Properties

Label 396.1.d.a.395.3
Level 396396
Weight 11
Character 396.395
Analytic conductor 0.1980.198
Analytic rank 00
Dimension 44
Projective image D4D_{4}
RM discriminant 44
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,1,Mod(395,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.395"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 396=223211 396 = 2^{2} \cdot 3^{2} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 396.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1976297450030.197629745003
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.4752.1

Embedding invariants

Embedding label 395.3
Root 0.707107+0.707107i0.707107 + 0.707107i of defining polynomial
Character χ\chi == 396.395
Dual form 396.1.d.a.395.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq21.00000q41.41421iq5+1.41421q71.00000iq8+1.41421q10+1.00000iq11+1.41421iq14+1.00000q161.41421q19+1.41421iq201.00000q221.00000q251.41421q28+1.00000iq322.00000iq351.41421iq381.41421q401.41421q431.00000iq44+1.00000q491.00000iq50+1.41421iq53+1.41421q551.41421iq561.00000q64+2.00000q70+1.41421q76+1.41421iq771.41421q791.41421iq801.41421iq86+1.00000q881.41421iq89+2.00000iq952.00000q97+1.00000iq98+O(q100)q+1.00000i q^{2} -1.00000 q^{4} -1.41421i q^{5} +1.41421 q^{7} -1.00000i q^{8} +1.41421 q^{10} +1.00000i q^{11} +1.41421i q^{14} +1.00000 q^{16} -1.41421 q^{19} +1.41421i q^{20} -1.00000 q^{22} -1.00000 q^{25} -1.41421 q^{28} +1.00000i q^{32} -2.00000i q^{35} -1.41421i q^{38} -1.41421 q^{40} -1.41421 q^{43} -1.00000i q^{44} +1.00000 q^{49} -1.00000i q^{50} +1.41421i q^{53} +1.41421 q^{55} -1.41421i q^{56} -1.00000 q^{64} +2.00000 q^{70} +1.41421 q^{76} +1.41421i q^{77} -1.41421 q^{79} -1.41421i q^{80} -1.41421i q^{86} +1.00000 q^{88} -1.41421i q^{89} +2.00000i q^{95} -2.00000 q^{97} +1.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+4q164q224q25+4q494q64+8q70+4q888q97+O(q100) 4 q - 4 q^{4} + 4 q^{16} - 4 q^{22} - 4 q^{25} + 4 q^{49} - 4 q^{64} + 8 q^{70} + 4 q^{88} - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/396Z)×\left(\mathbb{Z}/396\mathbb{Z}\right)^\times.

nn 145145 199199 353353
χ(n)\chi(n) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 0 0
44 −1.00000 −1.00000
55 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
66 0 0
77 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
88 − 1.00000i − 1.00000i
99 0 0
1010 1.41421 1.41421
1111 1.00000i 1.00000i
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 1.41421i 1.41421i
1515 0 0
1616 1.00000 1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2020 1.41421i 1.41421i
2121 0 0
2222 −1.00000 −1.00000
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 −1.00000 −1.00000
2626 0 0
2727 0 0
2828 −1.41421 −1.41421
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 1.00000i 1.00000i
3333 0 0
3434 0 0
3535 − 2.00000i − 2.00000i
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 − 1.41421i − 1.41421i
3939 0 0
4040 −1.41421 −1.41421
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4444 − 1.00000i − 1.00000i
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 1.00000 1.00000
5050 − 1.00000i − 1.00000i
5151 0 0
5252 0 0
5353 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
5454 0 0
5555 1.41421 1.41421
5656 − 1.41421i − 1.41421i
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 2.00000 2.00000
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 1.41421 1.41421
7777 1.41421i 1.41421i
7878 0 0
7979 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
8080 − 1.41421i − 1.41421i
8181 0 0
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 − 1.41421i − 1.41421i
8787 0 0
8888 1.00000 1.00000
8989 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 2.00000i 2.00000i
9696 0 0
9797 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
9898 1.00000i 1.00000i
9999 0 0
100100 1.00000 1.00000
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 −1.41421 −1.41421
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 1.41421i 1.41421i
111111 0 0
112112 1.41421 1.41421
113113 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −1.00000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
128128 − 1.00000i − 1.00000i
129129 0 0
130130 0 0
131131 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
132132 0 0
133133 −2.00000 −2.00000
134134 0 0
135135 0 0
136136 0 0
137137 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
138138 0 0
139139 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
140140 2.00000i 2.00000i
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
152152 1.41421i 1.41421i
153153 0 0
154154 −1.41421 −1.41421
155155 0 0
156156 0 0
157157 2.00000 2.00000 1.00000 00
1.00000 00
158158 − 1.41421i − 1.41421i
159159 0 0
160160 1.41421 1.41421
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 1.41421 1.41421
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 −1.41421 −1.41421
176176 1.00000i 1.00000i
177177 0 0
178178 1.41421 1.41421
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 −2.00000 −2.00000
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 − 2.00000i − 2.00000i
195195 0 0
196196 −1.00000 −1.00000
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 1.00000i 1.00000i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 − 1.41421i − 1.41421i
210210 0 0
211211 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
212212 − 1.41421i − 1.41421i
213213 0 0
214214 0 0
215215 2.00000i 2.00000i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 −1.41421 −1.41421
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 1.41421i 1.41421i
225225 0 0
226226 −1.41421 −1.41421
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 2.00000 2.00000 1.00000 00
1.00000 00
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 − 1.00000i − 1.00000i
243243 0 0
244244 0 0
245245 − 1.41421i − 1.41421i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 1.41421i 1.41421i
255255 0 0
256256 1.00000 1.00000
257257 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 2.00000 2.00000
263263 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
264264 0 0
265265 2.00000 2.00000
266266 − 2.00000i − 2.00000i
267267 0 0
268268 0 0
269269 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
270270 0 0
271271 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
272272 0 0
273273 0 0
274274 −1.41421 −1.41421
275275 − 1.00000i − 1.00000i
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 1.41421i 1.41421i
279279 0 0
280280 −2.00000 −2.00000
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −1.00000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −2.00000 −2.00000
302302 1.41421i 1.41421i
303303 0 0
304304 −1.41421 −1.41421
305305 0 0
306306 0 0
307307 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
308308 − 1.41421i − 1.41421i
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 2.00000i 2.00000i
315315 0 0
316316 1.41421 1.41421
317317 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
318318 0 0
319319 0 0
320320 1.41421i 1.41421i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 −2.00000 −2.00000
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 1.00000i 1.00000i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 1.41421i 1.41421i
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 − 1.41421i − 1.41421i
351351 0 0
352352 −1.00000 −1.00000
353353 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
354354 0 0
355355 0 0
356356 1.41421i 1.41421i
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 2.00000i 2.00000i
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 − 2.00000i − 2.00000i
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 2.00000 2.00000
386386 0 0
387387 0 0
388388 2.00000 2.00000
389389 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
390390 0 0
391391 0 0
392392 − 1.00000i − 1.00000i
393393 0 0
394394 0 0
395395 2.00000i 2.00000i
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 1.41421 1.41421
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 − 1.41421i − 1.41421i
423423 0 0
424424 1.41421 1.41421
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 −2.00000 −2.00000
431431 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
440440 − 1.41421i − 1.41421i
441441 0 0
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 −2.00000 −2.00000
446446 0 0
447447 0 0
448448 −1.41421 −1.41421
449449 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
450450 0 0
451451 0 0
452452 − 1.41421i − 1.41421i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 2.00000i 2.00000i
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 − 1.41421i − 1.41421i
474474 0 0
475475 1.41421 1.41421
476476 0 0
477477 0 0
478478 2.00000 2.00000
479479 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 1.00000 1.00000
485485 2.82843i 2.82843i
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 1.41421 1.41421
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 −1.41421 −1.41421
509509 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 1.41421 1.41421
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
522522 0 0
523523 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
524524 2.00000i 2.00000i
525525 0 0
526526 2.00000 2.00000
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 2.00000i 2.00000i
531531 0 0
532532 2.00000 2.00000
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 1.41421 1.41421
539539 1.00000i 1.00000i
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 − 1.41421i − 1.41421i
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
548548 − 1.41421i − 1.41421i
549549 0 0
550550 1.00000 1.00000
551551 0 0
552552 0 0
553553 −2.00000 −2.00000
554554 0 0
555555 0 0
556556 −1.41421 −1.41421
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 − 2.00000i − 2.00000i
561561 0 0
562562 0 0
563563 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 2.00000 2.00000
566566 1.41421i 1.41421i
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
578578 − 1.00000i − 1.00000i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −1.41421 −1.41421
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 − 2.00000i − 2.00000i
603603 0 0
604604 −1.41421 −1.41421
605605 1.41421i 1.41421i
606606 0 0
607607 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
608608 − 1.41421i − 1.41421i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 − 1.41421i − 1.41421i
615615 0 0
616616 1.41421 1.41421
617617 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 − 2.00000i − 2.00000i
624624 0 0
625625 −1.00000 −1.00000
626626 0 0
627627 0 0
628628 −2.00000 −2.00000
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 1.41421i 1.41421i
633633 0 0
634634 1.41421 1.41421
635635 − 2.00000i − 2.00000i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 −1.41421 −1.41421
641641 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
654654 0 0
655655 −2.82843 −2.82843
656656 0 0
657657 0 0
658658 0 0
659659 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 2.82843i 2.82843i
666666 0 0
667667 0 0
668668 − 2.00000i − 2.00000i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 −1.00000 −1.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 −2.82843 −2.82843
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 2.00000 2.00000
686686 0 0
687687 0 0
688688 −1.41421 −1.41421
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0 0
694694 0 0
695695 − 2.00000i − 2.00000i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 1.41421 1.41421
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 − 1.00000i − 1.00000i
705705 0 0
706706 −1.41421 −1.41421
707707 0 0
708708 0 0
709709 2.00000 2.00000 1.00000 00
1.00000 00
710710 0 0
711711 0 0
712712 −1.41421 −1.41421
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 1.00000i 1.00000i
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
740740 0 0
741741 0 0
742742 −2.00000 −2.00000
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 − 2.00000i − 2.00000i
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 2.00000 2.00000
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 2.00000i 2.00000i
771771 0 0
772772 0 0
773773 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
774774 0 0
775775 0 0
776776 2.00000i 2.00000i
777777 0 0
778778 −1.41421 −1.41421
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 − 2.82843i − 2.82843i
786786 0 0
787787 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 0 0
789789 0 0
790790 −2.00000 −2.00000
791791 2.00000i 2.00000i
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
798798 0 0
799799 0 0
800800 − 1.00000i − 1.00000i
801801 0 0
802802 −1.41421 −1.41421
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 2.00000 2.00000
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 2.82843 2.82843
836836 1.41421i 1.41421i
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −1.00000 −1.00000
842842 0 0
843843 0 0
844844 1.41421 1.41421
845845 − 1.41421i − 1.41421i
846846 0 0
847847 −1.41421 −1.41421
848848 1.41421i 1.41421i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 − 2.00000i − 2.00000i
861861 0 0
862862 2.00000 2.00000
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 − 1.41421i − 1.41421i
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 1.41421i 1.41421i
879879 0 0
880880 1.41421 1.41421
881881 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 2.00000 2.00000
890890 − 2.00000i − 2.00000i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 − 1.41421i − 1.41421i
897897 0 0
898898 1.41421 1.41421
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 1.41421 1.41421
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −2.00000 −2.00000
917917 − 2.82843i − 2.82843i
918918 0 0
919919 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 − 1.41421i − 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
930930 0 0
931931 −1.41421 −1.41421
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 1.41421 1.41421
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 1.41421i 1.41421i
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 2.00000i 2.00000i
957957 0 0
958958 2.00000 2.00000
959959 2.00000i 2.00000i
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
968968 1.00000i 1.00000i
969969 0 0
970970 −2.82843 −2.82843
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 2.00000 2.00000
974974 0 0
975975 0 0
976976 0 0
977977 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
978978 0 0
979979 1.41421 1.41421
980980 1.41421i 1.41421i
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.1.d.a.395.3 yes 4
3.2 odd 2 inner 396.1.d.a.395.2 yes 4
4.3 odd 2 inner 396.1.d.a.395.1 4
9.2 odd 6 3564.1.o.e.1187.1 8
9.4 even 3 3564.1.o.e.2375.1 8
9.5 odd 6 3564.1.o.e.2375.4 8
9.7 even 3 3564.1.o.e.1187.4 8
11.10 odd 2 inner 396.1.d.a.395.1 4
12.11 even 2 inner 396.1.d.a.395.4 yes 4
33.32 even 2 inner 396.1.d.a.395.4 yes 4
36.7 odd 6 3564.1.o.e.1187.2 8
36.11 even 6 3564.1.o.e.1187.3 8
36.23 even 6 3564.1.o.e.2375.2 8
36.31 odd 6 3564.1.o.e.2375.3 8
44.43 even 2 RM 396.1.d.a.395.3 yes 4
99.32 even 6 3564.1.o.e.2375.2 8
99.43 odd 6 3564.1.o.e.1187.2 8
99.65 even 6 3564.1.o.e.1187.3 8
99.76 odd 6 3564.1.o.e.2375.3 8
132.131 odd 2 inner 396.1.d.a.395.2 yes 4
396.43 even 6 3564.1.o.e.1187.4 8
396.131 odd 6 3564.1.o.e.2375.4 8
396.175 even 6 3564.1.o.e.2375.1 8
396.263 odd 6 3564.1.o.e.1187.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.1.d.a.395.1 4 4.3 odd 2 inner
396.1.d.a.395.1 4 11.10 odd 2 inner
396.1.d.a.395.2 yes 4 3.2 odd 2 inner
396.1.d.a.395.2 yes 4 132.131 odd 2 inner
396.1.d.a.395.3 yes 4 1.1 even 1 trivial
396.1.d.a.395.3 yes 4 44.43 even 2 RM
396.1.d.a.395.4 yes 4 12.11 even 2 inner
396.1.d.a.395.4 yes 4 33.32 even 2 inner
3564.1.o.e.1187.1 8 9.2 odd 6
3564.1.o.e.1187.1 8 396.263 odd 6
3564.1.o.e.1187.2 8 36.7 odd 6
3564.1.o.e.1187.2 8 99.43 odd 6
3564.1.o.e.1187.3 8 36.11 even 6
3564.1.o.e.1187.3 8 99.65 even 6
3564.1.o.e.1187.4 8 9.7 even 3
3564.1.o.e.1187.4 8 396.43 even 6
3564.1.o.e.2375.1 8 9.4 even 3
3564.1.o.e.2375.1 8 396.175 even 6
3564.1.o.e.2375.2 8 36.23 even 6
3564.1.o.e.2375.2 8 99.32 even 6
3564.1.o.e.2375.3 8 36.31 odd 6
3564.1.o.e.2375.3 8 99.76 odd 6
3564.1.o.e.2375.4 8 9.5 odd 6
3564.1.o.e.2375.4 8 396.131 odd 6