Properties

Label 3920.2.a.o
Level $3920$
Weight $2$
Character orbit 3920.a
Self dual yes
Analytic conductor $31.301$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(31.3013575923\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1960)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - q^{5} - 2q^{9} + O(q^{10}) \) \( q - q^{3} - q^{5} - 2q^{9} + 5q^{11} + 7q^{13} + q^{15} - 3q^{17} + 2q^{19} - 8q^{23} + q^{25} + 5q^{27} - 5q^{29} + 10q^{31} - 5q^{33} + 4q^{37} - 7q^{39} - 6q^{41} - 2q^{43} + 2q^{45} + 7q^{47} + 3q^{51} - 10q^{53} - 5q^{55} - 2q^{57} + 10q^{59} - 12q^{61} - 7q^{65} + 2q^{67} + 8q^{69} - 2q^{73} - q^{75} + 7q^{79} + q^{81} - 4q^{83} + 3q^{85} + 5q^{87} - 8q^{89} - 10q^{93} - 2q^{95} + 17q^{97} - 10q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −1.00000 0 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.2.a.o 1
4.b odd 2 1 1960.2.a.h yes 1
7.b odd 2 1 3920.2.a.bb 1
20.d odd 2 1 9800.2.a.m 1
28.d even 2 1 1960.2.a.d 1
28.f even 6 2 1960.2.q.l 2
28.g odd 6 2 1960.2.q.g 2
140.c even 2 1 9800.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1960.2.a.d 1 28.d even 2 1
1960.2.a.h yes 1 4.b odd 2 1
1960.2.q.g 2 28.g odd 6 2
1960.2.q.l 2 28.f even 6 2
3920.2.a.o 1 1.a even 1 1 trivial
3920.2.a.bb 1 7.b odd 2 1
9800.2.a.m 1 20.d odd 2 1
9800.2.a.y 1 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3920))\):

\( T_{3} + 1 \)
\( T_{11} - 5 \)
\( T_{13} - 7 \)
\( T_{17} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 1 + T \)
$5$ \( 1 + T \)
$7$ \( T \)
$11$ \( -5 + T \)
$13$ \( -7 + T \)
$17$ \( 3 + T \)
$19$ \( -2 + T \)
$23$ \( 8 + T \)
$29$ \( 5 + T \)
$31$ \( -10 + T \)
$37$ \( -4 + T \)
$41$ \( 6 + T \)
$43$ \( 2 + T \)
$47$ \( -7 + T \)
$53$ \( 10 + T \)
$59$ \( -10 + T \)
$61$ \( 12 + T \)
$67$ \( -2 + T \)
$71$ \( T \)
$73$ \( 2 + T \)
$79$ \( -7 + T \)
$83$ \( 4 + T \)
$89$ \( 8 + T \)
$97$ \( -17 + T \)
show more
show less