Properties

Label 395.1
Level 395
Weight 1
Dimension 7
Nonzero newspaces 1
Newform subspaces 3
Sturm bound 12480
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 395 = 5 \cdot 79 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 3 \)
Sturm bound: \(12480\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(395))\).

Total New Old
Modular forms 323 237 86
Cusp forms 11 7 4
Eisenstein series 312 230 82

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 7 0 0 0

Trace form

\( 7 q - 3 q^{4} - 2 q^{5} - 3 q^{9} + 7 q^{16} + 3 q^{20} - 4 q^{21} + 2 q^{25} - 10 q^{26} - 4 q^{31} + 7 q^{36} + 5 q^{40} - 2 q^{45} - 3 q^{49} + 5 q^{50} - 4 q^{51} - 3 q^{64} - 10 q^{76} + 3 q^{79} - 7 q^{80}+ \cdots - 5 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(395))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
395.1.c \(\chi_{395}(394, \cdot)\) 395.1.c.a 1 1
395.1.c.b 2
395.1.c.c 4
395.1.d \(\chi_{395}(236, \cdot)\) None 0 1
395.1.g \(\chi_{395}(238, \cdot)\) None 0 2
395.1.h \(\chi_{395}(56, \cdot)\) None 0 2
395.1.i \(\chi_{395}(24, \cdot)\) None 0 2
395.1.k \(\chi_{395}(23, \cdot)\) None 0 4
395.1.n \(\chi_{395}(41, \cdot)\) None 0 12
395.1.o \(\chi_{395}(14, \cdot)\) None 0 12
395.1.r \(\chi_{395}(8, \cdot)\) None 0 24
395.1.u \(\chi_{395}(29, \cdot)\) None 0 24
395.1.v \(\chi_{395}(6, \cdot)\) None 0 24
395.1.x \(\chi_{395}(2, \cdot)\) None 0 48

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(395))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(395)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(79))\)\(^{\oplus 2}\)