Properties

Label 3920.2.bs
Level $3920$
Weight $2$
Character orbit 3920.bs
Rep. character $\chi_{3920}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $160$
Sturm bound $1344$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.bs (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3920, [\chi])\).

Total New Old
Modular forms 1440 160 1280
Cusp forms 1248 160 1088
Eisenstein series 192 0 192

Trace form

\( 160q - 80q^{9} + O(q^{10}) \) \( 160q - 80q^{9} + 80q^{25} - 24q^{29} - 8q^{37} + 36q^{45} + 24q^{53} + 16q^{57} + 72q^{61} + 12q^{65} - 24q^{73} - 92q^{81} - 36q^{89} - 40q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3920, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3920, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3920, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(784, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 3}\)