# Properties

 Label 3920.2.a.e Level $3920$ Weight $2$ Character orbit 3920.a Self dual yes Analytic conductor $31.301$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3920,2,Mod(1,3920)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3920, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3920.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3920 = 2^{4} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3920.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$31.3013575923$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{3} - q^{5} + q^{9}+O(q^{10})$$ q - 2 * q^3 - q^5 + q^9 $$q - 2 q^{3} - q^{5} + q^{9} - 3 q^{11} + q^{13} + 2 q^{15} + 6 q^{17} - q^{19} - 9 q^{23} + q^{25} + 4 q^{27} + 6 q^{29} + 8 q^{31} + 6 q^{33} - 7 q^{37} - 2 q^{39} - 3 q^{41} - 2 q^{43} - q^{45} + 9 q^{47} - 12 q^{51} + 9 q^{53} + 3 q^{55} + 2 q^{57} - 8 q^{61} - q^{65} - 8 q^{67} + 18 q^{69} + 4 q^{73} - 2 q^{75} + 10 q^{79} - 11 q^{81} - 6 q^{85} - 12 q^{87} - 6 q^{89} - 16 q^{93} + q^{95} + 10 q^{97} - 3 q^{99}+O(q^{100})$$ q - 2 * q^3 - q^5 + q^9 - 3 * q^11 + q^13 + 2 * q^15 + 6 * q^17 - q^19 - 9 * q^23 + q^25 + 4 * q^27 + 6 * q^29 + 8 * q^31 + 6 * q^33 - 7 * q^37 - 2 * q^39 - 3 * q^41 - 2 * q^43 - q^45 + 9 * q^47 - 12 * q^51 + 9 * q^53 + 3 * q^55 + 2 * q^57 - 8 * q^61 - q^65 - 8 * q^67 + 18 * q^69 + 4 * q^73 - 2 * q^75 + 10 * q^79 - 11 * q^81 - 6 * q^85 - 12 * q^87 - 6 * q^89 - 16 * q^93 + q^95 + 10 * q^97 - 3 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −2.00000 0 −1.00000 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.2.a.e 1
4.b odd 2 1 490.2.a.d 1
7.b odd 2 1 3920.2.a.bh 1
7.d odd 6 2 560.2.q.b 2
12.b even 2 1 4410.2.a.bg 1
20.d odd 2 1 2450.2.a.v 1
20.e even 4 2 2450.2.c.e 2
28.d even 2 1 490.2.a.a 1
28.f even 6 2 70.2.e.d 2
28.g odd 6 2 490.2.e.g 2
84.h odd 2 1 4410.2.a.x 1
84.j odd 6 2 630.2.k.d 2
140.c even 2 1 2450.2.a.bf 1
140.j odd 4 2 2450.2.c.q 2
140.s even 6 2 350.2.e.b 2
140.x odd 12 4 350.2.j.d 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.d 2 28.f even 6 2
350.2.e.b 2 140.s even 6 2
350.2.j.d 4 140.x odd 12 4
490.2.a.a 1 28.d even 2 1
490.2.a.d 1 4.b odd 2 1
490.2.e.g 2 28.g odd 6 2
560.2.q.b 2 7.d odd 6 2
630.2.k.d 2 84.j odd 6 2
2450.2.a.v 1 20.d odd 2 1
2450.2.a.bf 1 140.c even 2 1
2450.2.c.e 2 20.e even 4 2
2450.2.c.q 2 140.j odd 4 2
3920.2.a.e 1 1.a even 1 1 trivial
3920.2.a.bh 1 7.b odd 2 1
4410.2.a.x 1 84.h odd 2 1
4410.2.a.bg 1 12.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3920))$$:

 $$T_{3} + 2$$ T3 + 2 $$T_{11} + 3$$ T11 + 3 $$T_{13} - 1$$ T13 - 1 $$T_{17} - 6$$ T17 - 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 2$$
$5$ $$T + 1$$
$7$ $$T$$
$11$ $$T + 3$$
$13$ $$T - 1$$
$17$ $$T - 6$$
$19$ $$T + 1$$
$23$ $$T + 9$$
$29$ $$T - 6$$
$31$ $$T - 8$$
$37$ $$T + 7$$
$41$ $$T + 3$$
$43$ $$T + 2$$
$47$ $$T - 9$$
$53$ $$T - 9$$
$59$ $$T$$
$61$ $$T + 8$$
$67$ $$T + 8$$
$71$ $$T$$
$73$ $$T - 4$$
$79$ $$T - 10$$
$83$ $$T$$
$89$ $$T + 6$$
$97$ $$T - 10$$