Defining parameters
Level: | \( N \) | \(=\) | \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 396.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(396))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 3 | 81 |
Cusp forms | 61 | 3 | 58 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
Plus space | \(+\) | \(1\) | ||
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(396))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 11 | |||||||
396.2.a.a | $1$ | $3.162$ | \(\Q\) | None | \(0\) | \(0\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | \(q-2q^{5}-2q^{7}-q^{11}-2q^{13}-4q^{17}+\cdots\) | |
396.2.a.b | $1$ | $3.162$ | \(\Q\) | None | \(0\) | \(0\) | \(-2\) | \(2\) | $-$ | $-$ | $-$ | \(q-2q^{5}+2q^{7}+q^{11}+6q^{13}+4q^{17}+\cdots\) | |
396.2.a.c | $1$ | $3.162$ | \(\Q\) | None | \(0\) | \(0\) | \(3\) | \(2\) | $-$ | $-$ | $-$ | \(q+3q^{5}+2q^{7}+q^{11}-4q^{13}-6q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(396))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(396)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 2}\)