Properties

Label 396.2.c.a.287.8
Level $396$
Weight $2$
Character 396.287
Analytic conductor $3.162$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,2,Mod(287,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,4,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.5236158660608.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{8} - 4x^{7} + 3x^{6} + 8x^{5} + 6x^{4} - 16x^{3} - 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.8
Root \(-0.929398 - 1.06594i\) of defining polynomial
Character \(\chi\) \(=\) 396.287
Dual form 396.2.c.a.287.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.929398 + 1.06594i) q^{2} +(-0.272438 + 1.98136i) q^{4} +3.24506i q^{5} -1.06027i q^{7} +(-2.36520 + 1.55107i) q^{8} +(-3.45902 + 3.01595i) q^{10} -1.00000 q^{11} -0.185530 q^{13} +(1.13018 - 0.985414i) q^{14} +(-3.85155 - 1.07960i) q^{16} +1.21452i q^{17} -0.402364i q^{19} +(-6.42962 - 0.884078i) q^{20} +(-0.929398 - 1.06594i) q^{22} +8.43352 q^{23} -5.53039 q^{25} +(-0.172432 - 0.197764i) q^{26} +(2.10078 + 0.288859i) q^{28} +7.33643i q^{29} -8.06243i q^{31} +(-2.42885 - 5.10888i) q^{32} +(-1.29460 + 1.12877i) q^{34} +3.44064 q^{35} -0.871611 q^{37} +(0.428895 - 0.373957i) q^{38} +(-5.03330 - 7.67522i) q^{40} +6.18615i q^{41} +9.72091i q^{43} +(0.272438 - 1.98136i) q^{44} +(7.83809 + 8.98959i) q^{46} +4.14689 q^{47} +5.87583 q^{49} +(-5.13994 - 5.89504i) q^{50} +(0.0505456 - 0.367602i) q^{52} -11.7725i q^{53} -3.24506i q^{55} +(1.64455 + 2.50776i) q^{56} +(-7.82016 + 6.81846i) q^{58} +10.0298 q^{59} +4.64744 q^{61} +(8.59404 - 7.49321i) q^{62} +(3.18838 - 7.33718i) q^{64} -0.602057i q^{65} -2.66796i q^{67} +(-2.40640 - 0.330882i) q^{68} +(3.19772 + 3.66750i) q^{70} -9.80568 q^{71} +14.1185 q^{73} +(-0.810074 - 0.929081i) q^{74} +(0.797228 + 0.109620i) q^{76} +1.06027i q^{77} -13.5157i q^{79} +(3.50335 - 12.4985i) q^{80} +(-6.59404 + 5.74940i) q^{82} -17.7975 q^{83} -3.94119 q^{85} +(-10.3619 + 9.03459i) q^{86} +(2.36520 - 1.55107i) q^{88} -15.1445i q^{89} +0.196713i q^{91} +(-2.29761 + 16.7098i) q^{92} +(3.85412 + 4.42032i) q^{94} +1.30570 q^{95} +2.18496 q^{97} +(5.46098 + 6.26325i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{4} - 12 q^{8} + 4 q^{10} - 10 q^{11} + 8 q^{13} + 8 q^{14} - 4 q^{16} - 24 q^{20} - 8 q^{23} - 10 q^{25} + 16 q^{26} + 16 q^{28} + 8 q^{34} + 16 q^{35} - 4 q^{37} + 32 q^{38} - 4 q^{44} + 20 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.929398 + 1.06594i 0.657184 + 0.753730i
\(3\) 0 0
\(4\) −0.272438 + 1.98136i −0.136219 + 0.990679i
\(5\) 3.24506i 1.45123i 0.688099 + 0.725617i \(0.258445\pi\)
−0.688099 + 0.725617i \(0.741555\pi\)
\(6\) 0 0
\(7\) 1.06027i 0.400745i −0.979720 0.200372i \(-0.935785\pi\)
0.979720 0.200372i \(-0.0642152\pi\)
\(8\) −2.36520 + 1.55107i −0.836226 + 0.548385i
\(9\) 0 0
\(10\) −3.45902 + 3.01595i −1.09384 + 0.953727i
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −0.185530 −0.0514569 −0.0257284 0.999669i \(-0.508191\pi\)
−0.0257284 + 0.999669i \(0.508191\pi\)
\(14\) 1.13018 0.985414i 0.302054 0.263363i
\(15\) 0 0
\(16\) −3.85155 1.07960i −0.962889 0.269899i
\(17\) 1.21452i 0.294565i 0.989094 + 0.147282i \(0.0470526\pi\)
−0.989094 + 0.147282i \(0.952947\pi\)
\(18\) 0 0
\(19\) 0.402364i 0.0923087i −0.998934 0.0461544i \(-0.985303\pi\)
0.998934 0.0461544i \(-0.0146966\pi\)
\(20\) −6.42962 0.884078i −1.43771 0.197686i
\(21\) 0 0
\(22\) −0.929398 1.06594i −0.198148 0.227258i
\(23\) 8.43352 1.75851 0.879255 0.476352i \(-0.158041\pi\)
0.879255 + 0.476352i \(0.158041\pi\)
\(24\) 0 0
\(25\) −5.53039 −1.10608
\(26\) −0.172432 0.197764i −0.0338166 0.0387846i
\(27\) 0 0
\(28\) 2.10078 + 0.288859i 0.397009 + 0.0545891i
\(29\) 7.33643i 1.36234i 0.732125 + 0.681170i \(0.238529\pi\)
−0.732125 + 0.681170i \(0.761471\pi\)
\(30\) 0 0
\(31\) 8.06243i 1.44806i −0.689771 0.724028i \(-0.742289\pi\)
0.689771 0.724028i \(-0.257711\pi\)
\(32\) −2.42885 5.10888i −0.429364 0.903132i
\(33\) 0 0
\(34\) −1.29460 + 1.12877i −0.222022 + 0.193583i
\(35\) 3.44064 0.581574
\(36\) 0 0
\(37\) −0.871611 −0.143292 −0.0716460 0.997430i \(-0.522825\pi\)
−0.0716460 + 0.997430i \(0.522825\pi\)
\(38\) 0.428895 0.373957i 0.0695759 0.0606638i
\(39\) 0 0
\(40\) −5.03330 7.67522i −0.795835 1.21356i
\(41\) 6.18615i 0.966114i 0.875589 + 0.483057i \(0.160474\pi\)
−0.875589 + 0.483057i \(0.839526\pi\)
\(42\) 0 0
\(43\) 9.72091i 1.48242i 0.671271 + 0.741212i \(0.265749\pi\)
−0.671271 + 0.741212i \(0.734251\pi\)
\(44\) 0.272438 1.98136i 0.0410716 0.298701i
\(45\) 0 0
\(46\) 7.83809 + 8.98959i 1.15566 + 1.32544i
\(47\) 4.14689 0.604887 0.302443 0.953167i \(-0.402198\pi\)
0.302443 + 0.953167i \(0.402198\pi\)
\(48\) 0 0
\(49\) 5.87583 0.839404
\(50\) −5.13994 5.89504i −0.726897 0.833685i
\(51\) 0 0
\(52\) 0.0505456 0.367602i 0.00700941 0.0509772i
\(53\) 11.7725i 1.61708i −0.588439 0.808542i \(-0.700257\pi\)
0.588439 0.808542i \(-0.299743\pi\)
\(54\) 0 0
\(55\) 3.24506i 0.437563i
\(56\) 1.64455 + 2.50776i 0.219763 + 0.335113i
\(57\) 0 0
\(58\) −7.82016 + 6.81846i −1.02684 + 0.895308i
\(59\) 10.0298 1.30577 0.652887 0.757455i \(-0.273558\pi\)
0.652887 + 0.757455i \(0.273558\pi\)
\(60\) 0 0
\(61\) 4.64744 0.595044 0.297522 0.954715i \(-0.403840\pi\)
0.297522 + 0.954715i \(0.403840\pi\)
\(62\) 8.59404 7.49321i 1.09144 0.951639i
\(63\) 0 0
\(64\) 3.18838 7.33718i 0.398547 0.917148i
\(65\) 0.602057i 0.0746760i
\(66\) 0 0
\(67\) 2.66796i 0.325943i −0.986631 0.162972i \(-0.947892\pi\)
0.986631 0.162972i \(-0.0521079\pi\)
\(68\) −2.40640 0.330882i −0.291819 0.0401254i
\(69\) 0 0
\(70\) 3.19772 + 3.66750i 0.382201 + 0.438350i
\(71\) −9.80568 −1.16372 −0.581860 0.813289i \(-0.697675\pi\)
−0.581860 + 0.813289i \(0.697675\pi\)
\(72\) 0 0
\(73\) 14.1185 1.65245 0.826223 0.563344i \(-0.190485\pi\)
0.826223 + 0.563344i \(0.190485\pi\)
\(74\) −0.810074 0.929081i −0.0941691 0.108004i
\(75\) 0 0
\(76\) 0.797228 + 0.109620i 0.0914483 + 0.0125742i
\(77\) 1.06027i 0.120829i
\(78\) 0 0
\(79\) 13.5157i 1.52064i −0.649549 0.760320i \(-0.725042\pi\)
0.649549 0.760320i \(-0.274958\pi\)
\(80\) 3.50335 12.4985i 0.391686 1.39738i
\(81\) 0 0
\(82\) −6.59404 + 5.74940i −0.728190 + 0.634915i
\(83\) −17.7975 −1.95352 −0.976762 0.214326i \(-0.931244\pi\)
−0.976762 + 0.214326i \(0.931244\pi\)
\(84\) 0 0
\(85\) −3.94119 −0.427482
\(86\) −10.3619 + 9.03459i −1.11735 + 0.974225i
\(87\) 0 0
\(88\) 2.36520 1.55107i 0.252132 0.165344i
\(89\) 15.1445i 1.60532i −0.596439 0.802659i \(-0.703418\pi\)
0.596439 0.802659i \(-0.296582\pi\)
\(90\) 0 0
\(91\) 0.196713i 0.0206211i
\(92\) −2.29761 + 16.7098i −0.239543 + 1.74212i
\(93\) 0 0
\(94\) 3.85412 + 4.42032i 0.397522 + 0.455922i
\(95\) 1.30570 0.133962
\(96\) 0 0
\(97\) 2.18496 0.221849 0.110925 0.993829i \(-0.464619\pi\)
0.110925 + 0.993829i \(0.464619\pi\)
\(98\) 5.46098 + 6.26325i 0.551642 + 0.632684i
\(99\) 0 0
\(100\) 1.50669 10.9577i 0.150669 1.09577i
\(101\) 3.04922i 0.303409i 0.988426 + 0.151704i \(0.0484762\pi\)
−0.988426 + 0.151704i \(0.951524\pi\)
\(102\) 0 0
\(103\) 4.00136i 0.394266i −0.980377 0.197133i \(-0.936837\pi\)
0.980377 0.197133i \(-0.0631631\pi\)
\(104\) 0.438817 0.287770i 0.0430296 0.0282182i
\(105\) 0 0
\(106\) 12.5488 10.9414i 1.21884 1.06272i
\(107\) −1.74744 −0.168931 −0.0844655 0.996426i \(-0.526918\pi\)
−0.0844655 + 0.996426i \(0.526918\pi\)
\(108\) 0 0
\(109\) 11.0227 1.05579 0.527893 0.849311i \(-0.322982\pi\)
0.527893 + 0.849311i \(0.322982\pi\)
\(110\) 3.45902 3.01595i 0.329805 0.287560i
\(111\) 0 0
\(112\) −1.14466 + 4.08369i −0.108161 + 0.385873i
\(113\) 7.51266i 0.706731i 0.935485 + 0.353366i \(0.114963\pi\)
−0.935485 + 0.353366i \(0.885037\pi\)
\(114\) 0 0
\(115\) 27.3672i 2.55201i
\(116\) −14.5361 1.99872i −1.34964 0.185577i
\(117\) 0 0
\(118\) 9.32172 + 10.6912i 0.858134 + 0.984202i
\(119\) 1.28772 0.118045
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 4.31933 + 4.95388i 0.391053 + 0.448503i
\(123\) 0 0
\(124\) 15.9746 + 2.19652i 1.43456 + 0.197253i
\(125\) 1.72116i 0.153945i
\(126\) 0 0
\(127\) 3.84649i 0.341321i −0.985330 0.170661i \(-0.945410\pi\)
0.985330 0.170661i \(-0.0545901\pi\)
\(128\) 10.7842 3.42056i 0.953201 0.302338i
\(129\) 0 0
\(130\) 0.641754 0.559550i 0.0562855 0.0490758i
\(131\) −10.9313 −0.955072 −0.477536 0.878612i \(-0.658470\pi\)
−0.477536 + 0.878612i \(0.658470\pi\)
\(132\) 0 0
\(133\) −0.426615 −0.0369923
\(134\) 2.84387 2.47960i 0.245673 0.214205i
\(135\) 0 0
\(136\) −1.88381 2.87259i −0.161535 0.246323i
\(137\) 1.35957i 0.116156i 0.998312 + 0.0580781i \(0.0184973\pi\)
−0.998312 + 0.0580781i \(0.981503\pi\)
\(138\) 0 0
\(139\) 4.00941i 0.340074i −0.985438 0.170037i \(-0.945611\pi\)
0.985438 0.170037i \(-0.0543887\pi\)
\(140\) −0.937362 + 6.81714i −0.0792216 + 0.576153i
\(141\) 0 0
\(142\) −9.11338 10.4522i −0.764778 0.877131i
\(143\) 0.185530 0.0155148
\(144\) 0 0
\(145\) −23.8071 −1.97707
\(146\) 13.1217 + 15.0494i 1.08596 + 1.24550i
\(147\) 0 0
\(148\) 0.237460 1.72697i 0.0195191 0.141956i
\(149\) 2.29913i 0.188352i −0.995556 0.0941761i \(-0.969978\pi\)
0.995556 0.0941761i \(-0.0300217\pi\)
\(150\) 0 0
\(151\) 19.6564i 1.59961i 0.600257 + 0.799807i \(0.295065\pi\)
−0.600257 + 0.799807i \(0.704935\pi\)
\(152\) 0.624095 + 0.951674i 0.0506208 + 0.0771909i
\(153\) 0 0
\(154\) −1.13018 + 0.985414i −0.0910726 + 0.0794069i
\(155\) 26.1631 2.10147
\(156\) 0 0
\(157\) −20.6103 −1.64488 −0.822439 0.568854i \(-0.807387\pi\)
−0.822439 + 0.568854i \(0.807387\pi\)
\(158\) 14.4069 12.5615i 1.14615 0.999339i
\(159\) 0 0
\(160\) 16.5786 7.88175i 1.31065 0.623107i
\(161\) 8.94181i 0.704714i
\(162\) 0 0
\(163\) 13.2602i 1.03862i 0.854586 + 0.519309i \(0.173811\pi\)
−0.854586 + 0.519309i \(0.826189\pi\)
\(164\) −12.2570 1.68534i −0.957109 0.131603i
\(165\) 0 0
\(166\) −16.5409 18.9709i −1.28382 1.47243i
\(167\) −23.2511 −1.79922 −0.899612 0.436690i \(-0.856151\pi\)
−0.899612 + 0.436690i \(0.856151\pi\)
\(168\) 0 0
\(169\) −12.9656 −0.997352
\(170\) −3.66293 4.20106i −0.280934 0.322206i
\(171\) 0 0
\(172\) −19.2606 2.64835i −1.46861 0.201935i
\(173\) 12.4685i 0.947964i −0.880534 0.473982i \(-0.842816\pi\)
0.880534 0.473982i \(-0.157184\pi\)
\(174\) 0 0
\(175\) 5.86372i 0.443255i
\(176\) 3.85155 + 1.07960i 0.290322 + 0.0813776i
\(177\) 0 0
\(178\) 16.1431 14.0753i 1.20998 1.05499i
\(179\) 1.22250 0.0913738 0.0456869 0.998956i \(-0.485452\pi\)
0.0456869 + 0.998956i \(0.485452\pi\)
\(180\) 0 0
\(181\) 8.33243 0.619344 0.309672 0.950843i \(-0.399781\pi\)
0.309672 + 0.950843i \(0.399781\pi\)
\(182\) −0.209683 + 0.182824i −0.0155427 + 0.0135518i
\(183\) 0 0
\(184\) −19.9470 + 13.0810i −1.47051 + 0.964341i
\(185\) 2.82843i 0.207950i
\(186\) 0 0
\(187\) 1.21452i 0.0888146i
\(188\) −1.12977 + 8.21648i −0.0823972 + 0.599248i
\(189\) 0 0
\(190\) 1.21351 + 1.39179i 0.0880373 + 0.100971i
\(191\) −10.2540 −0.741954 −0.370977 0.928642i \(-0.620977\pi\)
−0.370977 + 0.928642i \(0.620977\pi\)
\(192\) 0 0
\(193\) −11.0287 −0.793866 −0.396933 0.917848i \(-0.629926\pi\)
−0.396933 + 0.917848i \(0.629926\pi\)
\(194\) 2.03070 + 2.32903i 0.145796 + 0.167215i
\(195\) 0 0
\(196\) −1.60080 + 11.6421i −0.114343 + 0.831579i
\(197\) 1.19186i 0.0849167i −0.999098 0.0424584i \(-0.986481\pi\)
0.999098 0.0424584i \(-0.0135190\pi\)
\(198\) 0 0
\(199\) 9.47429i 0.671615i −0.941931 0.335807i \(-0.890991\pi\)
0.941931 0.335807i \(-0.109009\pi\)
\(200\) 13.0805 8.57802i 0.924932 0.606557i
\(201\) 0 0
\(202\) −3.25028 + 2.83394i −0.228689 + 0.199395i
\(203\) 7.77860 0.545951
\(204\) 0 0
\(205\) −20.0744 −1.40206
\(206\) 4.26520 3.71886i 0.297170 0.259105i
\(207\) 0 0
\(208\) 0.714581 + 0.200298i 0.0495473 + 0.0138882i
\(209\) 0.402364i 0.0278321i
\(210\) 0 0
\(211\) 8.97677i 0.617987i −0.951064 0.308993i \(-0.900008\pi\)
0.951064 0.308993i \(-0.0999921\pi\)
\(212\) 23.3256 + 3.20729i 1.60201 + 0.220278i
\(213\) 0 0
\(214\) −1.62406 1.86265i −0.111019 0.127328i
\(215\) −31.5449 −2.15134
\(216\) 0 0
\(217\) −8.54837 −0.580301
\(218\) 10.2445 + 11.7495i 0.693845 + 0.795777i
\(219\) 0 0
\(220\) 6.42962 + 0.884078i 0.433485 + 0.0596045i
\(221\) 0.225331i 0.0151574i
\(222\) 0 0
\(223\) 21.2266i 1.42144i −0.703476 0.710719i \(-0.748370\pi\)
0.703476 0.710719i \(-0.251630\pi\)
\(224\) −5.41680 + 2.57524i −0.361925 + 0.172065i
\(225\) 0 0
\(226\) −8.00801 + 6.98225i −0.532685 + 0.464452i
\(227\) 14.6713 0.973766 0.486883 0.873467i \(-0.338134\pi\)
0.486883 + 0.873467i \(0.338134\pi\)
\(228\) 0 0
\(229\) 19.7773 1.30692 0.653460 0.756961i \(-0.273317\pi\)
0.653460 + 0.756961i \(0.273317\pi\)
\(230\) −29.1717 + 25.4351i −1.92353 + 1.67714i
\(231\) 0 0
\(232\) −11.3793 17.3521i −0.747087 1.13922i
\(233\) 4.68721i 0.307069i 0.988143 + 0.153535i \(0.0490657\pi\)
−0.988143 + 0.153535i \(0.950934\pi\)
\(234\) 0 0
\(235\) 13.4569i 0.877832i
\(236\) −2.73251 + 19.8727i −0.177872 + 1.29360i
\(237\) 0 0
\(238\) 1.19681 + 1.37263i 0.0775774 + 0.0889743i
\(239\) −14.6779 −0.949432 −0.474716 0.880139i \(-0.657449\pi\)
−0.474716 + 0.880139i \(0.657449\pi\)
\(240\) 0 0
\(241\) −0.836312 −0.0538716 −0.0269358 0.999637i \(-0.508575\pi\)
−0.0269358 + 0.999637i \(0.508575\pi\)
\(242\) 0.929398 + 1.06594i 0.0597440 + 0.0685209i
\(243\) 0 0
\(244\) −1.26614 + 9.20825i −0.0810565 + 0.589498i
\(245\) 19.0674i 1.21817i
\(246\) 0 0
\(247\) 0.0746509i 0.00474992i
\(248\) 12.5054 + 19.0693i 0.794093 + 1.21090i
\(249\) 0 0
\(250\) 1.83464 1.59964i 0.116033 0.101170i
\(251\) 15.4031 0.972238 0.486119 0.873893i \(-0.338412\pi\)
0.486119 + 0.873893i \(0.338412\pi\)
\(252\) 0 0
\(253\) −8.43352 −0.530211
\(254\) 4.10011 3.57492i 0.257264 0.224311i
\(255\) 0 0
\(256\) 13.6689 + 8.31624i 0.854309 + 0.519765i
\(257\) 5.65841i 0.352962i −0.984304 0.176481i \(-0.943529\pi\)
0.984304 0.176481i \(-0.0564714\pi\)
\(258\) 0 0
\(259\) 0.924144i 0.0574235i
\(260\) 1.19289 + 0.164023i 0.0739799 + 0.0101723i
\(261\) 0 0
\(262\) −10.1595 11.6521i −0.627658 0.719867i
\(263\) −6.79434 −0.418957 −0.209478 0.977813i \(-0.567177\pi\)
−0.209478 + 0.977813i \(0.567177\pi\)
\(264\) 0 0
\(265\) 38.2026 2.34677
\(266\) −0.396496 0.454745i −0.0243107 0.0278822i
\(267\) 0 0
\(268\) 5.28618 + 0.726855i 0.322905 + 0.0443997i
\(269\) 13.5299i 0.824935i −0.910972 0.412468i \(-0.864667\pi\)
0.910972 0.412468i \(-0.135333\pi\)
\(270\) 0 0
\(271\) 16.5604i 1.00597i −0.864294 0.502987i \(-0.832234\pi\)
0.864294 0.502987i \(-0.167766\pi\)
\(272\) 1.31119 4.67779i 0.0795027 0.283633i
\(273\) 0 0
\(274\) −1.44922 + 1.26359i −0.0875505 + 0.0763360i
\(275\) 5.53039 0.333495
\(276\) 0 0
\(277\) −15.1917 −0.912782 −0.456391 0.889779i \(-0.650858\pi\)
−0.456391 + 0.889779i \(0.650858\pi\)
\(278\) 4.27378 3.72634i 0.256324 0.223491i
\(279\) 0 0
\(280\) −8.13781 + 5.33667i −0.486327 + 0.318927i
\(281\) 21.4290i 1.27835i 0.769063 + 0.639173i \(0.220723\pi\)
−0.769063 + 0.639173i \(0.779277\pi\)
\(282\) 0 0
\(283\) 0.856388i 0.0509070i 0.999676 + 0.0254535i \(0.00810297\pi\)
−0.999676 + 0.0254535i \(0.991897\pi\)
\(284\) 2.67144 19.4286i 0.158521 1.15287i
\(285\) 0 0
\(286\) 0.172432 + 0.197764i 0.0101961 + 0.0116940i
\(287\) 6.55900 0.387165
\(288\) 0 0
\(289\) 15.5249 0.913232
\(290\) −22.1263 25.3769i −1.29930 1.49018i
\(291\) 0 0
\(292\) −3.84642 + 27.9738i −0.225095 + 1.63704i
\(293\) 24.6999i 1.44298i −0.692423 0.721492i \(-0.743457\pi\)
0.692423 0.721492i \(-0.256543\pi\)
\(294\) 0 0
\(295\) 32.5474i 1.89498i
\(296\) 2.06154 1.35193i 0.119824 0.0785792i
\(297\) 0 0
\(298\) 2.45073 2.13681i 0.141967 0.123782i
\(299\) −1.56467 −0.0904874
\(300\) 0 0
\(301\) 10.3068 0.594074
\(302\) −20.9524 + 18.2686i −1.20568 + 1.05124i
\(303\) 0 0
\(304\) −0.434391 + 1.54973i −0.0249140 + 0.0888830i
\(305\) 15.0812i 0.863548i
\(306\) 0 0
\(307\) 12.2331i 0.698181i 0.937089 + 0.349090i \(0.113509\pi\)
−0.937089 + 0.349090i \(0.886491\pi\)
\(308\) −2.10078 0.288859i −0.119703 0.0164592i
\(309\) 0 0
\(310\) 24.3159 + 27.8881i 1.38105 + 1.58394i
\(311\) −9.18118 −0.520617 −0.260308 0.965526i \(-0.583824\pi\)
−0.260308 + 0.965526i \(0.583824\pi\)
\(312\) 0 0
\(313\) −19.7806 −1.11807 −0.559033 0.829145i \(-0.688828\pi\)
−0.559033 + 0.829145i \(0.688828\pi\)
\(314\) −19.1551 21.9692i −1.08099 1.23979i
\(315\) 0 0
\(316\) 26.7795 + 3.68221i 1.50647 + 0.207140i
\(317\) 8.50253i 0.477549i 0.971075 + 0.238775i \(0.0767458\pi\)
−0.971075 + 0.238775i \(0.923254\pi\)
\(318\) 0 0
\(319\) 7.33643i 0.410761i
\(320\) 23.8096 + 10.3465i 1.33100 + 0.578385i
\(321\) 0 0
\(322\) 9.53140 8.31051i 0.531164 0.463126i
\(323\) 0.488680 0.0271909
\(324\) 0 0
\(325\) 1.02606 0.0569154
\(326\) −14.1345 + 12.3240i −0.782839 + 0.682563i
\(327\) 0 0
\(328\) −9.59514 14.6315i −0.529803 0.807890i
\(329\) 4.39683i 0.242405i
\(330\) 0 0
\(331\) 24.0491i 1.32186i 0.750447 + 0.660930i \(0.229838\pi\)
−0.750447 + 0.660930i \(0.770162\pi\)
\(332\) 4.84871 35.2631i 0.266107 1.93531i
\(333\) 0 0
\(334\) −21.6095 24.7842i −1.18242 1.35613i
\(335\) 8.65768 0.473020
\(336\) 0 0
\(337\) −3.97103 −0.216316 −0.108158 0.994134i \(-0.534495\pi\)
−0.108158 + 0.994134i \(0.534495\pi\)
\(338\) −12.0502 13.8205i −0.655444 0.751735i
\(339\) 0 0
\(340\) 1.07373 7.80891i 0.0582313 0.423497i
\(341\) 8.06243i 0.436605i
\(342\) 0 0
\(343\) 13.6519i 0.737131i
\(344\) −15.0778 22.9919i −0.812940 1.23964i
\(345\) 0 0
\(346\) 13.2906 11.5882i 0.714509 0.622987i
\(347\) 21.1839 1.13721 0.568605 0.822611i \(-0.307483\pi\)
0.568605 + 0.822611i \(0.307483\pi\)
\(348\) 0 0
\(349\) 21.3207 1.14127 0.570636 0.821203i \(-0.306697\pi\)
0.570636 + 0.821203i \(0.306697\pi\)
\(350\) −6.25035 + 5.44973i −0.334095 + 0.291300i
\(351\) 0 0
\(352\) 2.42885 + 5.10888i 0.129458 + 0.272304i
\(353\) 13.3234i 0.709134i −0.935031 0.354567i \(-0.884628\pi\)
0.935031 0.354567i \(-0.115372\pi\)
\(354\) 0 0
\(355\) 31.8200i 1.68883i
\(356\) 30.0067 + 4.12595i 1.59035 + 0.218675i
\(357\) 0 0
\(358\) 1.13619 + 1.30310i 0.0600494 + 0.0688712i
\(359\) 32.4904 1.71478 0.857390 0.514668i \(-0.172085\pi\)
0.857390 + 0.514668i \(0.172085\pi\)
\(360\) 0 0
\(361\) 18.8381 0.991479
\(362\) 7.74414 + 8.88183i 0.407023 + 0.466819i
\(363\) 0 0
\(364\) −0.389758 0.0535921i −0.0204289 0.00280899i
\(365\) 45.8153i 2.39808i
\(366\) 0 0
\(367\) 12.6522i 0.660438i −0.943904 0.330219i \(-0.892877\pi\)
0.943904 0.330219i \(-0.107123\pi\)
\(368\) −32.4821 9.10479i −1.69325 0.474620i
\(369\) 0 0
\(370\) 3.01492 2.62873i 0.156738 0.136661i
\(371\) −12.4821 −0.648038
\(372\) 0 0
\(373\) 28.9497 1.49896 0.749478 0.662029i \(-0.230304\pi\)
0.749478 + 0.662029i \(0.230304\pi\)
\(374\) 1.29460 1.12877i 0.0669423 0.0583675i
\(375\) 0 0
\(376\) −9.80825 + 6.43212i −0.505822 + 0.331711i
\(377\) 1.36113i 0.0701018i
\(378\) 0 0
\(379\) 3.84009i 0.197252i −0.995125 0.0986262i \(-0.968555\pi\)
0.995125 0.0986262i \(-0.0314448\pi\)
\(380\) −0.355722 + 2.58705i −0.0182481 + 0.132713i
\(381\) 0 0
\(382\) −9.53006 10.9301i −0.487600 0.559233i
\(383\) −25.9426 −1.32561 −0.662803 0.748793i \(-0.730633\pi\)
−0.662803 + 0.748793i \(0.730633\pi\)
\(384\) 0 0
\(385\) −3.44064 −0.175351
\(386\) −10.2501 11.7559i −0.521716 0.598361i
\(387\) 0 0
\(388\) −0.595268 + 4.32919i −0.0302201 + 0.219781i
\(389\) 16.2437i 0.823587i 0.911277 + 0.411794i \(0.135098\pi\)
−0.911277 + 0.411794i \(0.864902\pi\)
\(390\) 0 0
\(391\) 10.2427i 0.517995i
\(392\) −13.8975 + 9.11380i −0.701931 + 0.460317i
\(393\) 0 0
\(394\) 1.27045 1.10771i 0.0640043 0.0558059i
\(395\) 43.8593 2.20680
\(396\) 0 0
\(397\) −5.79658 −0.290922 −0.145461 0.989364i \(-0.546467\pi\)
−0.145461 + 0.989364i \(0.546467\pi\)
\(398\) 10.0990 8.80539i 0.506216 0.441374i
\(399\) 0 0
\(400\) 21.3006 + 5.97059i 1.06503 + 0.298529i
\(401\) 27.4792i 1.37225i −0.727485 0.686124i \(-0.759311\pi\)
0.727485 0.686124i \(-0.240689\pi\)
\(402\) 0 0
\(403\) 1.49583i 0.0745125i
\(404\) −6.04160 0.830725i −0.300581 0.0413301i
\(405\) 0 0
\(406\) 7.22942 + 8.29149i 0.358790 + 0.411500i
\(407\) 0.871611 0.0432042
\(408\) 0 0
\(409\) 5.93028 0.293233 0.146617 0.989193i \(-0.453162\pi\)
0.146617 + 0.989193i \(0.453162\pi\)
\(410\) −18.6571 21.3980i −0.921409 1.05677i
\(411\) 0 0
\(412\) 7.92813 + 1.09012i 0.390591 + 0.0537066i
\(413\) 10.6344i 0.523282i
\(414\) 0 0
\(415\) 57.7537i 2.83502i
\(416\) 0.450625 + 0.947854i 0.0220937 + 0.0464723i
\(417\) 0 0
\(418\) −0.428895 + 0.373957i −0.0209779 + 0.0182908i
\(419\) 17.3154 0.845911 0.422955 0.906150i \(-0.360993\pi\)
0.422955 + 0.906150i \(0.360993\pi\)
\(420\) 0 0
\(421\) −27.7108 −1.35054 −0.675271 0.737570i \(-0.735973\pi\)
−0.675271 + 0.737570i \(0.735973\pi\)
\(422\) 9.56867 8.34300i 0.465795 0.406131i
\(423\) 0 0
\(424\) 18.2600 + 27.8445i 0.886785 + 1.35225i
\(425\) 6.71678i 0.325812i
\(426\) 0 0
\(427\) 4.92755i 0.238461i
\(428\) 0.476069 3.46230i 0.0230116 0.167356i
\(429\) 0 0
\(430\) −29.3178 33.6248i −1.41383 1.62153i
\(431\) −5.24601 −0.252691 −0.126346 0.991986i \(-0.540325\pi\)
−0.126346 + 0.991986i \(0.540325\pi\)
\(432\) 0 0
\(433\) 32.5052 1.56210 0.781049 0.624470i \(-0.214685\pi\)
0.781049 + 0.624470i \(0.214685\pi\)
\(434\) −7.94484 9.11201i −0.381364 0.437391i
\(435\) 0 0
\(436\) −3.00301 + 21.8399i −0.143818 + 1.04594i
\(437\) 3.39335i 0.162326i
\(438\) 0 0
\(439\) 1.53039i 0.0730416i −0.999333 0.0365208i \(-0.988372\pi\)
0.999333 0.0365208i \(-0.0116275\pi\)
\(440\) 5.03330 + 7.67522i 0.239953 + 0.365902i
\(441\) 0 0
\(442\) 0.240188 0.209422i 0.0114246 0.00996118i
\(443\) −9.06192 −0.430545 −0.215272 0.976554i \(-0.569064\pi\)
−0.215272 + 0.976554i \(0.569064\pi\)
\(444\) 0 0
\(445\) 49.1449 2.32969
\(446\) 22.6262 19.7280i 1.07138 0.934146i
\(447\) 0 0
\(448\) −7.77940 3.38054i −0.367542 0.159716i
\(449\) 12.3571i 0.583166i 0.956546 + 0.291583i \(0.0941820\pi\)
−0.956546 + 0.291583i \(0.905818\pi\)
\(450\) 0 0
\(451\) 6.18615i 0.291294i
\(452\) −14.8853 2.04674i −0.700144 0.0962704i
\(453\) 0 0
\(454\) 13.6354 + 15.6386i 0.639943 + 0.733957i
\(455\) −0.638343 −0.0299260
\(456\) 0 0
\(457\) −35.4290 −1.65730 −0.828649 0.559769i \(-0.810890\pi\)
−0.828649 + 0.559769i \(0.810890\pi\)
\(458\) 18.3810 + 21.0813i 0.858886 + 0.985065i
\(459\) 0 0
\(460\) −54.2243 7.45589i −2.52822 0.347632i
\(461\) 36.5837i 1.70387i −0.523646 0.851936i \(-0.675428\pi\)
0.523646 0.851936i \(-0.324572\pi\)
\(462\) 0 0
\(463\) 30.3672i 1.41128i 0.708570 + 0.705641i \(0.249341\pi\)
−0.708570 + 0.705641i \(0.750659\pi\)
\(464\) 7.92037 28.2567i 0.367694 1.31178i
\(465\) 0 0
\(466\) −4.99627 + 4.35628i −0.231448 + 0.201801i
\(467\) −11.8907 −0.550235 −0.275118 0.961411i \(-0.588717\pi\)
−0.275118 + 0.961411i \(0.588717\pi\)
\(468\) 0 0
\(469\) −2.82876 −0.130620
\(470\) −14.3442 + 12.5068i −0.661649 + 0.576897i
\(471\) 0 0
\(472\) −23.7226 + 15.5570i −1.09192 + 0.716068i
\(473\) 9.72091i 0.446968i
\(474\) 0 0
\(475\) 2.22523i 0.102101i
\(476\) −0.350825 + 2.55144i −0.0160800 + 0.116945i
\(477\) 0 0
\(478\) −13.6416 15.6457i −0.623951 0.715616i
\(479\) 19.6734 0.898901 0.449451 0.893305i \(-0.351620\pi\)
0.449451 + 0.893305i \(0.351620\pi\)
\(480\) 0 0
\(481\) 0.161710 0.00737336
\(482\) −0.777267 0.891455i −0.0354035 0.0406047i
\(483\) 0 0
\(484\) −0.272438 + 1.98136i −0.0123836 + 0.0900617i
\(485\) 7.09033i 0.321955i
\(486\) 0 0
\(487\) 20.5609i 0.931704i −0.884863 0.465852i \(-0.845748\pi\)
0.884863 0.465852i \(-0.154252\pi\)
\(488\) −10.9922 + 7.20850i −0.497591 + 0.326314i
\(489\) 0 0
\(490\) −20.3246 + 17.7212i −0.918172 + 0.800562i
\(491\) 11.2621 0.508251 0.254126 0.967171i \(-0.418212\pi\)
0.254126 + 0.967171i \(0.418212\pi\)
\(492\) 0 0
\(493\) −8.91025 −0.401297
\(494\) −0.0795730 + 0.0693804i −0.00358016 + 0.00312157i
\(495\) 0 0
\(496\) −8.70417 + 31.0529i −0.390829 + 1.39432i
\(497\) 10.3967i 0.466355i
\(498\) 0 0
\(499\) 18.4254i 0.824835i −0.910995 0.412418i \(-0.864684\pi\)
0.910995 0.412418i \(-0.135316\pi\)
\(500\) 3.41023 + 0.468909i 0.152510 + 0.0209703i
\(501\) 0 0
\(502\) 14.3156 + 16.4188i 0.638939 + 0.732805i
\(503\) 0.361391 0.0161136 0.00805682 0.999968i \(-0.497435\pi\)
0.00805682 + 0.999968i \(0.497435\pi\)
\(504\) 0 0
\(505\) −9.89490 −0.440317
\(506\) −7.83809 8.98959i −0.348446 0.399636i
\(507\) 0 0
\(508\) 7.62128 + 1.04793i 0.338140 + 0.0464945i
\(509\) 10.1060i 0.447942i −0.974596 0.223971i \(-0.928098\pi\)
0.974596 0.223971i \(-0.0719020\pi\)
\(510\) 0 0
\(511\) 14.9694i 0.662209i
\(512\) 3.83931 + 22.2993i 0.169675 + 0.985500i
\(513\) 0 0
\(514\) 6.03150 5.25892i 0.266038 0.231961i
\(515\) 12.9847 0.572172
\(516\) 0 0
\(517\) −4.14689 −0.182380
\(518\) −0.985078 + 0.858898i −0.0432819 + 0.0377378i
\(519\) 0 0
\(520\) 0.933831 + 1.42399i 0.0409512 + 0.0624460i
\(521\) 13.4234i 0.588089i 0.955792 + 0.294044i \(0.0950013\pi\)
−0.955792 + 0.294044i \(0.904999\pi\)
\(522\) 0 0
\(523\) 22.9205i 1.00224i 0.865377 + 0.501122i \(0.167079\pi\)
−0.865377 + 0.501122i \(0.832921\pi\)
\(524\) 2.97810 21.6588i 0.130099 0.946169i
\(525\) 0 0
\(526\) −6.31465 7.24233i −0.275332 0.315781i
\(527\) 9.79200 0.426546
\(528\) 0 0
\(529\) 48.1242 2.09236
\(530\) 35.5054 + 40.7215i 1.54226 + 1.76883i
\(531\) 0 0
\(532\) 0.116226 0.845278i 0.00503905 0.0366474i
\(533\) 1.14772i 0.0497132i
\(534\) 0 0
\(535\) 5.67053i 0.245158i
\(536\) 4.13819 + 6.31027i 0.178742 + 0.272562i
\(537\) 0 0
\(538\) 14.4221 12.5747i 0.621779 0.542134i
\(539\) −5.87583 −0.253090
\(540\) 0 0
\(541\) −23.8245 −1.02430 −0.512148 0.858897i \(-0.671150\pi\)
−0.512148 + 0.858897i \(0.671150\pi\)
\(542\) 17.6524 15.3912i 0.758233 0.661110i
\(543\) 0 0
\(544\) 6.20485 2.94989i 0.266031 0.126475i
\(545\) 35.7694i 1.53219i
\(546\) 0 0
\(547\) 27.6830i 1.18364i 0.806071 + 0.591819i \(0.201590\pi\)
−0.806071 + 0.591819i \(0.798410\pi\)
\(548\) −2.69380 0.370400i −0.115074 0.0158227i
\(549\) 0 0
\(550\) 5.13994 + 5.89504i 0.219168 + 0.251366i
\(551\) 2.95192 0.125756
\(552\) 0 0
\(553\) −14.3303 −0.609388
\(554\) −14.1192 16.1934i −0.599866 0.687992i
\(555\) 0 0
\(556\) 7.94408 + 1.09232i 0.336904 + 0.0463246i
\(557\) 34.6170i 1.46677i 0.679813 + 0.733386i \(0.262061\pi\)
−0.679813 + 0.733386i \(0.737939\pi\)
\(558\) 0 0
\(559\) 1.80352i 0.0762809i
\(560\) −13.2518 3.71450i −0.559991 0.156966i
\(561\) 0 0
\(562\) −22.8419 + 19.9161i −0.963529 + 0.840108i
\(563\) −30.1107 −1.26901 −0.634507 0.772917i \(-0.718797\pi\)
−0.634507 + 0.772917i \(0.718797\pi\)
\(564\) 0 0
\(565\) −24.3790 −1.02563
\(566\) −0.912855 + 0.795925i −0.0383701 + 0.0334552i
\(567\) 0 0
\(568\) 23.1924 15.2093i 0.973132 0.638167i
\(569\) 14.3040i 0.599656i 0.953993 + 0.299828i \(0.0969293\pi\)
−0.953993 + 0.299828i \(0.903071\pi\)
\(570\) 0 0
\(571\) 27.2222i 1.13921i 0.821918 + 0.569607i \(0.192904\pi\)
−0.821918 + 0.569607i \(0.807096\pi\)
\(572\) −0.0505456 + 0.367602i −0.00211342 + 0.0153702i
\(573\) 0 0
\(574\) 6.09592 + 6.99147i 0.254439 + 0.291818i
\(575\) −46.6407 −1.94505
\(576\) 0 0
\(577\) −21.5696 −0.897956 −0.448978 0.893543i \(-0.648212\pi\)
−0.448978 + 0.893543i \(0.648212\pi\)
\(578\) 14.4288 + 16.5486i 0.600161 + 0.688331i
\(579\) 0 0
\(580\) 6.48597 47.1704i 0.269315 1.95865i
\(581\) 18.8701i 0.782865i
\(582\) 0 0
\(583\) 11.7725i 0.487569i
\(584\) −33.3931 + 21.8987i −1.38182 + 0.906177i
\(585\) 0 0
\(586\) 26.3285 22.9560i 1.08762 0.948305i
\(587\) −22.8444 −0.942888 −0.471444 0.881896i \(-0.656267\pi\)
−0.471444 + 0.881896i \(0.656267\pi\)
\(588\) 0 0
\(589\) −3.24404 −0.133668
\(590\) −34.6935 + 30.2495i −1.42831 + 1.24535i
\(591\) 0 0
\(592\) 3.35706 + 0.940987i 0.137974 + 0.0386743i
\(593\) 17.4178i 0.715265i 0.933862 + 0.357633i \(0.116416\pi\)
−0.933862 + 0.357633i \(0.883584\pi\)
\(594\) 0 0
\(595\) 4.17873i 0.171311i
\(596\) 4.55540 + 0.626372i 0.186597 + 0.0256572i
\(597\) 0 0
\(598\) −1.45421 1.66784i −0.0594669 0.0682031i
\(599\) 40.5099 1.65519 0.827596 0.561325i \(-0.189708\pi\)
0.827596 + 0.561325i \(0.189708\pi\)
\(600\) 0 0
\(601\) 30.5031 1.24425 0.622125 0.782918i \(-0.286270\pi\)
0.622125 + 0.782918i \(0.286270\pi\)
\(602\) 9.57912 + 10.9864i 0.390416 + 0.447772i
\(603\) 0 0
\(604\) −38.9463 5.35515i −1.58470 0.217898i
\(605\) 3.24506i 0.131930i
\(606\) 0 0
\(607\) 3.37637i 0.137043i −0.997650 0.0685214i \(-0.978172\pi\)
0.997650 0.0685214i \(-0.0218281\pi\)
\(608\) −2.05563 + 0.977282i −0.0833669 + 0.0396340i
\(609\) 0 0
\(610\) −16.0756 + 14.0165i −0.650883 + 0.567510i
\(611\) −0.769375 −0.0311256
\(612\) 0 0
\(613\) −19.6548 −0.793849 −0.396924 0.917851i \(-0.629922\pi\)
−0.396924 + 0.917851i \(0.629922\pi\)
\(614\) −13.0397 + 11.3694i −0.526240 + 0.458833i
\(615\) 0 0
\(616\) −1.64455 2.50776i −0.0662609 0.101040i
\(617\) 14.8544i 0.598017i −0.954251 0.299008i \(-0.903344\pi\)
0.954251 0.299008i \(-0.0966558\pi\)
\(618\) 0 0
\(619\) 12.1665i 0.489014i 0.969648 + 0.244507i \(0.0786260\pi\)
−0.969648 + 0.244507i \(0.921374\pi\)
\(620\) −7.12782 + 51.8384i −0.286260 + 2.08188i
\(621\) 0 0
\(622\) −8.53297 9.78654i −0.342141 0.392405i
\(623\) −16.0573 −0.643323
\(624\) 0 0
\(625\) −22.0667 −0.882669
\(626\) −18.3841 21.0849i −0.734775 0.842721i
\(627\) 0 0
\(628\) 5.61502 40.8363i 0.224064 1.62955i
\(629\) 1.05859i 0.0422087i
\(630\) 0 0
\(631\) 22.2468i 0.885630i 0.896613 + 0.442815i \(0.146020\pi\)
−0.896613 + 0.442815i \(0.853980\pi\)
\(632\) 20.9638 + 31.9675i 0.833896 + 1.27160i
\(633\) 0 0
\(634\) −9.06315 + 7.90223i −0.359944 + 0.313838i
\(635\) 12.4821 0.495337
\(636\) 0 0
\(637\) −1.09014 −0.0431931
\(638\) 7.82016 6.81846i 0.309603 0.269945i
\(639\) 0 0
\(640\) 11.0999 + 34.9955i 0.438763 + 1.38332i
\(641\) 5.57524i 0.220209i 0.993920 + 0.110104i \(0.0351185\pi\)
−0.993920 + 0.110104i \(0.964881\pi\)
\(642\) 0 0
\(643\) 26.5625i 1.04752i −0.851865 0.523762i \(-0.824528\pi\)
0.851865 0.523762i \(-0.175472\pi\)
\(644\) 17.7169 + 2.43609i 0.698145 + 0.0959955i
\(645\) 0 0
\(646\) 0.454178 + 0.520902i 0.0178694 + 0.0204946i
\(647\) 28.7081 1.12863 0.564316 0.825559i \(-0.309140\pi\)
0.564316 + 0.825559i \(0.309140\pi\)
\(648\) 0 0
\(649\) −10.0298 −0.393706
\(650\) 0.953615 + 1.09371i 0.0374039 + 0.0428988i
\(651\) 0 0
\(652\) −26.2732 3.61259i −1.02894 0.141480i
\(653\) 4.97393i 0.194645i 0.995253 + 0.0973225i \(0.0310278\pi\)
−0.995253 + 0.0973225i \(0.968972\pi\)
\(654\) 0 0
\(655\) 35.4727i 1.38603i
\(656\) 6.67854 23.8263i 0.260753 0.930260i
\(657\) 0 0
\(658\) 4.68674 4.08641i 0.182708 0.159305i
\(659\) −30.9216 −1.20454 −0.602268 0.798294i \(-0.705736\pi\)
−0.602268 + 0.798294i \(0.705736\pi\)
\(660\) 0 0
\(661\) −34.9847 −1.36075 −0.680373 0.732866i \(-0.738182\pi\)
−0.680373 + 0.732866i \(0.738182\pi\)
\(662\) −25.6348 + 22.3512i −0.996327 + 0.868705i
\(663\) 0 0
\(664\) 42.0946 27.6051i 1.63359 1.07128i
\(665\) 1.38439i 0.0536844i
\(666\) 0 0
\(667\) 61.8719i 2.39569i
\(668\) 6.33449 46.0687i 0.245089 1.78245i
\(669\) 0 0
\(670\) 8.04643 + 9.22853i 0.310861 + 0.356529i
\(671\) −4.64744 −0.179413
\(672\) 0 0
\(673\) −28.8775 −1.11315 −0.556574 0.830798i \(-0.687884\pi\)
−0.556574 + 0.830798i \(0.687884\pi\)
\(674\) −3.69067 4.23287i −0.142159 0.163044i
\(675\) 0 0
\(676\) 3.53232 25.6894i 0.135858 0.988056i
\(677\) 27.9239i 1.07320i −0.843836 0.536602i \(-0.819708\pi\)
0.843836 0.536602i \(-0.180292\pi\)
\(678\) 0 0
\(679\) 2.31665i 0.0889050i
\(680\) 9.32172 6.11305i 0.357472 0.234425i
\(681\) 0 0
\(682\) −8.59404 + 7.49321i −0.329083 + 0.286930i
\(683\) −28.9339 −1.10712 −0.553562 0.832808i \(-0.686732\pi\)
−0.553562 + 0.832808i \(0.686732\pi\)
\(684\) 0 0
\(685\) −4.41190 −0.168570
\(686\) 14.5520 12.6880i 0.555598 0.484431i
\(687\) 0 0
\(688\) 10.4946 37.4406i 0.400105 1.42741i
\(689\) 2.18417i 0.0832101i
\(690\) 0 0
\(691\) 37.6866i 1.43367i 0.697245 + 0.716833i \(0.254409\pi\)
−0.697245 + 0.716833i \(0.745591\pi\)
\(692\) 24.7046 + 3.39690i 0.939128 + 0.129131i
\(693\) 0 0
\(694\) 19.6882 + 22.5806i 0.747355 + 0.857149i
\(695\) 13.0108 0.493527
\(696\) 0 0
\(697\) −7.51321 −0.284583
\(698\) 19.8154 + 22.7265i 0.750025 + 0.860212i
\(699\) 0 0
\(700\) −11.6181 1.59750i −0.439124 0.0603799i
\(701\) 18.7196i 0.707031i −0.935429 0.353515i \(-0.884986\pi\)
0.935429 0.353515i \(-0.115014\pi\)
\(702\) 0 0
\(703\) 0.350705i 0.0132271i
\(704\) −3.18838 + 7.33718i −0.120166 + 0.276531i
\(705\) 0 0
\(706\) 14.2019 12.3828i 0.534496 0.466031i
\(707\) 3.23300 0.121590
\(708\) 0 0
\(709\) 40.3909 1.51691 0.758456 0.651725i \(-0.225954\pi\)
0.758456 + 0.651725i \(0.225954\pi\)
\(710\) 33.9181 29.5734i 1.27292 1.10987i
\(711\) 0 0
\(712\) 23.4902 + 35.8199i 0.880332 + 1.34241i
\(713\) 67.9947i 2.54642i
\(714\) 0 0
\(715\) 0.602057i 0.0225156i
\(716\) −0.333055 + 2.42221i −0.0124469 + 0.0905221i
\(717\) 0 0
\(718\) 30.1965 + 34.6327i 1.12693 + 1.29248i
\(719\) 13.1039 0.488693 0.244347 0.969688i \(-0.421427\pi\)
0.244347 + 0.969688i \(0.421427\pi\)
\(720\) 0 0
\(721\) −4.24253 −0.158000
\(722\) 17.5081 + 20.0802i 0.651584 + 0.747308i
\(723\) 0 0
\(724\) −2.27007 + 16.5095i −0.0843666 + 0.613571i
\(725\) 40.5733i 1.50686i
\(726\) 0 0
\(727\) 6.43892i 0.238806i 0.992846 + 0.119403i \(0.0380981\pi\)
−0.992846 + 0.119403i \(0.961902\pi\)
\(728\) −0.305115 0.465265i −0.0113083 0.0172439i
\(729\) 0 0
\(730\) −48.8362 + 42.5807i −1.80751 + 1.57598i
\(731\) −11.8062 −0.436670
\(732\) 0 0
\(733\) −30.2045 −1.11563 −0.557814 0.829966i \(-0.688360\pi\)
−0.557814 + 0.829966i \(0.688360\pi\)
\(734\) 13.4864 11.7589i 0.497793 0.434029i
\(735\) 0 0
\(736\) −20.4837 43.0859i −0.755040 1.58817i
\(737\) 2.66796i 0.0982756i
\(738\) 0 0
\(739\) 49.5603i 1.82311i −0.411183 0.911553i \(-0.634884\pi\)
0.411183 0.911553i \(-0.365116\pi\)
\(740\) 5.60413 + 0.770572i 0.206012 + 0.0283268i
\(741\) 0 0
\(742\) −11.6008 13.3051i −0.425880 0.488446i
\(743\) 20.1653 0.739792 0.369896 0.929073i \(-0.379393\pi\)
0.369896 + 0.929073i \(0.379393\pi\)
\(744\) 0 0
\(745\) 7.46081 0.273343
\(746\) 26.9058 + 30.8585i 0.985090 + 1.12981i
\(747\) 0 0
\(748\) 2.40640 + 0.330882i 0.0879867 + 0.0120983i
\(749\) 1.85276i 0.0676982i
\(750\) 0 0
\(751\) 4.30079i 0.156938i 0.996917 + 0.0784691i \(0.0250032\pi\)
−0.996917 + 0.0784691i \(0.974997\pi\)
\(752\) −15.9720 4.47697i −0.582439 0.163258i
\(753\) 0 0
\(754\) 1.45088 1.26503i 0.0528379 0.0460698i
\(755\) −63.7861 −2.32141
\(756\) 0 0
\(757\) 28.5859 1.03897 0.519486 0.854479i \(-0.326124\pi\)
0.519486 + 0.854479i \(0.326124\pi\)
\(758\) 4.09329 3.56898i 0.148675 0.129631i
\(759\) 0 0
\(760\) −3.08824 + 2.02522i −0.112022 + 0.0734625i
\(761\) 23.6149i 0.856038i −0.903770 0.428019i \(-0.859212\pi\)
0.903770 0.428019i \(-0.140788\pi\)
\(762\) 0 0
\(763\) 11.6871i 0.423100i
\(764\) 2.79359 20.3169i 0.101068 0.735038i
\(765\) 0 0
\(766\) −24.1110 27.6532i −0.871167 0.999150i
\(767\) −1.86084 −0.0671911
\(768\) 0 0
\(769\) −7.68353 −0.277075 −0.138538 0.990357i \(-0.544240\pi\)
−0.138538 + 0.990357i \(0.544240\pi\)
\(770\) −3.19772 3.66750i −0.115238 0.132168i
\(771\) 0 0
\(772\) 3.00465 21.8519i 0.108140 0.786466i
\(773\) 3.96538i 0.142625i −0.997454 0.0713123i \(-0.977281\pi\)
0.997454 0.0713123i \(-0.0227187\pi\)
\(774\) 0 0
\(775\) 44.5884i 1.60166i
\(776\) −5.16788 + 3.38903i −0.185516 + 0.121659i
\(777\) 0 0
\(778\) −17.3147 + 15.0968i −0.620763 + 0.541248i
\(779\) 2.48909 0.0891808
\(780\) 0 0
\(781\) 9.80568 0.350875
\(782\) −10.9180 + 9.51953i −0.390428 + 0.340418i
\(783\) 0 0
\(784\) −22.6311 6.34351i −0.808252 0.226554i
\(785\) 66.8814i 2.38710i
\(786\) 0 0
\(787\) 18.0547i 0.643581i −0.946811 0.321790i \(-0.895715\pi\)
0.946811 0.321790i \(-0.104285\pi\)
\(788\) 2.36151 + 0.324709i 0.0841252 + 0.0115673i
\(789\) 0 0
\(790\) 40.7628 + 46.7512i 1.45027 + 1.66333i
\(791\) 7.96545 0.283219
\(792\) 0 0
\(793\) −0.862242 −0.0306191
\(794\) −5.38733 6.17878i −0.191189 0.219277i
\(795\) 0 0
\(796\) 18.7720 + 2.58116i 0.665354 + 0.0914868i
\(797\) 11.1711i 0.395700i 0.980232 + 0.197850i \(0.0633959\pi\)
−0.980232 + 0.197850i \(0.936604\pi\)
\(798\) 0 0
\(799\) 5.03649i 0.178178i
\(800\) 13.4325 + 28.2541i 0.474910 + 0.998935i
\(801\) 0 0
\(802\) 29.2911 25.5391i 1.03430 0.901818i
\(803\) −14.1185 −0.498231
\(804\) 0 0
\(805\) 29.0167 1.02270
\(806\) −1.59446 + 1.39022i −0.0561623 + 0.0489684i
\(807\) 0 0
\(808\) −4.72955 7.21203i −0.166385 0.253718i
\(809\) 28.7742i 1.01165i 0.862637 + 0.505824i \(0.168811\pi\)
−0.862637 + 0.505824i \(0.831189\pi\)
\(810\) 0 0
\(811\) 12.0121i 0.421803i −0.977507 0.210902i \(-0.932360\pi\)
0.977507 0.210902i \(-0.0676400\pi\)
\(812\) −2.11919 + 15.4122i −0.0743690 + 0.540862i
\(813\) 0 0
\(814\) 0.810074 + 0.929081i 0.0283931 + 0.0325643i
\(815\) −43.0301 −1.50728
\(816\) 0 0
\(817\) 3.91135 0.136841
\(818\) 5.51159 + 6.32130i 0.192708 + 0.221019i
\(819\) 0 0
\(820\) 5.46904 39.7746i 0.190987 1.38899i
\(821\) 10.5039i 0.366590i 0.983058 + 0.183295i \(0.0586763\pi\)
−0.983058 + 0.183295i \(0.941324\pi\)
\(822\) 0 0
\(823\) 1.22919i 0.0428470i −0.999770 0.0214235i \(-0.993180\pi\)
0.999770 0.0214235i \(-0.00681984\pi\)
\(824\) 6.20639 + 9.46404i 0.216210 + 0.329695i
\(825\) 0 0
\(826\) 11.3355 9.88355i 0.394414 0.343893i
\(827\) 1.67808 0.0583525 0.0291763 0.999574i \(-0.490712\pi\)
0.0291763 + 0.999574i \(0.490712\pi\)
\(828\) 0 0
\(829\) 30.1865 1.04842 0.524210 0.851589i \(-0.324361\pi\)
0.524210 + 0.851589i \(0.324361\pi\)
\(830\) 61.5618 53.6762i 2.13684 1.86313i
\(831\) 0 0
\(832\) −0.591541 + 1.36127i −0.0205080 + 0.0471936i
\(833\) 7.13631i 0.247259i
\(834\) 0 0
\(835\) 75.4511i 2.61109i
\(836\) −0.797228 0.109620i −0.0275727 0.00379127i
\(837\) 0 0
\(838\) 16.0929 + 18.4571i 0.555919 + 0.637589i
\(839\) 16.0148 0.552893 0.276446 0.961029i \(-0.410843\pi\)
0.276446 + 0.961029i \(0.410843\pi\)
\(840\) 0 0
\(841\) −24.8232 −0.855971
\(842\) −25.7544 29.5379i −0.887554 1.01794i
\(843\) 0 0
\(844\) 17.7862 + 2.44562i 0.612226 + 0.0841816i
\(845\) 42.0740i 1.44739i
\(846\) 0 0
\(847\) 1.06027i 0.0364313i
\(848\) −12.7096 + 45.3426i −0.436449 + 1.55707i
\(849\) 0 0
\(850\) 7.15966 6.24256i 0.245574 0.214118i
\(851\) −7.35075 −0.251980
\(852\) 0 0
\(853\) 6.74902 0.231082 0.115541 0.993303i \(-0.463140\pi\)
0.115541 + 0.993303i \(0.463140\pi\)
\(854\) 5.25245 4.57966i 0.179735 0.156713i
\(855\) 0 0
\(856\) 4.13304 2.71039i 0.141264 0.0926393i
\(857\) 18.2593i 0.623725i 0.950127 + 0.311862i \(0.100953\pi\)
−0.950127 + 0.311862i \(0.899047\pi\)
\(858\) 0 0
\(859\) 30.8970i 1.05419i 0.849806 + 0.527096i \(0.176719\pi\)
−0.849806 + 0.527096i \(0.823281\pi\)
\(860\) 8.59404 62.5017i 0.293054 2.13129i
\(861\) 0 0
\(862\) −4.87563 5.59191i −0.166065 0.190461i
\(863\) −35.3480 −1.20326 −0.601630 0.798775i \(-0.705482\pi\)
−0.601630 + 0.798775i \(0.705482\pi\)
\(864\) 0 0
\(865\) 40.4611 1.37572
\(866\) 30.2102 + 34.6484i 1.02659 + 1.17740i
\(867\) 0 0
\(868\) 2.32890 16.9374i 0.0790481 0.574892i
\(869\) 13.5157i 0.458490i
\(870\) 0 0
\(871\) 0.494988i 0.0167720i
\(872\) −26.0710 + 17.0970i −0.882875 + 0.578977i
\(873\) 0 0
\(874\) 3.61709 3.15377i 0.122350 0.106678i
\(875\) −1.82489 −0.0616927
\(876\) 0 0
\(877\) −8.27638 −0.279474 −0.139737 0.990189i \(-0.544626\pi\)
−0.139737 + 0.990189i \(0.544626\pi\)
\(878\) 1.63130 1.42234i 0.0550537 0.0480018i
\(879\) 0 0
\(880\) −3.50335 + 12.4985i −0.118098 + 0.421325i
\(881\) 49.4332i 1.66545i −0.553688 0.832724i \(-0.686780\pi\)
0.553688 0.832724i \(-0.313220\pi\)
\(882\) 0 0
\(883\) 29.4375i 0.990651i 0.868708 + 0.495325i \(0.164951\pi\)
−0.868708 + 0.495325i \(0.835049\pi\)
\(884\) 0.446461 + 0.0613887i 0.0150161 + 0.00206473i
\(885\) 0 0
\(886\) −8.42213 9.65943i −0.282947 0.324515i
\(887\) −37.0377 −1.24360 −0.621802 0.783175i \(-0.713599\pi\)
−0.621802 + 0.783175i \(0.713599\pi\)
\(888\) 0 0
\(889\) −4.07833 −0.136783
\(890\) 45.6751 + 52.3853i 1.53103 + 1.75596i
\(891\) 0 0
\(892\) 42.0575 + 5.78294i 1.40819 + 0.193627i
\(893\) 1.66856i 0.0558363i
\(894\) 0 0
\(895\) 3.96707i 0.132605i
\(896\) −3.62672 11.4342i −0.121160 0.381990i
\(897\) 0 0
\(898\) −13.1718 + 11.4846i −0.439550 + 0.383247i
\(899\) 59.1495 1.97275
\(900\) 0 0
\(901\) 14.2980 0.476336
\(902\) 6.59404 5.74940i 0.219557 0.191434i
\(903\) 0 0
\(904\) −11.6526 17.7690i −0.387561 0.590987i
\(905\) 27.0392i 0.898813i
\(906\) 0 0
\(907\) 25.0154i 0.830623i 0.909679 + 0.415311i \(0.136327\pi\)
−0.909679 + 0.415311i \(0.863673\pi\)
\(908\) −3.99702 + 29.0690i −0.132646 + 0.964689i
\(909\) 0 0
\(910\) −0.593275 0.680433i −0.0196669 0.0225561i
\(911\) 34.0603 1.12847 0.564233 0.825615i \(-0.309172\pi\)
0.564233 + 0.825615i \(0.309172\pi\)
\(912\) 0 0
\(913\) 17.7975 0.589010
\(914\) −32.9276 37.7650i −1.08915 1.24916i
\(915\) 0 0
\(916\) −5.38809 + 39.1859i −0.178027 + 1.29474i
\(917\) 11.5901i 0.382740i
\(918\) 0 0
\(919\) 27.2051i 0.897413i −0.893679 0.448707i \(-0.851885\pi\)
0.893679 0.448707i \(-0.148115\pi\)
\(920\) −42.4485 64.7291i −1.39948 2.13406i
\(921\) 0 0
\(922\) 38.9959 34.0008i 1.28426 1.11976i
\(923\) 1.81925 0.0598814
\(924\) 0 0
\(925\) 4.82035 0.158492
\(926\) −32.3694 + 28.2232i −1.06373 + 0.927471i
\(927\) 0 0
\(928\) 37.4810 17.8191i 1.23037 0.584940i
\(929\) 12.7577i 0.418566i 0.977855 + 0.209283i \(0.0671130\pi\)
−0.977855 + 0.209283i \(0.932887\pi\)
\(930\) 0 0
\(931\) 2.36422i 0.0774843i
\(932\) −9.28704 1.27698i −0.304207 0.0418287i
\(933\) 0 0
\(934\) −11.0512 12.6747i −0.361606 0.414729i
\(935\) 3.94119 0.128891
\(936\) 0 0
\(937\) −15.9382 −0.520679 −0.260340 0.965517i \(-0.583835\pi\)
−0.260340 + 0.965517i \(0.583835\pi\)
\(938\) −2.62905 3.01528i −0.0858414 0.0984523i
\(939\) 0 0
\(940\) −26.6629 3.66618i −0.869649 0.119578i
\(941\) 48.2168i 1.57182i −0.618338 0.785912i \(-0.712194\pi\)
0.618338 0.785912i \(-0.287806\pi\)
\(942\) 0 0
\(943\) 52.1710i 1.69892i
\(944\) −38.6305 10.8282i −1.25732 0.352427i
\(945\) 0 0
\(946\) 10.3619 9.03459i 0.336893 0.293740i
\(947\) −18.0381 −0.586161 −0.293081 0.956088i \(-0.594680\pi\)
−0.293081 + 0.956088i \(0.594680\pi\)
\(948\) 0 0
\(949\) −2.61941 −0.0850297
\(950\) −2.37196 + 2.06813i −0.0769564 + 0.0670989i
\(951\) 0 0
\(952\) −3.04572 + 1.99734i −0.0987125 + 0.0647343i
\(953\) 18.0668i 0.585242i 0.956229 + 0.292621i \(0.0945274\pi\)
−0.956229 + 0.292621i \(0.905473\pi\)
\(954\) 0 0
\(955\) 33.2748i 1.07675i
\(956\) 3.99881 29.0821i 0.129331 0.940582i
\(957\) 0 0
\(958\) 18.2844 + 20.9706i 0.590743 + 0.677529i
\(959\) 1.44152 0.0465490
\(960\) 0 0
\(961\) −34.0029 −1.09687
\(962\) 0.150293 + 0.172373i 0.00484565 + 0.00555752i
\(963\) 0 0
\(964\) 0.227843 1.65703i 0.00733834 0.0533694i
\(965\) 35.7889i 1.15209i
\(966\) 0 0
\(967\) 13.9092i 0.447289i 0.974671 + 0.223644i \(0.0717954\pi\)
−0.974671 + 0.223644i \(0.928205\pi\)
\(968\) −2.36520 + 1.55107i −0.0760205 + 0.0498532i
\(969\) 0 0
\(970\) −7.55783 + 6.58974i −0.242667 + 0.211584i
\(971\) −12.4711 −0.400217 −0.200108 0.979774i \(-0.564129\pi\)
−0.200108 + 0.979774i \(0.564129\pi\)
\(972\) 0 0
\(973\) −4.25106 −0.136283
\(974\) 21.9166 19.1093i 0.702254 0.612301i
\(975\) 0 0
\(976\) −17.8999 5.01736i −0.572961 0.160602i
\(977\) 32.2725i 1.03249i 0.856441 + 0.516245i \(0.172671\pi\)
−0.856441 + 0.516245i \(0.827329\pi\)
\(978\) 0 0
\(979\) 15.1445i 0.484021i
\(980\) −37.7793 5.19469i −1.20682 0.165938i
\(981\) 0 0
\(982\) 10.4670 + 12.0047i 0.334014 + 0.383084i
\(983\) 15.3727 0.490314 0.245157 0.969483i \(-0.421161\pi\)
0.245157 + 0.969483i \(0.421161\pi\)
\(984\) 0 0
\(985\) 3.86766 0.123234
\(986\) −8.28117 9.49775i −0.263726 0.302470i
\(987\) 0 0
\(988\) −0.147910 0.0203378i −0.00470564 0.000647030i
\(989\) 81.9814i 2.60686i
\(990\) 0 0
\(991\) 1.06000i 0.0336719i −0.999858 0.0168359i \(-0.994641\pi\)
0.999858 0.0168359i \(-0.00535930\pi\)
\(992\) −41.1900 + 19.5824i −1.30779 + 0.621743i
\(993\) 0 0
\(994\) −11.0822 + 9.66265i −0.351506 + 0.306481i
\(995\) 30.7446 0.974670
\(996\) 0 0
\(997\) −13.8296 −0.437988 −0.218994 0.975726i \(-0.570277\pi\)
−0.218994 + 0.975726i \(0.570277\pi\)
\(998\) 19.6403 17.1246i 0.621704 0.542068i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.c.a.287.8 yes 10
3.2 odd 2 396.2.c.b.287.3 yes 10
4.3 odd 2 396.2.c.b.287.4 yes 10
8.3 odd 2 6336.2.d.g.3455.2 10
8.5 even 2 6336.2.d.h.3455.2 10
12.11 even 2 inner 396.2.c.a.287.7 10
24.5 odd 2 6336.2.d.g.3455.9 10
24.11 even 2 6336.2.d.h.3455.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.c.a.287.7 10 12.11 even 2 inner
396.2.c.a.287.8 yes 10 1.1 even 1 trivial
396.2.c.b.287.3 yes 10 3.2 odd 2
396.2.c.b.287.4 yes 10 4.3 odd 2
6336.2.d.g.3455.2 10 8.3 odd 2
6336.2.d.g.3455.9 10 24.5 odd 2
6336.2.d.h.3455.2 10 8.5 even 2
6336.2.d.h.3455.9 10 24.11 even 2