# Properties

 Label 3920.2.a.q Level $3920$ Weight $2$ Character orbit 3920.a Self dual yes Analytic conductor $31.301$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3920,2,Mod(1,3920)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3920, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3920.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3920 = 2^{4} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3920.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$31.3013575923$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 280) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} + q^{5} - 2 q^{9}+O(q^{10})$$ q - q^3 + q^5 - 2 * q^9 $$q - q^{3} + q^{5} - 2 q^{9} + 2 q^{11} - 4 q^{13} - q^{15} + 6 q^{19} - 3 q^{23} + q^{25} + 5 q^{27} - 3 q^{29} - 2 q^{33} - 12 q^{37} + 4 q^{39} + 7 q^{41} + 9 q^{43} - 2 q^{45} - 6 q^{53} + 2 q^{55} - 6 q^{57} - 10 q^{59} - 5 q^{61} - 4 q^{65} - 11 q^{67} + 3 q^{69} + 10 q^{71} + 8 q^{73} - q^{75} - 6 q^{79} + q^{81} - 3 q^{83} + 3 q^{87} - 17 q^{89} + 6 q^{95} + 2 q^{97} - 4 q^{99}+O(q^{100})$$ q - q^3 + q^5 - 2 * q^9 + 2 * q^11 - 4 * q^13 - q^15 + 6 * q^19 - 3 * q^23 + q^25 + 5 * q^27 - 3 * q^29 - 2 * q^33 - 12 * q^37 + 4 * q^39 + 7 * q^41 + 9 * q^43 - 2 * q^45 - 6 * q^53 + 2 * q^55 - 6 * q^57 - 10 * q^59 - 5 * q^61 - 4 * q^65 - 11 * q^67 + 3 * q^69 + 10 * q^71 + 8 * q^73 - q^75 - 6 * q^79 + q^81 - 3 * q^83 + 3 * q^87 - 17 * q^89 + 6 * q^95 + 2 * q^97 - 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 1.00000 0 0 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.2.a.q 1
4.b odd 2 1 1960.2.a.l 1
7.b odd 2 1 3920.2.a.v 1
7.d odd 6 2 560.2.q.e 2
20.d odd 2 1 9800.2.a.o 1
28.d even 2 1 1960.2.a.c 1
28.f even 6 2 280.2.q.b 2
28.g odd 6 2 1960.2.q.d 2
84.j odd 6 2 2520.2.bi.d 2
140.c even 2 1 9800.2.a.z 1
140.s even 6 2 1400.2.q.c 2
140.x odd 12 4 1400.2.bh.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.b 2 28.f even 6 2
560.2.q.e 2 7.d odd 6 2
1400.2.q.c 2 140.s even 6 2
1400.2.bh.c 4 140.x odd 12 4
1960.2.a.c 1 28.d even 2 1
1960.2.a.l 1 4.b odd 2 1
1960.2.q.d 2 28.g odd 6 2
2520.2.bi.d 2 84.j odd 6 2
3920.2.a.q 1 1.a even 1 1 trivial
3920.2.a.v 1 7.b odd 2 1
9800.2.a.o 1 20.d odd 2 1
9800.2.a.z 1 140.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3920))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{11} - 2$$ T11 - 2 $$T_{13} + 4$$ T13 + 4 $$T_{17}$$ T17

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T - 1$$
$7$ $$T$$
$11$ $$T - 2$$
$13$ $$T + 4$$
$17$ $$T$$
$19$ $$T - 6$$
$23$ $$T + 3$$
$29$ $$T + 3$$
$31$ $$T$$
$37$ $$T + 12$$
$41$ $$T - 7$$
$43$ $$T - 9$$
$47$ $$T$$
$53$ $$T + 6$$
$59$ $$T + 10$$
$61$ $$T + 5$$
$67$ $$T + 11$$
$71$ $$T - 10$$
$73$ $$T - 8$$
$79$ $$T + 6$$
$83$ $$T + 3$$
$89$ $$T + 17$$
$97$ $$T - 2$$