# Properties

 Label 3920.2.a.u Level $3920$ Weight $2$ Character orbit 3920.a Self dual yes Analytic conductor $31.301$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3920 = 2^{4} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3920.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$31.3013575923$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{3} - q^{5} - 2q^{9} + O(q^{10})$$ $$q + q^{3} - q^{5} - 2q^{9} - 3q^{11} + q^{13} - q^{15} + 3q^{17} + 2q^{19} + 6q^{23} + q^{25} - 5q^{27} - 9q^{29} + 8q^{31} - 3q^{33} - 10q^{37} + q^{39} - 2q^{43} + 2q^{45} - 3q^{47} + 3q^{51} + 3q^{55} + 2q^{57} + 12q^{59} - 8q^{61} - q^{65} - 8q^{67} + 6q^{69} - 14q^{73} + q^{75} - 5q^{79} + q^{81} - 12q^{83} - 3q^{85} - 9q^{87} - 12q^{89} + 8q^{93} - 2q^{95} - 17q^{97} + 6q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 −1.00000 0 0 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.2.a.u 1
4.b odd 2 1 980.2.a.c 1
7.b odd 2 1 560.2.a.c 1
12.b even 2 1 8820.2.a.r 1
20.d odd 2 1 4900.2.a.p 1
20.e even 4 2 4900.2.e.l 2
21.c even 2 1 5040.2.a.h 1
28.d even 2 1 140.2.a.a 1
28.f even 6 2 980.2.i.d 2
28.g odd 6 2 980.2.i.h 2
35.c odd 2 1 2800.2.a.y 1
35.f even 4 2 2800.2.g.j 2
56.e even 2 1 2240.2.a.g 1
56.h odd 2 1 2240.2.a.r 1
84.h odd 2 1 1260.2.a.c 1
140.c even 2 1 700.2.a.d 1
140.j odd 4 2 700.2.e.c 2
420.o odd 2 1 6300.2.a.d 1
420.w even 4 2 6300.2.k.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.a 1 28.d even 2 1
560.2.a.c 1 7.b odd 2 1
700.2.a.d 1 140.c even 2 1
700.2.e.c 2 140.j odd 4 2
980.2.a.c 1 4.b odd 2 1
980.2.i.d 2 28.f even 6 2
980.2.i.h 2 28.g odd 6 2
1260.2.a.c 1 84.h odd 2 1
2240.2.a.g 1 56.e even 2 1
2240.2.a.r 1 56.h odd 2 1
2800.2.a.y 1 35.c odd 2 1
2800.2.g.j 2 35.f even 4 2
3920.2.a.u 1 1.a even 1 1 trivial
4900.2.a.p 1 20.d odd 2 1
4900.2.e.l 2 20.e even 4 2
5040.2.a.h 1 21.c even 2 1
6300.2.a.d 1 420.o odd 2 1
6300.2.k.c 2 420.w even 4 2
8820.2.a.r 1 12.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3920))$$:

 $$T_{3} - 1$$ $$T_{11} + 3$$ $$T_{13} - 1$$ $$T_{17} - 3$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-1 + T$$
$5$ $$1 + T$$
$7$ $$T$$
$11$ $$3 + T$$
$13$ $$-1 + T$$
$17$ $$-3 + T$$
$19$ $$-2 + T$$
$23$ $$-6 + T$$
$29$ $$9 + T$$
$31$ $$-8 + T$$
$37$ $$10 + T$$
$41$ $$T$$
$43$ $$2 + T$$
$47$ $$3 + T$$
$53$ $$T$$
$59$ $$-12 + T$$
$61$ $$8 + T$$
$67$ $$8 + T$$
$71$ $$T$$
$73$ $$14 + T$$
$79$ $$5 + T$$
$83$ $$12 + T$$
$89$ $$12 + T$$
$97$ $$17 + T$$