# Properties

 Label 3920.2.a.e.1.1 Level $3920$ Weight $2$ Character 3920.1 Self dual yes Analytic conductor $31.301$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3920 = 2^{4} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3920.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$31.3013575923$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 3920.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-2.00000 q^{3} -1.00000 q^{5} +1.00000 q^{9} +O(q^{10})$$ $$q-2.00000 q^{3} -1.00000 q^{5} +1.00000 q^{9} -3.00000 q^{11} +1.00000 q^{13} +2.00000 q^{15} +6.00000 q^{17} -1.00000 q^{19} -9.00000 q^{23} +1.00000 q^{25} +4.00000 q^{27} +6.00000 q^{29} +8.00000 q^{31} +6.00000 q^{33} -7.00000 q^{37} -2.00000 q^{39} -3.00000 q^{41} -2.00000 q^{43} -1.00000 q^{45} +9.00000 q^{47} -12.0000 q^{51} +9.00000 q^{53} +3.00000 q^{55} +2.00000 q^{57} -8.00000 q^{61} -1.00000 q^{65} -8.00000 q^{67} +18.0000 q^{69} +4.00000 q^{73} -2.00000 q^{75} +10.0000 q^{79} -11.0000 q^{81} -6.00000 q^{85} -12.0000 q^{87} -6.00000 q^{89} -16.0000 q^{93} +1.00000 q^{95} +10.0000 q^{97} -3.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −2.00000 −1.15470 −0.577350 0.816497i $$-0.695913\pi$$
−0.577350 + 0.816497i $$0.695913\pi$$
$$4$$ 0 0
$$5$$ −1.00000 −0.447214
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ −3.00000 −0.904534 −0.452267 0.891883i $$-0.649385\pi$$
−0.452267 + 0.891883i $$0.649385\pi$$
$$12$$ 0 0
$$13$$ 1.00000 0.277350 0.138675 0.990338i $$-0.455716\pi$$
0.138675 + 0.990338i $$0.455716\pi$$
$$14$$ 0 0
$$15$$ 2.00000 0.516398
$$16$$ 0 0
$$17$$ 6.00000 1.45521 0.727607 0.685994i $$-0.240633\pi$$
0.727607 + 0.685994i $$0.240633\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −0.229416 −0.114708 0.993399i $$-0.536593\pi$$
−0.114708 + 0.993399i $$0.536593\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −9.00000 −1.87663 −0.938315 0.345782i $$-0.887614\pi$$
−0.938315 + 0.345782i $$0.887614\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 4.00000 0.769800
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ 8.00000 1.43684 0.718421 0.695608i $$-0.244865\pi$$
0.718421 + 0.695608i $$0.244865\pi$$
$$32$$ 0 0
$$33$$ 6.00000 1.04447
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −7.00000 −1.15079 −0.575396 0.817875i $$-0.695152\pi$$
−0.575396 + 0.817875i $$0.695152\pi$$
$$38$$ 0 0
$$39$$ −2.00000 −0.320256
$$40$$ 0 0
$$41$$ −3.00000 −0.468521 −0.234261 0.972174i $$-0.575267\pi$$
−0.234261 + 0.972174i $$0.575267\pi$$
$$42$$ 0 0
$$43$$ −2.00000 −0.304997 −0.152499 0.988304i $$-0.548732\pi$$
−0.152499 + 0.988304i $$0.548732\pi$$
$$44$$ 0 0
$$45$$ −1.00000 −0.149071
$$46$$ 0 0
$$47$$ 9.00000 1.31278 0.656392 0.754420i $$-0.272082\pi$$
0.656392 + 0.754420i $$0.272082\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ −12.0000 −1.68034
$$52$$ 0 0
$$53$$ 9.00000 1.23625 0.618123 0.786082i $$-0.287894\pi$$
0.618123 + 0.786082i $$0.287894\pi$$
$$54$$ 0 0
$$55$$ 3.00000 0.404520
$$56$$ 0 0
$$57$$ 2.00000 0.264906
$$58$$ 0 0
$$59$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$60$$ 0 0
$$61$$ −8.00000 −1.02430 −0.512148 0.858898i $$-0.671150\pi$$
−0.512148 + 0.858898i $$0.671150\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −1.00000 −0.124035
$$66$$ 0 0
$$67$$ −8.00000 −0.977356 −0.488678 0.872464i $$-0.662521\pi$$
−0.488678 + 0.872464i $$0.662521\pi$$
$$68$$ 0 0
$$69$$ 18.0000 2.16695
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 4.00000 0.468165 0.234082 0.972217i $$-0.424791\pi$$
0.234082 + 0.972217i $$0.424791\pi$$
$$74$$ 0 0
$$75$$ −2.00000 −0.230940
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 10.0000 1.12509 0.562544 0.826767i $$-0.309823\pi$$
0.562544 + 0.826767i $$0.309823\pi$$
$$80$$ 0 0
$$81$$ −11.0000 −1.22222
$$82$$ 0 0
$$83$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$84$$ 0 0
$$85$$ −6.00000 −0.650791
$$86$$ 0 0
$$87$$ −12.0000 −1.28654
$$88$$ 0 0
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ −16.0000 −1.65912
$$94$$ 0 0
$$95$$ 1.00000 0.102598
$$96$$ 0 0
$$97$$ 10.0000 1.01535 0.507673 0.861550i $$-0.330506\pi$$
0.507673 + 0.861550i $$0.330506\pi$$
$$98$$ 0 0
$$99$$ −3.00000 −0.301511
$$100$$ 0 0
$$101$$ −12.0000 −1.19404 −0.597022 0.802225i $$-0.703650\pi$$
−0.597022 + 0.802225i $$0.703650\pi$$
$$102$$ 0 0
$$103$$ −4.00000 −0.394132 −0.197066 0.980390i $$-0.563141\pi$$
−0.197066 + 0.980390i $$0.563141\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 12.0000 1.16008 0.580042 0.814587i $$-0.303036\pi$$
0.580042 + 0.814587i $$0.303036\pi$$
$$108$$ 0 0
$$109$$ −16.0000 −1.53252 −0.766261 0.642529i $$-0.777885\pi$$
−0.766261 + 0.642529i $$0.777885\pi$$
$$110$$ 0 0
$$111$$ 14.0000 1.32882
$$112$$ 0 0
$$113$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$114$$ 0 0
$$115$$ 9.00000 0.839254
$$116$$ 0 0
$$117$$ 1.00000 0.0924500
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −2.00000 −0.181818
$$122$$ 0 0
$$123$$ 6.00000 0.541002
$$124$$ 0 0
$$125$$ −1.00000 −0.0894427
$$126$$ 0 0
$$127$$ 1.00000 0.0887357 0.0443678 0.999015i $$-0.485873\pi$$
0.0443678 + 0.999015i $$0.485873\pi$$
$$128$$ 0 0
$$129$$ 4.00000 0.352180
$$130$$ 0 0
$$131$$ 3.00000 0.262111 0.131056 0.991375i $$-0.458163\pi$$
0.131056 + 0.991375i $$0.458163\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ −4.00000 −0.344265
$$136$$ 0 0
$$137$$ 12.0000 1.02523 0.512615 0.858619i $$-0.328677\pi$$
0.512615 + 0.858619i $$0.328677\pi$$
$$138$$ 0 0
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ 0 0
$$141$$ −18.0000 −1.51587
$$142$$ 0 0
$$143$$ −3.00000 −0.250873
$$144$$ 0 0
$$145$$ −6.00000 −0.498273
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −6.00000 −0.491539 −0.245770 0.969328i $$-0.579041\pi$$
−0.245770 + 0.969328i $$0.579041\pi$$
$$150$$ 0 0
$$151$$ 10.0000 0.813788 0.406894 0.913475i $$-0.366612\pi$$
0.406894 + 0.913475i $$0.366612\pi$$
$$152$$ 0 0
$$153$$ 6.00000 0.485071
$$154$$ 0 0
$$155$$ −8.00000 −0.642575
$$156$$ 0 0
$$157$$ −23.0000 −1.83560 −0.917800 0.397043i $$-0.870036\pi$$
−0.917800 + 0.397043i $$0.870036\pi$$
$$158$$ 0 0
$$159$$ −18.0000 −1.42749
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −20.0000 −1.56652 −0.783260 0.621694i $$-0.786445\pi$$
−0.783260 + 0.621694i $$0.786445\pi$$
$$164$$ 0 0
$$165$$ −6.00000 −0.467099
$$166$$ 0 0
$$167$$ 3.00000 0.232147 0.116073 0.993241i $$-0.462969\pi$$
0.116073 + 0.993241i $$0.462969\pi$$
$$168$$ 0 0
$$169$$ −12.0000 −0.923077
$$170$$ 0 0
$$171$$ −1.00000 −0.0764719
$$172$$ 0 0
$$173$$ −9.00000 −0.684257 −0.342129 0.939653i $$-0.611148\pi$$
−0.342129 + 0.939653i $$0.611148\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 3.00000 0.224231 0.112115 0.993695i $$-0.464237\pi$$
0.112115 + 0.993695i $$0.464237\pi$$
$$180$$ 0 0
$$181$$ −2.00000 −0.148659 −0.0743294 0.997234i $$-0.523682\pi$$
−0.0743294 + 0.997234i $$0.523682\pi$$
$$182$$ 0 0
$$183$$ 16.0000 1.18275
$$184$$ 0 0
$$185$$ 7.00000 0.514650
$$186$$ 0 0
$$187$$ −18.0000 −1.31629
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −12.0000 −0.868290 −0.434145 0.900843i $$-0.642949\pi$$
−0.434145 + 0.900843i $$0.642949\pi$$
$$192$$ 0 0
$$193$$ −16.0000 −1.15171 −0.575853 0.817554i $$-0.695330\pi$$
−0.575853 + 0.817554i $$0.695330\pi$$
$$194$$ 0 0
$$195$$ 2.00000 0.143223
$$196$$ 0 0
$$197$$ 15.0000 1.06871 0.534353 0.845262i $$-0.320555\pi$$
0.534353 + 0.845262i $$0.320555\pi$$
$$198$$ 0 0
$$199$$ −16.0000 −1.13421 −0.567105 0.823646i $$-0.691937\pi$$
−0.567105 + 0.823646i $$0.691937\pi$$
$$200$$ 0 0
$$201$$ 16.0000 1.12855
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 3.00000 0.209529
$$206$$ 0 0
$$207$$ −9.00000 −0.625543
$$208$$ 0 0
$$209$$ 3.00000 0.207514
$$210$$ 0 0
$$211$$ −23.0000 −1.58339 −0.791693 0.610920i $$-0.790800\pi$$
−0.791693 + 0.610920i $$0.790800\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 2.00000 0.136399
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −8.00000 −0.540590
$$220$$ 0 0
$$221$$ 6.00000 0.403604
$$222$$ 0 0
$$223$$ 8.00000 0.535720 0.267860 0.963458i $$-0.413684\pi$$
0.267860 + 0.963458i $$0.413684\pi$$
$$224$$ 0 0
$$225$$ 1.00000 0.0666667
$$226$$ 0 0
$$227$$ −12.0000 −0.796468 −0.398234 0.917284i $$-0.630377\pi$$
−0.398234 + 0.917284i $$0.630377\pi$$
$$228$$ 0 0
$$229$$ 4.00000 0.264327 0.132164 0.991228i $$-0.457808\pi$$
0.132164 + 0.991228i $$0.457808\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −6.00000 −0.393073 −0.196537 0.980497i $$-0.562969\pi$$
−0.196537 + 0.980497i $$0.562969\pi$$
$$234$$ 0 0
$$235$$ −9.00000 −0.587095
$$236$$ 0 0
$$237$$ −20.0000 −1.29914
$$238$$ 0 0
$$239$$ 6.00000 0.388108 0.194054 0.980991i $$-0.437836\pi$$
0.194054 + 0.980991i $$0.437836\pi$$
$$240$$ 0 0
$$241$$ 1.00000 0.0644157 0.0322078 0.999481i $$-0.489746\pi$$
0.0322078 + 0.999481i $$0.489746\pi$$
$$242$$ 0 0
$$243$$ 10.0000 0.641500
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −1.00000 −0.0636285
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −15.0000 −0.946792 −0.473396 0.880850i $$-0.656972\pi$$
−0.473396 + 0.880850i $$0.656972\pi$$
$$252$$ 0 0
$$253$$ 27.0000 1.69748
$$254$$ 0 0
$$255$$ 12.0000 0.751469
$$256$$ 0 0
$$257$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 6.00000 0.371391
$$262$$ 0 0
$$263$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$264$$ 0 0
$$265$$ −9.00000 −0.552866
$$266$$ 0 0
$$267$$ 12.0000 0.734388
$$268$$ 0 0
$$269$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$270$$ 0 0
$$271$$ −16.0000 −0.971931 −0.485965 0.873978i $$-0.661532\pi$$
−0.485965 + 0.873978i $$0.661532\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −3.00000 −0.180907
$$276$$ 0 0
$$277$$ −10.0000 −0.600842 −0.300421 0.953807i $$-0.597127\pi$$
−0.300421 + 0.953807i $$0.597127\pi$$
$$278$$ 0 0
$$279$$ 8.00000 0.478947
$$280$$ 0 0
$$281$$ −27.0000 −1.61068 −0.805342 0.592810i $$-0.798019\pi$$
−0.805342 + 0.592810i $$0.798019\pi$$
$$282$$ 0 0
$$283$$ 14.0000 0.832214 0.416107 0.909316i $$-0.363394\pi$$
0.416107 + 0.909316i $$0.363394\pi$$
$$284$$ 0 0
$$285$$ −2.00000 −0.118470
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 19.0000 1.11765
$$290$$ 0 0
$$291$$ −20.0000 −1.17242
$$292$$ 0 0
$$293$$ 9.00000 0.525786 0.262893 0.964825i $$-0.415323\pi$$
0.262893 + 0.964825i $$0.415323\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ −12.0000 −0.696311
$$298$$ 0 0
$$299$$ −9.00000 −0.520483
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 24.0000 1.37876
$$304$$ 0 0
$$305$$ 8.00000 0.458079
$$306$$ 0 0
$$307$$ 14.0000 0.799022 0.399511 0.916728i $$-0.369180\pi$$
0.399511 + 0.916728i $$0.369180\pi$$
$$308$$ 0 0
$$309$$ 8.00000 0.455104
$$310$$ 0 0
$$311$$ −24.0000 −1.36092 −0.680458 0.732787i $$-0.738219\pi$$
−0.680458 + 0.732787i $$0.738219\pi$$
$$312$$ 0 0
$$313$$ 28.0000 1.58265 0.791327 0.611393i $$-0.209391\pi$$
0.791327 + 0.611393i $$0.209391\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 6.00000 0.336994 0.168497 0.985702i $$-0.446109\pi$$
0.168497 + 0.985702i $$0.446109\pi$$
$$318$$ 0 0
$$319$$ −18.0000 −1.00781
$$320$$ 0 0
$$321$$ −24.0000 −1.33955
$$322$$ 0 0
$$323$$ −6.00000 −0.333849
$$324$$ 0 0
$$325$$ 1.00000 0.0554700
$$326$$ 0 0
$$327$$ 32.0000 1.76960
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 7.00000 0.384755 0.192377 0.981321i $$-0.438380\pi$$
0.192377 + 0.981321i $$0.438380\pi$$
$$332$$ 0 0
$$333$$ −7.00000 −0.383598
$$334$$ 0 0
$$335$$ 8.00000 0.437087
$$336$$ 0 0
$$337$$ −22.0000 −1.19842 −0.599208 0.800593i $$-0.704518\pi$$
−0.599208 + 0.800593i $$0.704518\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −24.0000 −1.29967
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −18.0000 −0.969087
$$346$$ 0 0
$$347$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$348$$ 0 0
$$349$$ −26.0000 −1.39175 −0.695874 0.718164i $$-0.744983\pi$$
−0.695874 + 0.718164i $$0.744983\pi$$
$$350$$ 0 0
$$351$$ 4.00000 0.213504
$$352$$ 0 0
$$353$$ −12.0000 −0.638696 −0.319348 0.947638i $$-0.603464\pi$$
−0.319348 + 0.947638i $$0.603464\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −18.0000 −0.950004 −0.475002 0.879985i $$-0.657553\pi$$
−0.475002 + 0.879985i $$0.657553\pi$$
$$360$$ 0 0
$$361$$ −18.0000 −0.947368
$$362$$ 0 0
$$363$$ 4.00000 0.209946
$$364$$ 0 0
$$365$$ −4.00000 −0.209370
$$366$$ 0 0
$$367$$ −19.0000 −0.991792 −0.495896 0.868382i $$-0.665160\pi$$
−0.495896 + 0.868382i $$0.665160\pi$$
$$368$$ 0 0
$$369$$ −3.00000 −0.156174
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 2.00000 0.103556 0.0517780 0.998659i $$-0.483511\pi$$
0.0517780 + 0.998659i $$0.483511\pi$$
$$374$$ 0 0
$$375$$ 2.00000 0.103280
$$376$$ 0 0
$$377$$ 6.00000 0.309016
$$378$$ 0 0
$$379$$ −23.0000 −1.18143 −0.590715 0.806880i $$-0.701154\pi$$
−0.590715 + 0.806880i $$0.701154\pi$$
$$380$$ 0 0
$$381$$ −2.00000 −0.102463
$$382$$ 0 0
$$383$$ 21.0000 1.07305 0.536525 0.843884i $$-0.319737\pi$$
0.536525 + 0.843884i $$0.319737\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −2.00000 −0.101666
$$388$$ 0 0
$$389$$ −12.0000 −0.608424 −0.304212 0.952604i $$-0.598393\pi$$
−0.304212 + 0.952604i $$0.598393\pi$$
$$390$$ 0 0
$$391$$ −54.0000 −2.73090
$$392$$ 0 0
$$393$$ −6.00000 −0.302660
$$394$$ 0 0
$$395$$ −10.0000 −0.503155
$$396$$ 0 0
$$397$$ −14.0000 −0.702640 −0.351320 0.936255i $$-0.614267\pi$$
−0.351320 + 0.936255i $$0.614267\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −27.0000 −1.34832 −0.674158 0.738587i $$-0.735493\pi$$
−0.674158 + 0.738587i $$0.735493\pi$$
$$402$$ 0 0
$$403$$ 8.00000 0.398508
$$404$$ 0 0
$$405$$ 11.0000 0.546594
$$406$$ 0 0
$$407$$ 21.0000 1.04093
$$408$$ 0 0
$$409$$ −26.0000 −1.28562 −0.642809 0.766027i $$-0.722231\pi$$
−0.642809 + 0.766027i $$0.722231\pi$$
$$410$$ 0 0
$$411$$ −24.0000 −1.18383
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 8.00000 0.391762
$$418$$ 0 0
$$419$$ −9.00000 −0.439679 −0.219839 0.975536i $$-0.570553\pi$$
−0.219839 + 0.975536i $$0.570553\pi$$
$$420$$ 0 0
$$421$$ 2.00000 0.0974740 0.0487370 0.998812i $$-0.484480\pi$$
0.0487370 + 0.998812i $$0.484480\pi$$
$$422$$ 0 0
$$423$$ 9.00000 0.437595
$$424$$ 0 0
$$425$$ 6.00000 0.291043
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 6.00000 0.289683
$$430$$ 0 0
$$431$$ −12.0000 −0.578020 −0.289010 0.957326i $$-0.593326\pi$$
−0.289010 + 0.957326i $$0.593326\pi$$
$$432$$ 0 0
$$433$$ 40.0000 1.92228 0.961139 0.276066i $$-0.0890309\pi$$
0.961139 + 0.276066i $$0.0890309\pi$$
$$434$$ 0 0
$$435$$ 12.0000 0.575356
$$436$$ 0 0
$$437$$ 9.00000 0.430528
$$438$$ 0 0
$$439$$ 26.0000 1.24091 0.620456 0.784241i $$-0.286947\pi$$
0.620456 + 0.784241i $$0.286947\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −12.0000 −0.570137 −0.285069 0.958507i $$-0.592016\pi$$
−0.285069 + 0.958507i $$0.592016\pi$$
$$444$$ 0 0
$$445$$ 6.00000 0.284427
$$446$$ 0 0
$$447$$ 12.0000 0.567581
$$448$$ 0 0
$$449$$ 21.0000 0.991051 0.495526 0.868593i $$-0.334975\pi$$
0.495526 + 0.868593i $$0.334975\pi$$
$$450$$ 0 0
$$451$$ 9.00000 0.423793
$$452$$ 0 0
$$453$$ −20.0000 −0.939682
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 14.0000 0.654892 0.327446 0.944870i $$-0.393812\pi$$
0.327446 + 0.944870i $$0.393812\pi$$
$$458$$ 0 0
$$459$$ 24.0000 1.12022
$$460$$ 0 0
$$461$$ 30.0000 1.39724 0.698620 0.715493i $$-0.253798\pi$$
0.698620 + 0.715493i $$0.253798\pi$$
$$462$$ 0 0
$$463$$ 1.00000 0.0464739 0.0232370 0.999730i $$-0.492603\pi$$
0.0232370 + 0.999730i $$0.492603\pi$$
$$464$$ 0 0
$$465$$ 16.0000 0.741982
$$466$$ 0 0
$$467$$ −6.00000 −0.277647 −0.138823 0.990317i $$-0.544332\pi$$
−0.138823 + 0.990317i $$0.544332\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 46.0000 2.11957
$$472$$ 0 0
$$473$$ 6.00000 0.275880
$$474$$ 0 0
$$475$$ −1.00000 −0.0458831
$$476$$ 0 0
$$477$$ 9.00000 0.412082
$$478$$ 0 0
$$479$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$480$$ 0 0
$$481$$ −7.00000 −0.319173
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −10.0000 −0.454077
$$486$$ 0 0
$$487$$ 16.0000 0.725029 0.362515 0.931978i $$-0.381918\pi$$
0.362515 + 0.931978i $$0.381918\pi$$
$$488$$ 0 0
$$489$$ 40.0000 1.80886
$$490$$ 0 0
$$491$$ −36.0000 −1.62466 −0.812329 0.583200i $$-0.801800\pi$$
−0.812329 + 0.583200i $$0.801800\pi$$
$$492$$ 0 0
$$493$$ 36.0000 1.62136
$$494$$ 0 0
$$495$$ 3.00000 0.134840
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 4.00000 0.179065 0.0895323 0.995984i $$-0.471463\pi$$
0.0895323 + 0.995984i $$0.471463\pi$$
$$500$$ 0 0
$$501$$ −6.00000 −0.268060
$$502$$ 0 0
$$503$$ 24.0000 1.07011 0.535054 0.844818i $$-0.320291\pi$$
0.535054 + 0.844818i $$0.320291\pi$$
$$504$$ 0 0
$$505$$ 12.0000 0.533993
$$506$$ 0 0
$$507$$ 24.0000 1.06588
$$508$$ 0 0
$$509$$ 42.0000 1.86162 0.930809 0.365507i $$-0.119104\pi$$
0.930809 + 0.365507i $$0.119104\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ −4.00000 −0.176604
$$514$$ 0 0
$$515$$ 4.00000 0.176261
$$516$$ 0 0
$$517$$ −27.0000 −1.18746
$$518$$ 0 0
$$519$$ 18.0000 0.790112
$$520$$ 0 0
$$521$$ 15.0000 0.657162 0.328581 0.944476i $$-0.393430\pi$$
0.328581 + 0.944476i $$0.393430\pi$$
$$522$$ 0 0
$$523$$ −28.0000 −1.22435 −0.612177 0.790721i $$-0.709706\pi$$
−0.612177 + 0.790721i $$0.709706\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 48.0000 2.09091
$$528$$ 0 0
$$529$$ 58.0000 2.52174
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −3.00000 −0.129944
$$534$$ 0 0
$$535$$ −12.0000 −0.518805
$$536$$ 0 0
$$537$$ −6.00000 −0.258919
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 8.00000 0.343947 0.171973 0.985102i $$-0.444986\pi$$
0.171973 + 0.985102i $$0.444986\pi$$
$$542$$ 0 0
$$543$$ 4.00000 0.171656
$$544$$ 0 0
$$545$$ 16.0000 0.685365
$$546$$ 0 0
$$547$$ −8.00000 −0.342055 −0.171028 0.985266i $$-0.554709\pi$$
−0.171028 + 0.985266i $$0.554709\pi$$
$$548$$ 0 0
$$549$$ −8.00000 −0.341432
$$550$$ 0 0
$$551$$ −6.00000 −0.255609
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ −14.0000 −0.594267
$$556$$ 0 0
$$557$$ −9.00000 −0.381342 −0.190671 0.981654i $$-0.561066\pi$$
−0.190671 + 0.981654i $$0.561066\pi$$
$$558$$ 0 0
$$559$$ −2.00000 −0.0845910
$$560$$ 0 0
$$561$$ 36.0000 1.51992
$$562$$ 0 0
$$563$$ 42.0000 1.77009 0.885044 0.465506i $$-0.154128\pi$$
0.885044 + 0.465506i $$0.154128\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 21.0000 0.880366 0.440183 0.897908i $$-0.354914\pi$$
0.440183 + 0.897908i $$0.354914\pi$$
$$570$$ 0 0
$$571$$ −20.0000 −0.836974 −0.418487 0.908223i $$-0.637439\pi$$
−0.418487 + 0.908223i $$0.637439\pi$$
$$572$$ 0 0
$$573$$ 24.0000 1.00261
$$574$$ 0 0
$$575$$ −9.00000 −0.375326
$$576$$ 0 0
$$577$$ −44.0000 −1.83174 −0.915872 0.401470i $$-0.868499\pi$$
−0.915872 + 0.401470i $$0.868499\pi$$
$$578$$ 0 0
$$579$$ 32.0000 1.32987
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −27.0000 −1.11823
$$584$$ 0 0
$$585$$ −1.00000 −0.0413449
$$586$$ 0 0
$$587$$ −24.0000 −0.990586 −0.495293 0.868726i $$-0.664939\pi$$
−0.495293 + 0.868726i $$0.664939\pi$$
$$588$$ 0 0
$$589$$ −8.00000 −0.329634
$$590$$ 0 0
$$591$$ −30.0000 −1.23404
$$592$$ 0 0
$$593$$ −24.0000 −0.985562 −0.492781 0.870153i $$-0.664020\pi$$
−0.492781 + 0.870153i $$0.664020\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 32.0000 1.30967
$$598$$ 0 0
$$599$$ 42.0000 1.71607 0.858037 0.513588i $$-0.171684\pi$$
0.858037 + 0.513588i $$0.171684\pi$$
$$600$$ 0 0
$$601$$ −26.0000 −1.06056 −0.530281 0.847822i $$-0.677914\pi$$
−0.530281 + 0.847822i $$0.677914\pi$$
$$602$$ 0 0
$$603$$ −8.00000 −0.325785
$$604$$ 0 0
$$605$$ 2.00000 0.0813116
$$606$$ 0 0
$$607$$ −1.00000 −0.0405887 −0.0202944 0.999794i $$-0.506460\pi$$
−0.0202944 + 0.999794i $$0.506460\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 9.00000 0.364101
$$612$$ 0 0
$$613$$ 29.0000 1.17130 0.585649 0.810564i $$-0.300840\pi$$
0.585649 + 0.810564i $$0.300840\pi$$
$$614$$ 0 0
$$615$$ −6.00000 −0.241943
$$616$$ 0 0
$$617$$ −18.0000 −0.724653 −0.362326 0.932051i $$-0.618017\pi$$
−0.362326 + 0.932051i $$0.618017\pi$$
$$618$$ 0 0
$$619$$ 23.0000 0.924448 0.462224 0.886763i $$-0.347052\pi$$
0.462224 + 0.886763i $$0.347052\pi$$
$$620$$ 0 0
$$621$$ −36.0000 −1.44463
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ −6.00000 −0.239617
$$628$$ 0 0
$$629$$ −42.0000 −1.67465
$$630$$ 0 0
$$631$$ −20.0000 −0.796187 −0.398094 0.917345i $$-0.630328\pi$$
−0.398094 + 0.917345i $$0.630328\pi$$
$$632$$ 0 0
$$633$$ 46.0000 1.82834
$$634$$ 0 0
$$635$$ −1.00000 −0.0396838
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 27.0000 1.06644 0.533218 0.845978i $$-0.320983\pi$$
0.533218 + 0.845978i $$0.320983\pi$$
$$642$$ 0 0
$$643$$ 2.00000 0.0788723 0.0394362 0.999222i $$-0.487444\pi$$
0.0394362 + 0.999222i $$0.487444\pi$$
$$644$$ 0 0
$$645$$ −4.00000 −0.157500
$$646$$ 0 0
$$647$$ 33.0000 1.29736 0.648682 0.761060i $$-0.275321\pi$$
0.648682 + 0.761060i $$0.275321\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −9.00000 −0.352197 −0.176099 0.984373i $$-0.556348\pi$$
−0.176099 + 0.984373i $$0.556348\pi$$
$$654$$ 0 0
$$655$$ −3.00000 −0.117220
$$656$$ 0 0
$$657$$ 4.00000 0.156055
$$658$$ 0 0
$$659$$ 24.0000 0.934907 0.467454 0.884018i $$-0.345171\pi$$
0.467454 + 0.884018i $$0.345171\pi$$
$$660$$ 0 0
$$661$$ 28.0000 1.08907 0.544537 0.838737i $$-0.316705\pi$$
0.544537 + 0.838737i $$0.316705\pi$$
$$662$$ 0 0
$$663$$ −12.0000 −0.466041
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −54.0000 −2.09089
$$668$$ 0 0
$$669$$ −16.0000 −0.618596
$$670$$ 0 0
$$671$$ 24.0000 0.926510
$$672$$ 0 0
$$673$$ −34.0000 −1.31060 −0.655302 0.755367i $$-0.727459\pi$$
−0.655302 + 0.755367i $$0.727459\pi$$
$$674$$ 0 0
$$675$$ 4.00000 0.153960
$$676$$ 0 0
$$677$$ 9.00000 0.345898 0.172949 0.984931i $$-0.444670\pi$$
0.172949 + 0.984931i $$0.444670\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 24.0000 0.919682
$$682$$ 0 0
$$683$$ −12.0000 −0.459167 −0.229584 0.973289i $$-0.573736\pi$$
−0.229584 + 0.973289i $$0.573736\pi$$
$$684$$ 0 0
$$685$$ −12.0000 −0.458496
$$686$$ 0 0
$$687$$ −8.00000 −0.305219
$$688$$ 0 0
$$689$$ 9.00000 0.342873
$$690$$ 0 0
$$691$$ 32.0000 1.21734 0.608669 0.793424i $$-0.291704\pi$$
0.608669 + 0.793424i $$0.291704\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 4.00000 0.151729
$$696$$ 0 0
$$697$$ −18.0000 −0.681799
$$698$$ 0 0
$$699$$ 12.0000 0.453882
$$700$$ 0 0
$$701$$ −30.0000 −1.13308 −0.566542 0.824033i $$-0.691719\pi$$
−0.566542 + 0.824033i $$0.691719\pi$$
$$702$$ 0 0
$$703$$ 7.00000 0.264010
$$704$$ 0 0
$$705$$ 18.0000 0.677919
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −46.0000 −1.72757 −0.863783 0.503864i $$-0.831911\pi$$
−0.863783 + 0.503864i $$0.831911\pi$$
$$710$$ 0 0
$$711$$ 10.0000 0.375029
$$712$$ 0 0
$$713$$ −72.0000 −2.69642
$$714$$ 0 0
$$715$$ 3.00000 0.112194
$$716$$ 0 0
$$717$$ −12.0000 −0.448148
$$718$$ 0 0
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ −2.00000 −0.0743808
$$724$$ 0 0
$$725$$ 6.00000 0.222834
$$726$$ 0 0
$$727$$ −1.00000 −0.0370879 −0.0185440 0.999828i $$-0.505903\pi$$
−0.0185440 + 0.999828i $$0.505903\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ −12.0000 −0.443836
$$732$$ 0 0
$$733$$ 43.0000 1.58824 0.794121 0.607760i $$-0.207932\pi$$
0.794121 + 0.607760i $$0.207932\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 24.0000 0.884051
$$738$$ 0 0
$$739$$ −35.0000 −1.28750 −0.643748 0.765238i $$-0.722621\pi$$
−0.643748 + 0.765238i $$0.722621\pi$$
$$740$$ 0 0
$$741$$ 2.00000 0.0734718
$$742$$ 0 0
$$743$$ 45.0000 1.65089 0.825445 0.564483i $$-0.190924\pi$$
0.825445 + 0.564483i $$0.190924\pi$$
$$744$$ 0 0
$$745$$ 6.00000 0.219823
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 10.0000 0.364905 0.182453 0.983215i $$-0.441596\pi$$
0.182453 + 0.983215i $$0.441596\pi$$
$$752$$ 0 0
$$753$$ 30.0000 1.09326
$$754$$ 0 0
$$755$$ −10.0000 −0.363937
$$756$$ 0 0
$$757$$ 38.0000 1.38113 0.690567 0.723269i $$-0.257361\pi$$
0.690567 + 0.723269i $$0.257361\pi$$
$$758$$ 0 0
$$759$$ −54.0000 −1.96008
$$760$$ 0 0
$$761$$ 27.0000 0.978749 0.489375 0.872074i $$-0.337225\pi$$
0.489375 + 0.872074i $$0.337225\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ −6.00000 −0.216930
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ −23.0000 −0.829401 −0.414701 0.909958i $$-0.636114\pi$$
−0.414701 + 0.909958i $$0.636114\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 51.0000 1.83434 0.917171 0.398493i $$-0.130467\pi$$
0.917171 + 0.398493i $$0.130467\pi$$
$$774$$ 0 0
$$775$$ 8.00000 0.287368
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 3.00000 0.107486
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 24.0000 0.857690
$$784$$ 0 0
$$785$$ 23.0000 0.820905
$$786$$ 0 0
$$787$$ −22.0000 −0.784215 −0.392108 0.919919i $$-0.628254\pi$$
−0.392108 + 0.919919i $$0.628254\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −8.00000 −0.284088
$$794$$ 0 0
$$795$$ 18.0000 0.638394
$$796$$ 0 0
$$797$$ −6.00000 −0.212531 −0.106265 0.994338i $$-0.533889\pi$$
−0.106265 + 0.994338i $$0.533889\pi$$
$$798$$ 0 0
$$799$$ 54.0000 1.91038
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ −12.0000 −0.423471
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −9.00000 −0.316423 −0.158212 0.987405i $$-0.550573\pi$$
−0.158212 + 0.987405i $$0.550573\pi$$
$$810$$ 0 0
$$811$$ −25.0000 −0.877869 −0.438934 0.898519i $$-0.644644\pi$$
−0.438934 + 0.898519i $$0.644644\pi$$
$$812$$ 0 0
$$813$$ 32.0000 1.12229
$$814$$ 0 0
$$815$$ 20.0000 0.700569
$$816$$ 0 0
$$817$$ 2.00000 0.0699711
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 30.0000 1.04701 0.523504 0.852023i $$-0.324625\pi$$
0.523504 + 0.852023i $$0.324625\pi$$
$$822$$ 0 0
$$823$$ 4.00000 0.139431 0.0697156 0.997567i $$-0.477791\pi$$
0.0697156 + 0.997567i $$0.477791\pi$$
$$824$$ 0 0
$$825$$ 6.00000 0.208893
$$826$$ 0 0
$$827$$ −6.00000 −0.208640 −0.104320 0.994544i $$-0.533267\pi$$
−0.104320 + 0.994544i $$0.533267\pi$$
$$828$$ 0 0
$$829$$ −14.0000 −0.486240 −0.243120 0.969996i $$-0.578171\pi$$
−0.243120 + 0.969996i $$0.578171\pi$$
$$830$$ 0 0
$$831$$ 20.0000 0.693792
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ −3.00000 −0.103819
$$836$$ 0 0
$$837$$ 32.0000 1.10608
$$838$$ 0 0
$$839$$ −30.0000 −1.03572 −0.517858 0.855467i $$-0.673270\pi$$
−0.517858 + 0.855467i $$0.673270\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 54.0000 1.85986
$$844$$ 0 0
$$845$$ 12.0000 0.412813
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ −28.0000 −0.960958
$$850$$ 0 0
$$851$$ 63.0000 2.15961
$$852$$ 0 0
$$853$$ 19.0000 0.650548 0.325274 0.945620i $$-0.394544\pi$$
0.325274 + 0.945620i $$0.394544\pi$$
$$854$$ 0 0
$$855$$ 1.00000 0.0341993
$$856$$ 0 0
$$857$$ 18.0000 0.614868 0.307434 0.951569i $$-0.400530\pi$$
0.307434 + 0.951569i $$0.400530\pi$$
$$858$$ 0 0
$$859$$ 32.0000 1.09183 0.545913 0.837842i $$-0.316183\pi$$
0.545913 + 0.837842i $$0.316183\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 3.00000 0.102121 0.0510606 0.998696i $$-0.483740\pi$$
0.0510606 + 0.998696i $$0.483740\pi$$
$$864$$ 0 0
$$865$$ 9.00000 0.306009
$$866$$ 0 0
$$867$$ −38.0000 −1.29055
$$868$$ 0 0
$$869$$ −30.0000 −1.01768
$$870$$ 0 0
$$871$$ −8.00000 −0.271070
$$872$$ 0 0
$$873$$ 10.0000 0.338449
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −13.0000 −0.438979 −0.219489 0.975615i $$-0.570439\pi$$
−0.219489 + 0.975615i $$0.570439\pi$$
$$878$$ 0 0
$$879$$ −18.0000 −0.607125
$$880$$ 0 0
$$881$$ −33.0000 −1.11180 −0.555899 0.831250i $$-0.687626\pi$$
−0.555899 + 0.831250i $$0.687626\pi$$
$$882$$ 0 0
$$883$$ −8.00000 −0.269221 −0.134611 0.990899i $$-0.542978\pi$$
−0.134611 + 0.990899i $$0.542978\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −48.0000 −1.61168 −0.805841 0.592132i $$-0.798286\pi$$
−0.805841 + 0.592132i $$0.798286\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 33.0000 1.10554
$$892$$ 0 0
$$893$$ −9.00000 −0.301174
$$894$$ 0 0
$$895$$ −3.00000 −0.100279
$$896$$ 0 0
$$897$$ 18.0000 0.601003
$$898$$ 0 0
$$899$$ 48.0000 1.60089
$$900$$ 0 0
$$901$$ 54.0000 1.79900
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 2.00000 0.0664822
$$906$$ 0 0
$$907$$ 10.0000 0.332045 0.166022 0.986122i $$-0.446908\pi$$
0.166022 + 0.986122i $$0.446908\pi$$
$$908$$ 0 0
$$909$$ −12.0000 −0.398015
$$910$$ 0 0
$$911$$ 30.0000 0.993944 0.496972 0.867766i $$-0.334445\pi$$
0.496972 + 0.867766i $$0.334445\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ −16.0000 −0.528944
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 22.0000 0.725713 0.362857 0.931845i $$-0.381802\pi$$
0.362857 + 0.931845i $$0.381802\pi$$
$$920$$ 0 0
$$921$$ −28.0000 −0.922631
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ −7.00000 −0.230159
$$926$$ 0 0
$$927$$ −4.00000 −0.131377
$$928$$ 0 0
$$929$$ −57.0000 −1.87011 −0.935055 0.354504i $$-0.884650\pi$$
−0.935055 + 0.354504i $$0.884650\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ 48.0000 1.57145
$$934$$ 0 0
$$935$$ 18.0000 0.588663
$$936$$ 0 0
$$937$$ 10.0000 0.326686 0.163343 0.986569i $$-0.447772\pi$$
0.163343 + 0.986569i $$0.447772\pi$$
$$938$$ 0 0
$$939$$ −56.0000 −1.82749
$$940$$ 0 0
$$941$$ −48.0000 −1.56476 −0.782378 0.622804i $$-0.785993\pi$$
−0.782378 + 0.622804i $$0.785993\pi$$
$$942$$ 0 0
$$943$$ 27.0000 0.879241
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −6.00000 −0.194974 −0.0974869 0.995237i $$-0.531080\pi$$
−0.0974869 + 0.995237i $$0.531080\pi$$
$$948$$ 0 0
$$949$$ 4.00000 0.129845
$$950$$ 0 0
$$951$$ −12.0000 −0.389127
$$952$$ 0 0
$$953$$ 36.0000 1.16615 0.583077 0.812417i $$-0.301849\pi$$
0.583077 + 0.812417i $$0.301849\pi$$
$$954$$ 0 0
$$955$$ 12.0000 0.388311
$$956$$ 0 0
$$957$$ 36.0000 1.16371
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ 12.0000 0.386695
$$964$$ 0 0
$$965$$ 16.0000 0.515058
$$966$$ 0 0
$$967$$ −32.0000 −1.02905 −0.514525 0.857475i $$-0.672032\pi$$
−0.514525 + 0.857475i $$0.672032\pi$$
$$968$$ 0 0
$$969$$ 12.0000 0.385496
$$970$$ 0 0
$$971$$ −45.0000 −1.44412 −0.722059 0.691831i $$-0.756804\pi$$
−0.722059 + 0.691831i $$0.756804\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ −2.00000 −0.0640513
$$976$$ 0 0
$$977$$ −42.0000 −1.34370 −0.671850 0.740688i $$-0.734500\pi$$
−0.671850 + 0.740688i $$0.734500\pi$$
$$978$$ 0 0
$$979$$ 18.0000 0.575282
$$980$$ 0 0
$$981$$ −16.0000 −0.510841
$$982$$ 0 0
$$983$$ 3.00000 0.0956851 0.0478426 0.998855i $$-0.484765\pi$$
0.0478426 + 0.998855i $$0.484765\pi$$
$$984$$ 0 0
$$985$$ −15.0000 −0.477940
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 18.0000 0.572367
$$990$$ 0 0
$$991$$ −44.0000 −1.39771 −0.698853 0.715265i $$-0.746306\pi$$
−0.698853 + 0.715265i $$0.746306\pi$$
$$992$$ 0 0
$$993$$ −14.0000 −0.444277
$$994$$ 0 0
$$995$$ 16.0000 0.507234
$$996$$ 0 0
$$997$$ 22.0000 0.696747 0.348373 0.937356i $$-0.386734\pi$$
0.348373 + 0.937356i $$0.386734\pi$$
$$998$$ 0 0
$$999$$ −28.0000 −0.885881
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.2.a.e.1.1 1
4.3 odd 2 490.2.a.d.1.1 1
7.3 odd 6 560.2.q.b.401.1 2
7.5 odd 6 560.2.q.b.81.1 2
7.6 odd 2 3920.2.a.bh.1.1 1
12.11 even 2 4410.2.a.bg.1.1 1
20.3 even 4 2450.2.c.e.99.2 2
20.7 even 4 2450.2.c.e.99.1 2
20.19 odd 2 2450.2.a.v.1.1 1
28.3 even 6 70.2.e.d.51.1 yes 2
28.11 odd 6 490.2.e.g.471.1 2
28.19 even 6 70.2.e.d.11.1 2
28.23 odd 6 490.2.e.g.361.1 2
28.27 even 2 490.2.a.a.1.1 1
84.47 odd 6 630.2.k.d.361.1 2
84.59 odd 6 630.2.k.d.541.1 2
84.83 odd 2 4410.2.a.x.1.1 1
140.3 odd 12 350.2.j.d.149.1 4
140.19 even 6 350.2.e.b.151.1 2
140.27 odd 4 2450.2.c.q.99.1 2
140.47 odd 12 350.2.j.d.249.1 4
140.59 even 6 350.2.e.b.51.1 2
140.83 odd 4 2450.2.c.q.99.2 2
140.87 odd 12 350.2.j.d.149.2 4
140.103 odd 12 350.2.j.d.249.2 4
140.139 even 2 2450.2.a.bf.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.e.d.11.1 2 28.19 even 6
70.2.e.d.51.1 yes 2 28.3 even 6
350.2.e.b.51.1 2 140.59 even 6
350.2.e.b.151.1 2 140.19 even 6
350.2.j.d.149.1 4 140.3 odd 12
350.2.j.d.149.2 4 140.87 odd 12
350.2.j.d.249.1 4 140.47 odd 12
350.2.j.d.249.2 4 140.103 odd 12
490.2.a.a.1.1 1 28.27 even 2
490.2.a.d.1.1 1 4.3 odd 2
490.2.e.g.361.1 2 28.23 odd 6
490.2.e.g.471.1 2 28.11 odd 6
560.2.q.b.81.1 2 7.5 odd 6
560.2.q.b.401.1 2 7.3 odd 6
630.2.k.d.361.1 2 84.47 odd 6
630.2.k.d.541.1 2 84.59 odd 6
2450.2.a.v.1.1 1 20.19 odd 2
2450.2.a.bf.1.1 1 140.139 even 2
2450.2.c.e.99.1 2 20.7 even 4
2450.2.c.e.99.2 2 20.3 even 4
2450.2.c.q.99.1 2 140.27 odd 4
2450.2.c.q.99.2 2 140.83 odd 4
3920.2.a.e.1.1 1 1.1 even 1 trivial
3920.2.a.bh.1.1 1 7.6 odd 2
4410.2.a.x.1.1 1 84.83 odd 2
4410.2.a.bg.1.1 1 12.11 even 2