Properties

Label 3920.2.a.m.1.1
Level $3920$
Weight $2$
Character 3920.1
Self dual yes
Analytic conductor $31.301$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(31.3013575923\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3920.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} -2.00000 q^{11} +1.00000 q^{15} +4.00000 q^{17} +2.00000 q^{19} -1.00000 q^{23} +1.00000 q^{25} +5.00000 q^{27} +9.00000 q^{29} -4.00000 q^{31} +2.00000 q^{33} +4.00000 q^{37} +1.00000 q^{41} -9.00000 q^{43} +2.00000 q^{45} -4.00000 q^{51} -10.0000 q^{53} +2.00000 q^{55} -2.00000 q^{57} +10.0000 q^{59} +9.00000 q^{61} -5.00000 q^{67} +1.00000 q^{69} -14.0000 q^{71} +12.0000 q^{73} -1.00000 q^{75} -14.0000 q^{79} +1.00000 q^{81} -11.0000 q^{83} -4.00000 q^{85} -9.00000 q^{87} -15.0000 q^{89} +4.00000 q^{93} -2.00000 q^{95} -18.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) 0 0
\(43\) −9.00000 −1.37249 −0.686244 0.727372i \(-0.740742\pi\)
−0.686244 + 0.727372i \(0.740742\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 9.00000 1.15233 0.576166 0.817333i \(-0.304548\pi\)
0.576166 + 0.817333i \(0.304548\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) 12.0000 1.40449 0.702247 0.711934i \(-0.252180\pi\)
0.702247 + 0.711934i \(0.252180\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −11.0000 −1.20741 −0.603703 0.797209i \(-0.706309\pi\)
−0.603703 + 0.797209i \(0.706309\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) −9.00000 −0.964901
\(88\) 0 0
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.00000 −0.870063 −0.435031 0.900415i \(-0.643263\pi\)
−0.435031 + 0.900415i \(0.643263\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −1.00000 −0.0901670
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 9.00000 0.792406
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.00000 −0.409616 −0.204808 0.978802i \(-0.565657\pi\)
−0.204808 + 0.978802i \(0.565657\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) −8.00000 −0.646762
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) −17.0000 −1.31550 −0.657750 0.753237i \(-0.728492\pi\)
−0.657750 + 0.753237i \(0.728492\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 16.0000 1.21646 0.608229 0.793762i \(-0.291880\pi\)
0.608229 + 0.793762i \(0.291880\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.0000 −0.751646
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 0 0
\(183\) −9.00000 −0.665299
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 5.00000 0.352673
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00000 −0.0698430
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 0 0
\(213\) 14.0000 0.959264
\(214\) 0 0
\(215\) 9.00000 0.613795
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −12.0000 −0.810885
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.00000 0.524097 0.262049 0.965055i \(-0.415602\pi\)
0.262049 + 0.965055i \(0.415602\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 14.0000 0.909398
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 11.0000 0.697097
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −18.0000 −1.11417
\(262\) 0 0
\(263\) 1.00000 0.0616626 0.0308313 0.999525i \(-0.490185\pi\)
0.0308313 + 0.999525i \(0.490185\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 15.0000 0.917985
\(268\) 0 0
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) −22.0000 −1.33640 −0.668202 0.743980i \(-0.732936\pi\)
−0.668202 + 0.743980i \(0.732936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 18.0000 1.05518
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −10.0000 −0.582223
\(296\) 0 0
\(297\) −10.0000 −0.580259
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.00000 −0.172345
\(304\) 0 0
\(305\) −9.00000 −0.515339
\(306\) 0 0
\(307\) −21.0000 −1.19853 −0.599267 0.800549i \(-0.704541\pi\)
−0.599267 + 0.800549i \(0.704541\pi\)
\(308\) 0 0
\(309\) −13.0000 −0.739544
\(310\) 0 0
\(311\) −26.0000 −1.47432 −0.737162 0.675716i \(-0.763835\pi\)
−0.737162 + 0.675716i \(0.763835\pi\)
\(312\) 0 0
\(313\) 16.0000 0.904373 0.452187 0.891923i \(-0.350644\pi\)
0.452187 + 0.891923i \(0.350644\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.0000 −0.898650 −0.449325 0.893368i \(-0.648335\pi\)
−0.449325 + 0.893368i \(0.648335\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.00000 0.0553001
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) −8.00000 −0.438397
\(334\) 0 0
\(335\) 5.00000 0.273179
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.00000 −0.0538382
\(346\) 0 0
\(347\) 7.00000 0.375780 0.187890 0.982190i \(-0.439835\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(348\) 0 0
\(349\) −19.0000 −1.01705 −0.508523 0.861048i \(-0.669808\pi\)
−0.508523 + 0.861048i \(0.669808\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 14.0000 0.743043
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) −7.00000 −0.365397 −0.182699 0.983169i \(-0.558483\pi\)
−0.182699 + 0.983169i \(0.558483\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −28.0000 −1.44979 −0.724893 0.688862i \(-0.758111\pi\)
−0.724893 + 0.688862i \(0.758111\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 30.0000 1.54100 0.770498 0.637442i \(-0.220007\pi\)
0.770498 + 0.637442i \(0.220007\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −21.0000 −1.07305 −0.536525 0.843884i \(-0.680263\pi\)
−0.536525 + 0.843884i \(0.680263\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18.0000 0.914991
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) 14.0000 0.704416
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.0000 −0.848939 −0.424470 0.905442i \(-0.639539\pi\)
−0.424470 + 0.905442i \(0.639539\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) −21.0000 −1.03838 −0.519192 0.854658i \(-0.673767\pi\)
−0.519192 + 0.854658i \(0.673767\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 11.0000 0.539969
\(416\) 0 0
\(417\) −2.00000 −0.0979404
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −27.0000 −1.31590 −0.657950 0.753062i \(-0.728576\pi\)
−0.657950 + 0.753062i \(0.728576\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.0000 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 9.00000 0.431517
\(436\) 0 0
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.0000 0.522626 0.261313 0.965254i \(-0.415845\pi\)
0.261313 + 0.965254i \(0.415845\pi\)
\(444\) 0 0
\(445\) 15.0000 0.711068
\(446\) 0 0
\(447\) 5.00000 0.236492
\(448\) 0 0
\(449\) −41.0000 −1.93491 −0.967455 0.253044i \(-0.918568\pi\)
−0.967455 + 0.253044i \(0.918568\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 8.00000 0.375873
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.00000 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 0 0
\(459\) 20.0000 0.933520
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) −39.0000 −1.81248 −0.906242 0.422760i \(-0.861061\pi\)
−0.906242 + 0.422760i \(0.861061\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) 7.00000 0.323921 0.161961 0.986797i \(-0.448218\pi\)
0.161961 + 0.986797i \(0.448218\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 18.0000 0.827641
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 20.0000 0.915737
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.0000 0.817338
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 38.0000 1.70111 0.850557 0.525883i \(-0.176265\pi\)
0.850557 + 0.525883i \(0.176265\pi\)
\(500\) 0 0
\(501\) 17.0000 0.759504
\(502\) 0 0
\(503\) 23.0000 1.02552 0.512760 0.858532i \(-0.328623\pi\)
0.512760 + 0.858532i \(0.328623\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) 0 0
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 10.0000 0.441511
\(514\) 0 0
\(515\) −13.0000 −0.572848
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −16.0000 −0.702322
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) −28.0000 −1.22435 −0.612177 0.790721i \(-0.709706\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.0000 −0.696971
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) −20.0000 −0.867926
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 9.00000 0.389104
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −13.0000 −0.558914 −0.279457 0.960158i \(-0.590154\pi\)
−0.279457 + 0.960158i \(0.590154\pi\)
\(542\) 0 0
\(543\) 25.0000 1.07285
\(544\) 0 0
\(545\) 1.00000 0.0428353
\(546\) 0 0
\(547\) 35.0000 1.49649 0.748246 0.663421i \(-0.230896\pi\)
0.748246 + 0.663421i \(0.230896\pi\)
\(548\) 0 0
\(549\) −18.0000 −0.768221
\(550\) 0 0
\(551\) 18.0000 0.766826
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.00000 0.169791
\(556\) 0 0
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 45.0000 1.89652 0.948262 0.317489i \(-0.102840\pi\)
0.948262 + 0.317489i \(0.102840\pi\)
\(564\) 0 0
\(565\) −2.00000 −0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.0000 1.92842 0.964210 0.265139i \(-0.0854179\pi\)
0.964210 + 0.265139i \(0.0854179\pi\)
\(570\) 0 0
\(571\) 26.0000 1.08807 0.544033 0.839064i \(-0.316897\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 20.0000 0.828315
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.00000 −0.163709
\(598\) 0 0
\(599\) −4.00000 −0.163436 −0.0817178 0.996656i \(-0.526041\pi\)
−0.0817178 + 0.996656i \(0.526041\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 10.0000 0.407231
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) −27.0000 −1.09590 −0.547948 0.836512i \(-0.684591\pi\)
−0.547948 + 0.836512i \(0.684591\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −20.0000 −0.807792 −0.403896 0.914805i \(-0.632344\pi\)
−0.403896 + 0.914805i \(0.632344\pi\)
\(614\) 0 0
\(615\) 1.00000 0.0403239
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) 34.0000 1.36658 0.683288 0.730149i \(-0.260549\pi\)
0.683288 + 0.730149i \(0.260549\pi\)
\(620\) 0 0
\(621\) −5.00000 −0.200643
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 4.00000 0.159745
\(628\) 0 0
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 0 0
\(633\) 2.00000 0.0794929
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 28.0000 1.10766
\(640\) 0 0
\(641\) −19.0000 −0.750455 −0.375227 0.926933i \(-0.622435\pi\)
−0.375227 + 0.926933i \(0.622435\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) −9.00000 −0.354375
\(646\) 0 0
\(647\) −23.0000 −0.904223 −0.452112 0.891961i \(-0.649329\pi\)
−0.452112 + 0.891961i \(0.649329\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.0000 1.40879 0.704394 0.709809i \(-0.251219\pi\)
0.704394 + 0.709809i \(0.251219\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) 0 0
\(657\) −24.0000 −0.936329
\(658\) 0 0
\(659\) −2.00000 −0.0779089 −0.0389545 0.999241i \(-0.512403\pi\)
−0.0389545 + 0.999241i \(0.512403\pi\)
\(660\) 0 0
\(661\) −3.00000 −0.116686 −0.0583432 0.998297i \(-0.518582\pi\)
−0.0583432 + 0.998297i \(0.518582\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 0 0
\(669\) −4.00000 −0.154649
\(670\) 0 0
\(671\) −18.0000 −0.694882
\(672\) 0 0
\(673\) 24.0000 0.925132 0.462566 0.886585i \(-0.346929\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) −24.0000 −0.922395 −0.461197 0.887298i \(-0.652580\pi\)
−0.461197 + 0.887298i \(0.652580\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −20.0000 −0.766402
\(682\) 0 0
\(683\) −9.00000 −0.344375 −0.172188 0.985064i \(-0.555084\pi\)
−0.172188 + 0.985064i \(0.555084\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 10.0000 0.381524
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −50.0000 −1.90209 −0.951045 0.309053i \(-0.899988\pi\)
−0.951045 + 0.309053i \(0.899988\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.00000 −0.0758643
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) −8.00000 −0.302588
\(700\) 0 0
\(701\) 9.00000 0.339925 0.169963 0.985451i \(-0.445635\pi\)
0.169963 + 0.985451i \(0.445635\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 21.0000 0.788672 0.394336 0.918966i \(-0.370975\pi\)
0.394336 + 0.918966i \(0.370975\pi\)
\(710\) 0 0
\(711\) 28.0000 1.05008
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 −0.896296
\(718\) 0 0
\(719\) 42.0000 1.56634 0.783168 0.621810i \(-0.213603\pi\)
0.783168 + 0.621810i \(0.213603\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 22.0000 0.818189
\(724\) 0 0
\(725\) 9.00000 0.334252
\(726\) 0 0
\(727\) 31.0000 1.14973 0.574863 0.818250i \(-0.305055\pi\)
0.574863 + 0.818250i \(0.305055\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −36.0000 −1.33151
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.0000 0.368355
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −27.0000 −0.990534 −0.495267 0.868741i \(-0.664930\pi\)
−0.495267 + 0.868741i \(0.664930\pi\)
\(744\) 0 0
\(745\) 5.00000 0.183186
\(746\) 0 0
\(747\) 22.0000 0.804938
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −24.0000 −0.872295 −0.436147 0.899875i \(-0.643657\pi\)
−0.436147 + 0.899875i \(0.643657\pi\)
\(758\) 0 0
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.00000 0.0716574
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 45.0000 1.60817
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) −45.0000 −1.60408 −0.802038 0.597272i \(-0.796251\pi\)
−0.802038 + 0.597272i \(0.796251\pi\)
\(788\) 0 0
\(789\) −1.00000 −0.0356009
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −10.0000 −0.354663
\(796\) 0 0
\(797\) 8.00000 0.283375 0.141687 0.989911i \(-0.454747\pi\)
0.141687 + 0.989911i \(0.454747\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 30.0000 1.06000
\(802\) 0 0
\(803\) −24.0000 −0.846942
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 21.0000 0.739235
\(808\) 0 0
\(809\) 13.0000 0.457056 0.228528 0.973537i \(-0.426609\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) 22.0000 0.771574
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) −18.0000 −0.629740
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) −49.0000 −1.70803 −0.854016 0.520246i \(-0.825840\pi\)
−0.854016 + 0.520246i \(0.825840\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) 17.0000 0.591148 0.295574 0.955320i \(-0.404489\pi\)
0.295574 + 0.955320i \(0.404489\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 28.0000 0.971309
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 17.0000 0.588309
\(836\) 0 0
\(837\) −20.0000 −0.691301
\(838\) 0 0
\(839\) −10.0000 −0.345238 −0.172619 0.984989i \(-0.555223\pi\)
−0.172619 + 0.984989i \(0.555223\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) −18.0000 −0.619953
\(844\) 0 0
\(845\) 13.0000 0.447214
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) −4.00000 −0.137118
\(852\) 0 0
\(853\) 38.0000 1.30110 0.650548 0.759465i \(-0.274539\pi\)
0.650548 + 0.759465i \(0.274539\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.00000 0.0340404 0.0170202 0.999855i \(-0.494582\pi\)
0.0170202 + 0.999855i \(0.494582\pi\)
\(864\) 0 0
\(865\) −16.0000 −0.544016
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 28.0000 0.949835
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 36.0000 1.21842
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) 0 0
\(879\) −12.0000 −0.404750
\(880\) 0 0
\(881\) 17.0000 0.572745 0.286372 0.958118i \(-0.407551\pi\)
0.286372 + 0.958118i \(0.407551\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 10.0000 0.336146
\(886\) 0 0
\(887\) −15.0000 −0.503651 −0.251825 0.967773i \(-0.581031\pi\)
−0.251825 + 0.967773i \(0.581031\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.0000 −1.20067
\(900\) 0 0
\(901\) −40.0000 −1.33259
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 25.0000 0.831028
\(906\) 0 0
\(907\) −7.00000 −0.232431 −0.116216 0.993224i \(-0.537076\pi\)
−0.116216 + 0.993224i \(0.537076\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) 22.0000 0.728094
\(914\) 0 0
\(915\) 9.00000 0.297531
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −42.0000 −1.38545 −0.692726 0.721201i \(-0.743591\pi\)
−0.692726 + 0.721201i \(0.743591\pi\)
\(920\) 0 0
\(921\) 21.0000 0.691974
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) 0 0
\(927\) −26.0000 −0.853952
\(928\) 0 0
\(929\) −13.0000 −0.426516 −0.213258 0.976996i \(-0.568408\pi\)
−0.213258 + 0.976996i \(0.568408\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 26.0000 0.851202
\(934\) 0 0
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) 4.00000 0.130674 0.0653372 0.997863i \(-0.479188\pi\)
0.0653372 + 0.997863i \(0.479188\pi\)
\(938\) 0 0
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) −1.00000 −0.0325645
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.00000 −0.162478 −0.0812391 0.996695i \(-0.525888\pi\)
−0.0812391 + 0.996695i \(0.525888\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 16.0000 0.518836
\(952\) 0 0
\(953\) 28.0000 0.907009 0.453504 0.891254i \(-0.350174\pi\)
0.453504 + 0.891254i \(0.350174\pi\)
\(954\) 0 0
\(955\) 18.0000 0.582466
\(956\) 0 0
\(957\) 18.0000 0.581857
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 18.0000 0.580042
\(964\) 0 0
\(965\) 14.0000 0.450676
\(966\) 0 0
\(967\) −55.0000 −1.76868 −0.884340 0.466843i \(-0.845391\pi\)
−0.884340 + 0.466843i \(0.845391\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 8.00000 0.256732 0.128366 0.991727i \(-0.459027\pi\)
0.128366 + 0.991727i \(0.459027\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 30.0000 0.958804
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) −3.00000 −0.0956851 −0.0478426 0.998855i \(-0.515235\pi\)
−0.0478426 + 0.998855i \(0.515235\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.00000 0.286183
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) 0 0
\(999\) 20.0000 0.632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.2.a.m.1.1 1
4.3 odd 2 1960.2.a.i.1.1 1
7.2 even 3 560.2.q.h.81.1 2
7.4 even 3 560.2.q.h.401.1 2
7.6 odd 2 3920.2.a.y.1.1 1
20.19 odd 2 9800.2.a.r.1.1 1
28.3 even 6 1960.2.q.k.961.1 2
28.11 odd 6 280.2.q.a.121.1 yes 2
28.19 even 6 1960.2.q.k.361.1 2
28.23 odd 6 280.2.q.a.81.1 2
28.27 even 2 1960.2.a.e.1.1 1
84.11 even 6 2520.2.bi.a.1801.1 2
84.23 even 6 2520.2.bi.a.361.1 2
140.23 even 12 1400.2.bh.b.249.1 4
140.39 odd 6 1400.2.q.e.401.1 2
140.67 even 12 1400.2.bh.b.849.1 4
140.79 odd 6 1400.2.q.e.1201.1 2
140.107 even 12 1400.2.bh.b.249.2 4
140.123 even 12 1400.2.bh.b.849.2 4
140.139 even 2 9800.2.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.q.a.81.1 2 28.23 odd 6
280.2.q.a.121.1 yes 2 28.11 odd 6
560.2.q.h.81.1 2 7.2 even 3
560.2.q.h.401.1 2 7.4 even 3
1400.2.q.e.401.1 2 140.39 odd 6
1400.2.q.e.1201.1 2 140.79 odd 6
1400.2.bh.b.249.1 4 140.23 even 12
1400.2.bh.b.249.2 4 140.107 even 12
1400.2.bh.b.849.1 4 140.67 even 12
1400.2.bh.b.849.2 4 140.123 even 12
1960.2.a.e.1.1 1 28.27 even 2
1960.2.a.i.1.1 1 4.3 odd 2
1960.2.q.k.361.1 2 28.19 even 6
1960.2.q.k.961.1 2 28.3 even 6
2520.2.bi.a.361.1 2 84.23 even 6
2520.2.bi.a.1801.1 2 84.11 even 6
3920.2.a.m.1.1 1 1.1 even 1 trivial
3920.2.a.y.1.1 1 7.6 odd 2
9800.2.a.r.1.1 1 20.19 odd 2
9800.2.a.bc.1.1 1 140.139 even 2