Properties

Label 3920.2.a.g.1.1
Level $3920$
Weight $2$
Character 3920.1
Self dual yes
Analytic conductor $31.301$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(31.3013575923\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3920.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} -3.00000 q^{11} -5.00000 q^{13} -2.00000 q^{15} -6.00000 q^{17} -1.00000 q^{19} -3.00000 q^{23} +1.00000 q^{25} +4.00000 q^{27} -6.00000 q^{29} -4.00000 q^{31} +6.00000 q^{33} +11.0000 q^{37} +10.0000 q^{39} -3.00000 q^{41} +10.0000 q^{43} +1.00000 q^{45} +3.00000 q^{47} +12.0000 q^{51} +3.00000 q^{53} -3.00000 q^{55} +2.00000 q^{57} +4.00000 q^{61} -5.00000 q^{65} +4.00000 q^{67} +6.00000 q^{69} -12.0000 q^{71} +4.00000 q^{73} -2.00000 q^{75} +10.0000 q^{79} -11.0000 q^{81} -12.0000 q^{83} -6.00000 q^{85} +12.0000 q^{87} -6.00000 q^{89} +8.00000 q^{93} -1.00000 q^{95} -14.0000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 6.00000 1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.0000 1.80839 0.904194 0.427121i \(-0.140472\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 10.0000 1.60128
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.00000 −0.620174
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) −2.00000 −0.230940
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) 0 0
\(87\) 12.0000 1.28654
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) −22.0000 −2.08815
\(112\) 0 0
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 0 0
\(117\) −5.00000 −0.462250
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 19.0000 1.68598 0.842989 0.537931i \(-0.180794\pi\)
0.842989 + 0.537931i \(0.180794\pi\)
\(128\) 0 0
\(129\) −20.0000 −1.76090
\(130\) 0 0
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) 15.0000 1.25436
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −14.0000 −1.13930 −0.569652 0.821886i \(-0.692922\pi\)
−0.569652 + 0.821886i \(0.692922\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −5.00000 −0.399043 −0.199522 0.979893i \(-0.563939\pi\)
−0.199522 + 0.979893i \(0.563939\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 6.00000 0.467099
\(166\) 0 0
\(167\) 9.00000 0.696441 0.348220 0.937413i \(-0.386786\pi\)
0.348220 + 0.937413i \(0.386786\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) −3.00000 −0.228086 −0.114043 0.993476i \(-0.536380\pi\)
−0.114043 + 0.993476i \(0.536380\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) 11.0000 0.808736
\(186\) 0 0
\(187\) 18.0000 1.31629
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 0 0
\(195\) 10.0000 0.716115
\(196\) 0 0
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.00000 −0.209529
\(206\) 0 0
\(207\) −3.00000 −0.208514
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) 0 0
\(213\) 24.0000 1.64445
\(214\) 0 0
\(215\) 10.0000 0.681994
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −8.00000 −0.540590
\(220\) 0 0
\(221\) 30.0000 2.01802
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) 28.0000 1.85029 0.925146 0.379611i \(-0.123942\pi\)
0.925146 + 0.379611i \(0.123942\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) 0 0
\(237\) −20.0000 −1.29914
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 25.0000 1.61039 0.805196 0.593009i \(-0.202060\pi\)
0.805196 + 0.593009i \(0.202060\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.00000 0.318142
\(248\) 0 0
\(249\) 24.0000 1.52094
\(250\) 0 0
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) 0 0
\(253\) 9.00000 0.565825
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 3.00000 0.184289
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) 26.0000 1.54554 0.772770 0.634686i \(-0.218871\pi\)
0.772770 + 0.634686i \(0.218871\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 28.0000 1.64139
\(292\) 0 0
\(293\) 27.0000 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −12.0000 −0.696311
\(298\) 0 0
\(299\) 15.0000 0.867472
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −24.0000 −1.37876
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) 0 0
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) 8.00000 0.442401
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.00000 0.384755 0.192377 0.981321i \(-0.438380\pi\)
0.192377 + 0.981321i \(0.438380\pi\)
\(332\) 0 0
\(333\) 11.0000 0.602796
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) −24.0000 −1.30350
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 6.00000 0.323029
\(346\) 0 0
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) −20.0000 −1.06752
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 4.00000 0.209946
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) −1.00000 −0.0521996 −0.0260998 0.999659i \(-0.508309\pi\)
−0.0260998 + 0.999659i \(0.508309\pi\)
\(368\) 0 0
\(369\) −3.00000 −0.156174
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 0 0
\(375\) −2.00000 −0.103280
\(376\) 0 0
\(377\) 30.0000 1.54508
\(378\) 0 0
\(379\) 25.0000 1.28416 0.642082 0.766636i \(-0.278071\pi\)
0.642082 + 0.766636i \(0.278071\pi\)
\(380\) 0 0
\(381\) −38.0000 −1.94680
\(382\) 0 0
\(383\) 15.0000 0.766464 0.383232 0.923652i \(-0.374811\pi\)
0.383232 + 0.923652i \(0.374811\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.0000 0.508329
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.0000 1.04869 0.524345 0.851506i \(-0.324310\pi\)
0.524345 + 0.851506i \(0.324310\pi\)
\(402\) 0 0
\(403\) 20.0000 0.996271
\(404\) 0 0
\(405\) −11.0000 −0.546594
\(406\) 0 0
\(407\) −33.0000 −1.63575
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) −24.0000 −1.18383
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 15.0000 0.732798 0.366399 0.930458i \(-0.380591\pi\)
0.366399 + 0.930458i \(0.380591\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 0 0
\(423\) 3.00000 0.145865
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −30.0000 −1.44841
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 0 0
\(435\) 12.0000 0.575356
\(436\) 0 0
\(437\) 3.00000 0.143509
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) −36.0000 −1.70274
\(448\) 0 0
\(449\) −3.00000 −0.141579 −0.0707894 0.997491i \(-0.522552\pi\)
−0.0707894 + 0.997491i \(0.522552\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) 0 0
\(453\) 28.0000 1.31555
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) −24.0000 −1.12022
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) 19.0000 0.883005 0.441502 0.897260i \(-0.354446\pi\)
0.441502 + 0.897260i \(0.354446\pi\)
\(464\) 0 0
\(465\) 8.00000 0.370991
\(466\) 0 0
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 0 0
\(473\) −30.0000 −1.37940
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −55.0000 −2.50778
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) −18.0000 −0.804181
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) −24.0000 −1.06588
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) −9.00000 −0.395820
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 15.0000 0.649722
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) 0 0
\(537\) −6.00000 −0.258919
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 0 0
\(543\) 4.00000 0.171656
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −22.0000 −0.933848
\(556\) 0 0
\(557\) −27.0000 −1.14403 −0.572013 0.820244i \(-0.693837\pi\)
−0.572013 + 0.820244i \(0.693837\pi\)
\(558\) 0 0
\(559\) −50.0000 −2.11477
\(560\) 0 0
\(561\) −36.0000 −1.51992
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 −0.125767 −0.0628833 0.998021i \(-0.520030\pi\)
−0.0628833 + 0.998021i \(0.520030\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) −3.00000 −0.125109
\(576\) 0 0
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) 0 0
\(579\) 8.00000 0.332469
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 0 0
\(585\) −5.00000 −0.206725
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.00000 0.327418
\(598\) 0 0
\(599\) −42.0000 −1.71607 −0.858037 0.513588i \(-0.828316\pi\)
−0.858037 + 0.513588i \(0.828316\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) −19.0000 −0.771186 −0.385593 0.922669i \(-0.626003\pi\)
−0.385593 + 0.922669i \(0.626003\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0000 −0.606835
\(612\) 0 0
\(613\) 47.0000 1.89831 0.949156 0.314806i \(-0.101939\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −1.00000 −0.0401934 −0.0200967 0.999798i \(-0.506397\pi\)
−0.0200967 + 0.999798i \(0.506397\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −6.00000 −0.239617
\(628\) 0 0
\(629\) −66.0000 −2.63159
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) −2.00000 −0.0794929
\(634\) 0 0
\(635\) 19.0000 0.753992
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −45.0000 −1.77739 −0.888697 0.458496i \(-0.848388\pi\)
−0.888697 + 0.458496i \(0.848388\pi\)
\(642\) 0 0
\(643\) 38.0000 1.49857 0.749287 0.662246i \(-0.230396\pi\)
0.749287 + 0.662246i \(0.230396\pi\)
\(644\) 0 0
\(645\) −20.0000 −0.787499
\(646\) 0 0
\(647\) −21.0000 −0.825595 −0.412798 0.910823i \(-0.635448\pi\)
−0.412798 + 0.910823i \(0.635448\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.0000 0.821794 0.410897 0.911682i \(-0.365216\pi\)
0.410897 + 0.911682i \(0.365216\pi\)
\(654\) 0 0
\(655\) 3.00000 0.117220
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) −44.0000 −1.71140 −0.855701 0.517471i \(-0.826874\pi\)
−0.855701 + 0.517471i \(0.826874\pi\)
\(662\) 0 0
\(663\) −60.0000 −2.33021
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.0000 0.696963
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) 3.00000 0.115299 0.0576497 0.998337i \(-0.481639\pi\)
0.0576497 + 0.998337i \(0.481639\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) −56.0000 −2.13653
\(688\) 0 0
\(689\) −15.0000 −0.571454
\(690\) 0 0
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) 12.0000 0.453882
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −11.0000 −0.414873
\(704\) 0 0
\(705\) −6.00000 −0.225973
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) 12.0000 0.449404
\(714\) 0 0
\(715\) 15.0000 0.560968
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −50.0000 −1.85952
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 29.0000 1.07555 0.537775 0.843088i \(-0.319265\pi\)
0.537775 + 0.843088i \(0.319265\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −60.0000 −2.21918
\(732\) 0 0
\(733\) −47.0000 −1.73598 −0.867992 0.496578i \(-0.834590\pi\)
−0.867992 + 0.496578i \(0.834590\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) 37.0000 1.36107 0.680534 0.732717i \(-0.261748\pi\)
0.680534 + 0.732717i \(0.261748\pi\)
\(740\) 0 0
\(741\) −10.0000 −0.367359
\(742\) 0 0
\(743\) −9.00000 −0.330178 −0.165089 0.986279i \(-0.552791\pi\)
−0.165089 + 0.986279i \(0.552791\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −26.0000 −0.948753 −0.474377 0.880322i \(-0.657327\pi\)
−0.474377 + 0.880322i \(0.657327\pi\)
\(752\) 0 0
\(753\) 30.0000 1.09326
\(754\) 0 0
\(755\) −14.0000 −0.509512
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) −18.0000 −0.653359
\(760\) 0 0
\(761\) 51.0000 1.84875 0.924374 0.381487i \(-0.124588\pi\)
0.924374 + 0.381487i \(0.124588\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.00000 −0.216930
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 49.0000 1.76699 0.883493 0.468445i \(-0.155186\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) −39.0000 −1.40273 −0.701366 0.712801i \(-0.747426\pi\)
−0.701366 + 0.712801i \(0.747426\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.00000 0.107486
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) −24.0000 −0.857690
\(784\) 0 0
\(785\) −5.00000 −0.178458
\(786\) 0 0
\(787\) −34.0000 −1.21197 −0.605985 0.795476i \(-0.707221\pi\)
−0.605985 + 0.795476i \(0.707221\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) −18.0000 −0.636794
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −24.0000 −0.844840
\(808\) 0 0
\(809\) 39.0000 1.37117 0.685583 0.727994i \(-0.259547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(810\) 0 0
\(811\) 47.0000 1.65039 0.825197 0.564846i \(-0.191064\pi\)
0.825197 + 0.564846i \(0.191064\pi\)
\(812\) 0 0
\(813\) 32.0000 1.12229
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) −10.0000 −0.349856
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) −44.0000 −1.53374 −0.766872 0.641800i \(-0.778188\pi\)
−0.766872 + 0.641800i \(0.778188\pi\)
\(824\) 0 0
\(825\) 6.00000 0.208893
\(826\) 0 0
\(827\) 54.0000 1.87776 0.938882 0.344239i \(-0.111863\pi\)
0.938882 + 0.344239i \(0.111863\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) −4.00000 −0.138758
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.00000 0.311458
\(836\) 0 0
\(837\) −16.0000 −0.553041
\(838\) 0 0
\(839\) −6.00000 −0.207143 −0.103572 0.994622i \(-0.533027\pi\)
−0.103572 + 0.994622i \(0.533027\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) 0 0
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −52.0000 −1.78464
\(850\) 0 0
\(851\) −33.0000 −1.13123
\(852\) 0 0
\(853\) 1.00000 0.0342393 0.0171197 0.999853i \(-0.494550\pi\)
0.0171197 + 0.999853i \(0.494550\pi\)
\(854\) 0 0
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) 32.0000 1.09183 0.545913 0.837842i \(-0.316183\pi\)
0.545913 + 0.837842i \(0.316183\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39.0000 −1.32758 −0.663788 0.747921i \(-0.731052\pi\)
−0.663788 + 0.747921i \(0.731052\pi\)
\(864\) 0 0
\(865\) −3.00000 −0.102003
\(866\) 0 0
\(867\) −38.0000 −1.29055
\(868\) 0 0
\(869\) −30.0000 −1.01768
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.00000 −0.236373 −0.118187 0.992991i \(-0.537708\pi\)
−0.118187 + 0.992991i \(0.537708\pi\)
\(878\) 0 0
\(879\) −54.0000 −1.82137
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) 0 0
\(893\) −3.00000 −0.100391
\(894\) 0 0
\(895\) 3.00000 0.100279
\(896\) 0 0
\(897\) −30.0000 −1.00167
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 10.0000 0.332045 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 30.0000 0.993944 0.496972 0.867766i \(-0.334445\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) 0 0
\(913\) 36.0000 1.19143
\(914\) 0 0
\(915\) −8.00000 −0.264472
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −38.0000 −1.25350 −0.626752 0.779219i \(-0.715616\pi\)
−0.626752 + 0.779219i \(0.715616\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) 60.0000 1.97492
\(924\) 0 0
\(925\) 11.0000 0.361678
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) −33.0000 −1.08269 −0.541347 0.840799i \(-0.682086\pi\)
−0.541347 + 0.840799i \(0.682086\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −24.0000 −0.785725
\(934\) 0 0
\(935\) 18.0000 0.588663
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 16.0000 0.522140
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 0 0
\(943\) 9.00000 0.293080
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) −36.0000 −1.16738
\(952\) 0 0
\(953\) −12.0000 −0.388718 −0.194359 0.980930i \(-0.562263\pi\)
−0.194359 + 0.980930i \(0.562263\pi\)
\(954\) 0 0
\(955\) −12.0000 −0.388311
\(956\) 0 0
\(957\) −36.0000 −1.16371
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) 27.0000 0.866471 0.433236 0.901281i \(-0.357372\pi\)
0.433236 + 0.901281i \(0.357372\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 10.0000 0.320256
\(976\) 0 0
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) 18.0000 0.575282
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) 57.0000 1.81802 0.909009 0.416777i \(-0.136840\pi\)
0.909009 + 0.416777i \(0.136840\pi\)
\(984\) 0 0
\(985\) −3.00000 −0.0955879
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 0 0
\(993\) −14.0000 −0.444277
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) 0 0
\(999\) 44.0000 1.39210
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.2.a.g.1.1 1
4.3 odd 2 490.2.a.j.1.1 1
7.3 odd 6 560.2.q.d.401.1 2
7.5 odd 6 560.2.q.d.81.1 2
7.6 odd 2 3920.2.a.be.1.1 1
12.11 even 2 4410.2.a.c.1.1 1
20.3 even 4 2450.2.c.p.99.1 2
20.7 even 4 2450.2.c.p.99.2 2
20.19 odd 2 2450.2.a.f.1.1 1
28.3 even 6 70.2.e.b.51.1 yes 2
28.11 odd 6 490.2.e.a.471.1 2
28.19 even 6 70.2.e.b.11.1 2
28.23 odd 6 490.2.e.a.361.1 2
28.27 even 2 490.2.a.g.1.1 1
84.47 odd 6 630.2.k.e.361.1 2
84.59 odd 6 630.2.k.e.541.1 2
84.83 odd 2 4410.2.a.m.1.1 1
140.3 odd 12 350.2.j.a.149.2 4
140.19 even 6 350.2.e.h.151.1 2
140.27 odd 4 2450.2.c.f.99.2 2
140.47 odd 12 350.2.j.a.249.2 4
140.59 even 6 350.2.e.h.51.1 2
140.83 odd 4 2450.2.c.f.99.1 2
140.87 odd 12 350.2.j.a.149.1 4
140.103 odd 12 350.2.j.a.249.1 4
140.139 even 2 2450.2.a.p.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.e.b.11.1 2 28.19 even 6
70.2.e.b.51.1 yes 2 28.3 even 6
350.2.e.h.51.1 2 140.59 even 6
350.2.e.h.151.1 2 140.19 even 6
350.2.j.a.149.1 4 140.87 odd 12
350.2.j.a.149.2 4 140.3 odd 12
350.2.j.a.249.1 4 140.103 odd 12
350.2.j.a.249.2 4 140.47 odd 12
490.2.a.g.1.1 1 28.27 even 2
490.2.a.j.1.1 1 4.3 odd 2
490.2.e.a.361.1 2 28.23 odd 6
490.2.e.a.471.1 2 28.11 odd 6
560.2.q.d.81.1 2 7.5 odd 6
560.2.q.d.401.1 2 7.3 odd 6
630.2.k.e.361.1 2 84.47 odd 6
630.2.k.e.541.1 2 84.59 odd 6
2450.2.a.f.1.1 1 20.19 odd 2
2450.2.a.p.1.1 1 140.139 even 2
2450.2.c.f.99.1 2 140.83 odd 4
2450.2.c.f.99.2 2 140.27 odd 4
2450.2.c.p.99.1 2 20.3 even 4
2450.2.c.p.99.2 2 20.7 even 4
3920.2.a.g.1.1 1 1.1 even 1 trivial
3920.2.a.be.1.1 1 7.6 odd 2
4410.2.a.c.1.1 1 12.11 even 2
4410.2.a.m.1.1 1 84.83 odd 2