190783 0.587169i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.28115 + 22.4091i 0.326604 + 1.00518i
\(498\) 0 0
\(499\) −8.82624 + 6.41264i −0.395117 + 0.287069i −0.767549 0.640990i \(-0.778524\pi\)
0.372432 + 0.928059i \(0.378524\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.70820 4.87380i −0.299104 0.217312i 0.428103 0.903730i \(-0.359182\pi\)
−0.727207 + 0.686418i \(0.759182\pi\)
\(504\) 0 0
\(505\) 7.27051 0.323533
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.1631 9.56357i −0.583445 0.423898i 0.256519 0.966539i \(-0.417424\pi\)
−0.839964 + 0.542641i \(0.817424\pi\)
\(510\) 0 0
\(511\) 3.00000 9.23305i 0.132712 0.408446i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.32624 10.2371i −0.146572 0.451101i
\(516\) 0 0
\(517\) 23.1418 26.2991i 1.01778 1.15663i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.23607 + 2.35114i −0.141775 + 0.103005i −0.656412 0.754403i \(-0.727927\pi\)
0.514637 + 0.857408i \(0.327927\pi\)
\(522\) 0 0
\(523\) −5.97214 + 18.3803i −0.261143 + 0.803716i 0.731414 + 0.681934i \(0.238861\pi\)
−0.992557 + 0.121782i \(0.961139\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 38.5066 1.67737
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.343459 + 1.05706i −0.0148769 + 0.0457862i
\(534\) 0 0
\(535\) −7.82624 + 5.68609i −0.338358 + 0.245831i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 33.3262 + 14.3844i 1.43546 + 0.619578i
\(540\) 0 0
\(541\) 2.62868 + 8.09024i 0.113016 + 0.347826i 0.991528 0.129893i \(-0.0414635\pi\)
−0.878512 + 0.477720i \(0.841463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.70820 5.25731i 0.0731714 0.225198i
\(546\) 0 0
\(547\) 17.1074 + 12.4292i 0.731459 + 0.531436i 0.890025 0.455912i \(-0.150687\pi\)
−0.158566 + 0.987348i \(0.550687\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.291796 0.0124309
\(552\) 0 0
\(553\) 16.1353 + 11.7229i 0.686141 + 0.498510i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.4443 + 11.9475i −0.696766 + 0.506230i −0.878877 0.477048i \(-0.841707\pi\)
0.182111 + 0.983278i \(0.441707\pi\)
\(558\) 0 0
\(559\) −0.836881 2.57565i −0.0353963 0.108939i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.98278 24.5685i −0.336434 1.03544i −0.966011 0.258500i \(-0.916772\pi\)
0.629577 0.776938i \(-0.283228\pi\)
\(564\) 0 0
\(565\) −4.97214 + 3.61247i −0.209179 + 0.151978i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.1803 + 15.3884i 0.887926 + 0.645116i 0.935336 0.353759i \(-0.115097\pi\)
−0.0474104 + 0.998875i \(0.515097\pi\)
\(570\) 0 0
\(571\) 11.3820 0.476320 0.238160 0.971226i \(-0.423456\pi\)
0.238160 + 0.971226i \(0.423456\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.6803 + 13.5721i 0.779024 + 0.565994i
\(576\) 0 0
\(577\) 8.67376 26.6951i 0.361093 1.11133i −0.591298 0.806453i \(-0.701384\pi\)
0.952391 0.304878i \(-0.0986157\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.16312 25.1235i −0.338663 1.04230i
\(582\) 0 0
\(583\) 14.1803 3.18368i 0.587290 0.131855i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.9894 13.7966i 0.783775 0.569446i −0.122335 0.992489i \(-0.539038\pi\)
0.906109 + 0.423043i \(0.139038\pi\)
\(588\) 0 0
\(589\) −0.253289 + 0.779543i −0.0104366 + 0.0321205i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.3820 0.713792 0.356896 0.934144i \(-0.383835\pi\)
0.356896 + 0.934144i \(0.383835\pi\)
\(594\) 0 0
\(595\) 17.9443 0.735643
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.20163 + 12.9313i −0.171674 + 0.528358i −0.999466 0.0326773i \(-0.989597\pi\)
0.827792 + 0.561035i \(0.189597\pi\)
\(600\) 0 0
\(601\) 34.6976 25.2093i 1.41534 1.02831i 0.422825 0.906212i \(-0.361039\pi\)
0.992518 0.122095i \(-0.0389614\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.26393 5.96361i 0.132698 0.242455i
\(606\) 0 0
\(607\) 10.9721 + 33.7688i 0.445345 + 1.37063i 0.882105 + 0.471053i \(0.156126\pi\)
−0.436759 + 0.899578i \(0.643874\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.770510 2.37139i 0.0311715 0.0959360i
\(612\) 0 0
\(613\) 16.7984 + 12.2047i 0.678480 + 0.492945i 0.872853 0.487983i \(-0.162267\pi\)
−0.194373 + 0.980928i \(0.562267\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.7082 −1.07523 −0.537616 0.843190i \(-0.680675\pi\)
−0.537616 + 0.843190i \(0.680675\pi\)
\(618\) 0 0
\(619\) 0.336881 + 0.244758i 0.0135404 + 0.00983767i 0.594535 0.804070i \(-0.297336\pi\)
−0.580994 + 0.813908i \(0.697336\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −58.8779 + 42.7773i −2.35889 + 1.71384i
\(624\) 0 0
\(625\) 6.00000 + 18.4661i 0.240000 + 0.738644i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.73607 14.5761i −0.188839 0.581188i
\(630\) 0 0
\(631\) 34.1074 24.7805i 1.35779 0.986495i 0.359212 0.933256i \(-0.383046\pi\)
0.998582 0.0532389i \(-0.0169545\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.85410 4.25325i −0.232313 0.168785i
\(636\) 0 0
\(637\) 2.58359 0.102366
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.8262 + 17.3108i 0.941080 + 0.683735i 0.948680 0.316237i \(-0.102419\pi\)
−0.00760053 + 0.999971i \(0.502419\pi\)
\(642\) 0 0
\(643\) 4.06231 12.5025i 0.160202 0.493050i −0.838449 0.544980i \(-0.816537\pi\)
0.998651 + 0.0519299i \(0.0165372\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.409830 + 1.26133i 0.0161121 + 0.0495879i 0.958789 0.284118i \(-0.0917008\pi\)
−0.942677 + 0.333706i \(0.891701\pi\)
\(648\) 0 0
\(649\) −21.6418 36.5159i −0.849516 1.43338i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.5451 14.9269i 0.803991 0.584134i −0.108091 0.994141i \(-0.534474\pi\)
0.912082 + 0.410007i \(0.134474\pi\)
\(654\) 0 0
\(655\) −1.69098 + 5.20431i −0.0660722 + 0.203349i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.6525 1.19405 0.597025 0.802222i \(-0.296349\pi\)
0.597025 + 0.802222i \(0.296349\pi\)
\(660\) 0 0
\(661\) −12.9656 −0.504302 −0.252151 0.967688i \(-0.581138\pi\)
−0.252151 + 0.967688i \(0.581138\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.118034 + 0.363271i −0.00457716 + 0.0140871i
\(666\) 0 0
\(667\) 8.09017 5.87785i 0.313253 0.227591i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.6246 5.44907i −0.487368 0.210359i
\(672\) 0 0
\(673\) −5.57953 17.1720i −0.215075 0.661933i −0.999148 0.0412644i \(-0.986861\pi\)
0.784073 0.620668i \(-0.213139\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.8197 + 36.3772i −0.454266 + 1.39809i 0.417728 + 0.908572i \(0.362827\pi\)
−0.871994 + 0.489516i \(0.837173\pi\)
\(678\) 0 0
\(679\) −48.0967 34.9443i −1.84578 1.34104i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.0557281 −0.00213238 −0.00106619 0.999999i \(-0.500339\pi\)
−0.00106619 + 0.999999i \(0.500339\pi\)
\(684\) 0 0
\(685\) 4.88197 + 3.54696i 0.186530 + 0.135522i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.836881 0.608030i 0.0318826 0.0231641i
\(690\) 0 0
\(691\) 5.29180 + 16.2865i 0.201309 + 0.619567i 0.999845 + 0.0176188i \(0.00560852\pi\)
−0.798535 + 0.601948i \(0.794391\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.63525 + 5.03280i 0.0620288 + 0.190905i
\(696\) 0 0
\(697\) 26.1074 18.9681i 0.988888 0.718469i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −31.6246 22.9766i −1.19445 0.867815i −0.200718 0.979649i \(-0.564328\pi\)
−0.993727 + 0.111834i \(0.964328\pi\)
\(702\) 0 0
\(703\) 0.326238 0.0123043
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −40.3156 29.2910i −1.51622 1.10160i
\(708\) 0 0
\(709\) −0.534442 + 1.64484i −0.0200714 + 0.0617734i −0.960591 0.277967i \(-0.910339\pi\)
0.940519 + 0.339741i \(0.110339\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.68034 + 26.7153i 0.325081 + 1.00050i
\(714\) 0 0
\(715\) 0.0450850 0.481784i 0.00168608 0.0180177i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.66312 + 5.56758i −0.285786 + 0.207636i −0.721437 0.692480i \(-0.756518\pi\)
0.435651 + 0.900116i \(0.356518\pi\)
\(720\) 0 0
\(721\) −22.7984 + 70.1662i −0.849056 + 2.61313i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.23607 0.343019
\(726\) 0 0
\(727\) −2.02129 −0.0749654 −0.0374827 0.999297i \(-0.511934\pi\)
−0.0374827 + 0.999297i \(0.511934\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24.2984 + 74.7827i −0.898708 + 2.76594i
\(732\) 0 0
\(733\) 27.0902 19.6822i 1.00060 0.726977i 0.0383819 0.999263i \(-0.487780\pi\)
0.962216 + 0.272286i \(0.0877797\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.04508 21.8541i 0.0753317 0.805004i
\(738\) 0 0
\(739\) −14.3647 44.2101i −0.528416 1.62630i −0.757461 0.652880i \(-0.773560\pi\)
0.229045 0.973416i \(-0.426440\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.0517 40.1689i 0.478819 1.47365i −0.361918 0.932210i \(-0.617878\pi\)
0.840737 0.541444i \(-0.182122\pi\)
\(744\) 0 0
\(745\) −8.88197 6.45313i −0.325410 0.236424i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 66.3050 2.42273
\(750\) 0 0
\(751\) 36.1525 + 26.2663i 1.31922 + 0.958471i 0.999942 + 0.0108112i \(0.00344139\pi\)
0.319281 + 0.947660i \(0.396559\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.23607 + 1.62460i −0.0813788 + 0.0591252i
\(756\) 0 0
\(757\) 10.6697 + 32.8380i 0.387797 + 1.19352i 0.934431 + 0.356144i \(0.115909\pi\)
−0.546634 + 0.837371i \(0.684091\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.34346 + 4.13474i 0.0487003 + 0.149884i 0.972449 0.233114i \(-0.0748915\pi\)
−0.923749 + 0.382998i \(0.874892\pi\)
\(762\) 0 0
\(763\) −30.6525 + 22.2703i −1.10969 + 0.806240i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.44427 1.77587i −0.0882575 0.0641229i
\(768\) 0 0
\(769\) −36.9787 −1.33349 −0.666743 0.745287i \(-0.732312\pi\)
−0.666743 + 0.745287i \(0.732312\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15.9894 11.6169i −0.575097 0.417833i 0.261856 0.965107i \(-0.415665\pi\)
−0.836953 + 0.547274i \(0.815665\pi\)
\(774\) 0 0
\(775\) −8.01722 + 24.6745i −0.287987 + 0.886333i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.212269 + 0.653298i 0.00760533 + 0.0234068i
\(780\) 0 0
\(781\) −16.9377 7.31069i −0.606078 0.261597i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.85410 + 5.70634i −0.280325 + 0.203668i
\(786\) 0 0
\(787\) 0.708204 2.17963i 0.0252447 0.0776953i −0.937640 0.347607i \(-0.886994\pi\)
0.962885 + 0.269911i \(0.0869944\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 42.1246 1.49778
\(792\) 0 0
\(793\) −0.978714 −0.0347551
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.90983 30.4993i 0.351024 1.08034i −0.607255 0.794507i \(-0.707729\pi\)
0.958279 0.285834i \(-0.0922707\pi\)
\(798\) 0 0
\(799\) −58.5689 + 42.5528i −2.07202 + 1.50541i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.87539 + 6.53888i 0.136759 + 0.230752i
\(804\) 0 0
\(805\) 4.04508 + 12.4495i 0.142571 + 0.438787i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16.4828 50.7288i 0.579504 1.78353i −0.0408003 0.999167i \(-0.512991\pi\)
0.620304 0.784362i \(-0.287009\pi\)
\(810\) 0 0
\(811\) −2.69098 1.95511i −0.0944932 0.0686533i 0.539535 0.841963i \(-0.318600\pi\)
−0.634029 + 0.773310i \(0.718600\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.41641 0.224757
\(816\) 0 0
\(817\) −1.35410 0.983813i −0.0473740 0.0344192i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.4271 + 8.30224i −0.398807 + 0.289750i −0.769055 0.639183i \(-0.779273\pi\)
0.370248 + 0.928933i \(0.379273\pi\)
\(822\) 0 0
\(823\) −6.83688 21.0418i −0.238319 0.733470i −0.996664 0.0816163i \(-0.973992\pi\)
0.758345 0.651853i \(-0.226008\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.36068 + 16.4985i 0.186409 + 0.573708i 0.999970 0.00777178i \(-0.00247386\pi\)
−0.813561 + 0.581480i \(0.802474\pi\)
\(828\) 0 0
\(829\) 34.3435 24.9520i 1.19280 0.866618i 0.199241 0.979951i \(-0.436153\pi\)
0.993557 + 0.113332i \(0.0361525\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −60.6869 44.0916i −2.10268 1.52768i
\(834\) 0 0
\(835\) −9.61803 −0.332846
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −36.0795 26.2133i −1.24560 0.904984i −0.247645 0.968851i \(-0.579657\pi\)
−0.997958 + 0.0638668i \(0.979657\pi\)
\(840\) 0 0
\(841\) −7.72542 + 23.7764i −0.266394 + 0.819876i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.47214 + 7.60845i 0.0850441 + 0.261739i
\(846\) 0 0
\(847\) −42.1246 + 19.9192i −1.44742 + 0.684431i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9.04508 6.57164i 0.310062 0.225273i
\(852\) 0 0
\(853\) 9.69098 29.8258i 0.331813 1.02122i −0.636458 0.771312i \(-0.719601\pi\)
0.968271 0.249904i \(-0.0803990\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.81966 0.232955 0.116478 0.993193i \(-0.462840\pi\)
0.116478 + 0.993193i \(0.462840\pi\)
\(858\) 0 0
\(859\) −17.8754 −0.609900 −0.304950 0.952368i \(-0.598640\pi\)
−0.304950 + 0.952368i \(0.598640\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −14.0344 + 43.1936i −0.477738 + 1.47033i 0.364491 + 0.931207i \(0.381243\pi\)
−0.842229 + 0.539119i \(0.818757\pi\)
\(864\) 0 0
\(865\) −4.83688 + 3.51420i −0.164459 + 0.119486i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −15.2361 + 3.42071i −0.516848 + 0.116040i
\(870\) 0 0
\(871\) −0.482779 1.48584i −0.0163583 0.0503458i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.78115 + 23.9479i −0.263051 + 0.809588i
\(876\) 0 0
\(877\) −40.7877 29.6340i −1.37730 1.00067i −0.997126 0.0757562i \(-0.975863\pi\)
−0.380177 0.924914i \(-0.624137\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.5066 0.522430 0.261215 0.965281i \(-0.415877\pi\)
0.261215 + 0.965281i \(0.415877\pi\)
\(882\) 0 0
\(883\) −35.7984 26.0090i −1.20471 0.875274i −0.209971 0.977708i \(-0.567337\pi\)
−0.994740 + 0.102434i \(0.967337\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.3156 + 22.0256i −1.01790 + 0.739546i −0.965851 0.259098i \(-0.916575\pi\)
−0.0520471 + 0.998645i \(0.516575\pi\)
\(888\) 0 0
\(889\) 15.3262 + 47.1693i 0.514026 + 1.58201i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.476201 1.46560i −0.0159355 0.0490443i
\(894\) 0 0
\(895\) −0.645898 + 0.469272i −0.0215900 + 0.0156860i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.09017 + 6.60440i 0.303174 + 0.220269i
\(900\) 0 0
\(901\) −30.0344 −1.00059
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.50000 + 1.81636i 0.0831028 + 0.0603777i
\(906\) 0 0
\(907\) 9.04508 27.8379i 0.300337 0.924343i −0.681039 0.732247i \(-0.738472\pi\)
0.981376 0.192096i \(-0.0615284\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 10.4549 + 32.1769i 0.346387 + 1.06607i 0.960837 + 0.277113i \(0.0893778\pi\)
−0.614450 + 0.788955i \(0.710622\pi\)
\(912\) 0 0
\(913\) 18.9894 + 8.19624i 0.628456 + 0.271256i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.3435 22.0458i 1.00203 0.728017i
\(918\) 0 0
\(919\) −8.78115 + 27.0256i −0.289664 + 0.891493i 0.695298 + 0.718721i \(0.255272\pi\)
−0.984962 + 0.172771i \(0.944728\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.31308 −0.0432206
\(924\) 0 0
\(925\) 10.3262 0.339525
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.16312 + 3.57971i −0.0381607 + 0.117447i −0.968322 0.249704i \(-0.919667\pi\)
0.930161 + 0.367151i \(0.119667\pi\)
\(930\) 0 0
\(931\) 1.29180 0.938545i 0.0423369 0.0307596i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9.28115 + 10.5474i −0.303526 + 0.344936i
\(936\) 0 0
\(937\) −7.30902 22.4948i −0.238775 0.734874i −0.996598 0.0824142i \(-0.973737\pi\)
0.757823 0.652460i \(-0.226263\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.82624 5.62058i 0.0595337 0.183226i −0.916867 0.399193i \(-0.869290\pi\)
0.976401 + 0.215967i \(0.0692904\pi\)
\(942\) 0 0
\(943\) 19.0451 + 13.8371i 0.620193 + 0.450597i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.9230 −1.03736 −0.518679 0.854969i \(-0.673576\pi\)
−0.518679 + 0.854969i \(0.673576\pi\)
\(948\) 0 0
\(949\) 0.437694 + 0.318003i 0.0142082 + 0.0103228i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30.5967 + 22.2298i −0.991126 + 0.720095i −0.960167 0.279426i \(-0.909856\pi\)
−0.0309585 + 0.999521i \(0.509856\pi\)
\(954\) 0 0
\(955\) −2.57295 7.91872i −0.0832587 0.256244i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.7812 39.3363i −0.412725 1.27024i
\(960\) 0 0
\(961\) −0.454915 + 0.330515i −0.0146747 + 0.0106618i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.89919 + 6.46564i 0.286475 + 0.208136i
\(966\) 0 0
\(967\) −23.1591 −0.744745 −0.372372 0.928083i \(-0.621456\pi\)
−0.372372 + 0.928083i \(0.621456\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28.7426 20.8828i −0.922395 0.670159i 0.0217237 0.999764i \(-0.493085\pi\)
−0.944119 + 0.329605i \(0.893085\pi\)
\(972\) 0 0
\(973\) 11.2082 34.4953i 0.359319 1.10587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13.3435 + 41.0669i 0.426895 + 1.31385i 0.901168 + 0.433470i \(0.142711\pi\)
−0.474273 + 0.880378i \(0.657289\pi\)
\(978\) 0 0
\(979\) 5.30902 56.7329i 0.169677 1.81319i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.5623 17.8456i 0.783416 0.569185i −0.122586 0.992458i \(-0.539119\pi\)
0.906002 + 0.423273i \(0.139119\pi\)
\(984\) 0 0
\(985\) 3.69098 11.3597i 0.117604 0.361949i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −57.3607 −1.82396
\(990\) 0 0
\(991\) 39.8541 1.26601 0.633004 0.774149i \(-0.281822\pi\)
0.633004 + 0.774149i \(0.281822\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.0106431 + 0.0327561i −0.000337410 + 0.00103844i
\(996\) 0 0
\(997\) 18.9721 13.7841i 0.600854 0.436546i −0.245328 0.969440i \(-0.578896\pi\)
0.846182 + 0.532894i \(0.178896\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.j.b.181.1 4
3.2 odd 2 132.2.i.a.49.1 4
11.3 even 5 4356.2.a.r.1.1 2
11.8 odd 10 4356.2.a.w.1.1 2
11.9 even 5 inner 396.2.j.b.361.1 4
12.11 even 2 528.2.y.i.49.1 4
33.2 even 10 1452.2.i.g.493.1 4
33.5 odd 10 1452.2.i.c.565.1 4
33.8 even 10 1452.2.a.m.1.2 2
33.14 odd 10 1452.2.a.l.1.2 2
33.17 even 10 1452.2.i.f.565.1 4
33.20 odd 10 132.2.i.a.97.1 yes 4
33.26 odd 10 1452.2.i.c.1213.1 4
33.29 even 10 1452.2.i.f.1213.1 4
33.32 even 2 1452.2.i.g.1237.1 4
132.47 even 10 5808.2.a.bq.1.2 2
132.107 odd 10 5808.2.a.bn.1.2 2
132.119 even 10 528.2.y.i.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.a.49.1 4 3.2 odd 2
132.2.i.a.97.1 yes 4 33.20 odd 10
396.2.j.b.181.1 4 1.1 even 1 trivial
396.2.j.b.361.1 4 11.9 even 5 inner
528.2.y.i.49.1 4 12.11 even 2
528.2.y.i.97.1 4 132.119 even 10
1452.2.a.l.1.2 2 33.14 odd 10
1452.2.a.m.1.2 2 33.8 even 10
1452.2.i.c.565.1 4 33.5 odd 10
1452.2.i.c.1213.1 4 33.26 odd 10
1452.2.i.f.565.1 4 33.17 even 10
1452.2.i.f.1213.1 4 33.29 even 10
1452.2.i.g.493.1 4 33.2 even 10
1452.2.i.g.1237.1 4 33.32 even 2
4356.2.a.r.1.1 2 11.3 even 5
4356.2.a.w.1.1 2 11.8 odd 10
5808.2.a.bn.1.2 2 132.107 odd 10
5808.2.a.bq.1.2 2 132.47 even 10