Properties

Label 3920.2.a.bw.1.1
Level $3920$
Weight $2$
Character 3920.1
Self dual yes
Analytic conductor $31.301$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(31.3013575923\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3920.1

$q$-expansion

\(f(q)\) \(=\) \(q-0.414214 q^{3} -1.00000 q^{5} -2.82843 q^{9} +O(q^{10})\) \(q-0.414214 q^{3} -1.00000 q^{5} -2.82843 q^{9} +0.171573 q^{11} -4.41421 q^{13} +0.414214 q^{15} -3.24264 q^{17} +6.00000 q^{19} -7.41421 q^{23} +1.00000 q^{25} +2.41421 q^{27} -8.65685 q^{29} +10.2426 q^{31} -0.0710678 q^{33} +2.24264 q^{37} +1.82843 q^{39} +6.24264 q^{41} -2.00000 q^{43} +2.82843 q^{45} -7.24264 q^{47} +1.34315 q^{51} +4.24264 q^{53} -0.171573 q^{55} -2.48528 q^{57} -2.24264 q^{59} +2.82843 q^{61} +4.41421 q^{65} +8.24264 q^{67} +3.07107 q^{69} +3.17157 q^{71} +8.48528 q^{73} -0.414214 q^{75} -1.48528 q^{79} +7.48528 q^{81} +3.24264 q^{85} +3.58579 q^{87} +8.00000 q^{89} -4.24264 q^{93} -6.00000 q^{95} -13.2426 q^{97} -0.485281 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} - 2q^{5} + O(q^{10}) \) \( 2q + 2q^{3} - 2q^{5} + 6q^{11} - 6q^{13} - 2q^{15} + 2q^{17} + 12q^{19} - 12q^{23} + 2q^{25} + 2q^{27} - 6q^{29} + 12q^{31} + 14q^{33} - 4q^{37} - 2q^{39} + 4q^{41} - 4q^{43} - 6q^{47} + 14q^{51} - 6q^{55} + 12q^{57} + 4q^{59} + 6q^{65} + 8q^{67} - 8q^{69} + 12q^{71} + 2q^{75} + 14q^{79} - 2q^{81} - 2q^{85} + 10q^{87} + 16q^{89} - 12q^{95} - 18q^{97} + 16q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.414214 −0.239146 −0.119573 0.992825i \(-0.538153\pi\)
−0.119573 + 0.992825i \(0.538153\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) 0.171573 0.0517312 0.0258656 0.999665i \(-0.491766\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) 0 0
\(13\) −4.41421 −1.22428 −0.612141 0.790748i \(-0.709692\pi\)
−0.612141 + 0.790748i \(0.709692\pi\)
\(14\) 0 0
\(15\) 0.414214 0.106949
\(16\) 0 0
\(17\) −3.24264 −0.786456 −0.393228 0.919441i \(-0.628642\pi\)
−0.393228 + 0.919441i \(0.628642\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.41421 −1.54597 −0.772985 0.634424i \(-0.781237\pi\)
−0.772985 + 0.634424i \(0.781237\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.41421 0.464616
\(28\) 0 0
\(29\) −8.65685 −1.60754 −0.803769 0.594942i \(-0.797175\pi\)
−0.803769 + 0.594942i \(0.797175\pi\)
\(30\) 0 0
\(31\) 10.2426 1.83963 0.919816 0.392349i \(-0.128338\pi\)
0.919816 + 0.392349i \(0.128338\pi\)
\(32\) 0 0
\(33\) −0.0710678 −0.0123713
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.24264 0.368688 0.184344 0.982862i \(-0.440984\pi\)
0.184344 + 0.982862i \(0.440984\pi\)
\(38\) 0 0
\(39\) 1.82843 0.292783
\(40\) 0 0
\(41\) 6.24264 0.974937 0.487468 0.873141i \(-0.337920\pi\)
0.487468 + 0.873141i \(0.337920\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 2.82843 0.421637
\(46\) 0 0
\(47\) −7.24264 −1.05645 −0.528224 0.849105i \(-0.677142\pi\)
−0.528224 + 0.849105i \(0.677142\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.34315 0.188078
\(52\) 0 0
\(53\) 4.24264 0.582772 0.291386 0.956606i \(-0.405884\pi\)
0.291386 + 0.956606i \(0.405884\pi\)
\(54\) 0 0
\(55\) −0.171573 −0.0231349
\(56\) 0 0
\(57\) −2.48528 −0.329184
\(58\) 0 0
\(59\) −2.24264 −0.291967 −0.145983 0.989287i \(-0.546635\pi\)
−0.145983 + 0.989287i \(0.546635\pi\)
\(60\) 0 0
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.41421 0.547516
\(66\) 0 0
\(67\) 8.24264 1.00700 0.503499 0.863996i \(-0.332046\pi\)
0.503499 + 0.863996i \(0.332046\pi\)
\(68\) 0 0
\(69\) 3.07107 0.369713
\(70\) 0 0
\(71\) 3.17157 0.376396 0.188198 0.982131i \(-0.439735\pi\)
0.188198 + 0.982131i \(0.439735\pi\)
\(72\) 0 0
\(73\) 8.48528 0.993127 0.496564 0.868000i \(-0.334595\pi\)
0.496564 + 0.868000i \(0.334595\pi\)
\(74\) 0 0
\(75\) −0.414214 −0.0478293
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.48528 −0.167107 −0.0835536 0.996503i \(-0.526627\pi\)
−0.0835536 + 0.996503i \(0.526627\pi\)
\(80\) 0 0
\(81\) 7.48528 0.831698
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 3.24264 0.351714
\(86\) 0 0
\(87\) 3.58579 0.384437
\(88\) 0 0
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.24264 −0.439941
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) −13.2426 −1.34459 −0.672293 0.740285i \(-0.734691\pi\)
−0.672293 + 0.740285i \(0.734691\pi\)
\(98\) 0 0
\(99\) −0.485281 −0.0487726
\(100\) 0 0
\(101\) −2.48528 −0.247295 −0.123647 0.992326i \(-0.539459\pi\)
−0.123647 + 0.992326i \(0.539459\pi\)
\(102\) 0 0
\(103\) 19.2426 1.89603 0.948017 0.318220i \(-0.103085\pi\)
0.948017 + 0.318220i \(0.103085\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.48528 0.240261 0.120131 0.992758i \(-0.461669\pi\)
0.120131 + 0.992758i \(0.461669\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) −0.928932 −0.0881703
\(112\) 0 0
\(113\) −13.0711 −1.22962 −0.614811 0.788674i \(-0.710768\pi\)
−0.614811 + 0.788674i \(0.710768\pi\)
\(114\) 0 0
\(115\) 7.41421 0.691379
\(116\) 0 0
\(117\) 12.4853 1.15426
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9706 −0.997324
\(122\) 0 0
\(123\) −2.58579 −0.233153
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.24264 −0.731416 −0.365708 0.930730i \(-0.619173\pi\)
−0.365708 + 0.930730i \(0.619173\pi\)
\(128\) 0 0
\(129\) 0.828427 0.0729389
\(130\) 0 0
\(131\) 12.2426 1.06964 0.534822 0.844965i \(-0.320379\pi\)
0.534822 + 0.844965i \(0.320379\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.41421 −0.207782
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 7.75736 0.657971 0.328985 0.944335i \(-0.393293\pi\)
0.328985 + 0.944335i \(0.393293\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) 0 0
\(143\) −0.757359 −0.0633336
\(144\) 0 0
\(145\) 8.65685 0.718913
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.17157 −0.751365 −0.375682 0.926749i \(-0.622592\pi\)
−0.375682 + 0.926749i \(0.622592\pi\)
\(150\) 0 0
\(151\) 7.48528 0.609144 0.304572 0.952489i \(-0.401487\pi\)
0.304572 + 0.952489i \(0.401487\pi\)
\(152\) 0 0
\(153\) 9.17157 0.741478
\(154\) 0 0
\(155\) −10.2426 −0.822709
\(156\) 0 0
\(157\) 15.1716 1.21082 0.605412 0.795913i \(-0.293008\pi\)
0.605412 + 0.795913i \(0.293008\pi\)
\(158\) 0 0
\(159\) −1.75736 −0.139368
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.2426 0.802266 0.401133 0.916020i \(-0.368617\pi\)
0.401133 + 0.916020i \(0.368617\pi\)
\(164\) 0 0
\(165\) 0.0710678 0.00553262
\(166\) 0 0
\(167\) 0.757359 0.0586062 0.0293031 0.999571i \(-0.490671\pi\)
0.0293031 + 0.999571i \(0.490671\pi\)
\(168\) 0 0
\(169\) 6.48528 0.498868
\(170\) 0 0
\(171\) −16.9706 −1.29777
\(172\) 0 0
\(173\) 7.24264 0.550648 0.275324 0.961352i \(-0.411215\pi\)
0.275324 + 0.961352i \(0.411215\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.928932 0.0698228
\(178\) 0 0
\(179\) 14.4853 1.08268 0.541340 0.840804i \(-0.317917\pi\)
0.541340 + 0.840804i \(0.317917\pi\)
\(180\) 0 0
\(181\) 18.7279 1.39204 0.696018 0.718025i \(-0.254953\pi\)
0.696018 + 0.718025i \(0.254953\pi\)
\(182\) 0 0
\(183\) −1.17157 −0.0866052
\(184\) 0 0
\(185\) −2.24264 −0.164882
\(186\) 0 0
\(187\) −0.556349 −0.0406843
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.9706 −1.01087 −0.505437 0.862863i \(-0.668669\pi\)
−0.505437 + 0.862863i \(0.668669\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) −1.82843 −0.130936
\(196\) 0 0
\(197\) 13.4142 0.955723 0.477862 0.878435i \(-0.341412\pi\)
0.477862 + 0.878435i \(0.341412\pi\)
\(198\) 0 0
\(199\) −7.41421 −0.525580 −0.262790 0.964853i \(-0.584643\pi\)
−0.262790 + 0.964853i \(0.584643\pi\)
\(200\) 0 0
\(201\) −3.41421 −0.240820
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.24264 −0.436005
\(206\) 0 0
\(207\) 20.9706 1.45755
\(208\) 0 0
\(209\) 1.02944 0.0712077
\(210\) 0 0
\(211\) −9.00000 −0.619586 −0.309793 0.950804i \(-0.600260\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(212\) 0 0
\(213\) −1.31371 −0.0900138
\(214\) 0 0
\(215\) 2.00000 0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.51472 −0.237503
\(220\) 0 0
\(221\) 14.3137 0.962844
\(222\) 0 0
\(223\) −24.2132 −1.62144 −0.810718 0.585437i \(-0.800923\pi\)
−0.810718 + 0.585437i \(0.800923\pi\)
\(224\) 0 0
\(225\) −2.82843 −0.188562
\(226\) 0 0
\(227\) 15.7279 1.04390 0.521949 0.852976i \(-0.325205\pi\)
0.521949 + 0.852976i \(0.325205\pi\)
\(228\) 0 0
\(229\) −18.0416 −1.19222 −0.596112 0.802901i \(-0.703289\pi\)
−0.596112 + 0.802901i \(0.703289\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.17157 −0.600850 −0.300425 0.953805i \(-0.597128\pi\)
−0.300425 + 0.953805i \(0.597128\pi\)
\(234\) 0 0
\(235\) 7.24264 0.472458
\(236\) 0 0
\(237\) 0.615224 0.0399631
\(238\) 0 0
\(239\) 17.4853 1.13103 0.565514 0.824738i \(-0.308678\pi\)
0.565514 + 0.824738i \(0.308678\pi\)
\(240\) 0 0
\(241\) 0.727922 0.0468896 0.0234448 0.999725i \(-0.492537\pi\)
0.0234448 + 0.999725i \(0.492537\pi\)
\(242\) 0 0
\(243\) −10.3431 −0.663513
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −26.4853 −1.68522
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.2132 1.08649 0.543244 0.839575i \(-0.317196\pi\)
0.543244 + 0.839575i \(0.317196\pi\)
\(252\) 0 0
\(253\) −1.27208 −0.0799749
\(254\) 0 0
\(255\) −1.34315 −0.0841110
\(256\) 0 0
\(257\) 9.51472 0.593512 0.296756 0.954953i \(-0.404095\pi\)
0.296756 + 0.954953i \(0.404095\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 24.4853 1.51560
\(262\) 0 0
\(263\) 16.6274 1.02529 0.512645 0.858601i \(-0.328666\pi\)
0.512645 + 0.858601i \(0.328666\pi\)
\(264\) 0 0
\(265\) −4.24264 −0.260623
\(266\) 0 0
\(267\) −3.31371 −0.202796
\(268\) 0 0
\(269\) 16.2426 0.990331 0.495166 0.868799i \(-0.335107\pi\)
0.495166 + 0.868799i \(0.335107\pi\)
\(270\) 0 0
\(271\) −0.686292 −0.0416892 −0.0208446 0.999783i \(-0.506636\pi\)
−0.0208446 + 0.999783i \(0.506636\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.171573 0.0103462
\(276\) 0 0
\(277\) 15.2132 0.914073 0.457036 0.889448i \(-0.348911\pi\)
0.457036 + 0.889448i \(0.348911\pi\)
\(278\) 0 0
\(279\) −28.9706 −1.73442
\(280\) 0 0
\(281\) 2.31371 0.138024 0.0690121 0.997616i \(-0.478015\pi\)
0.0690121 + 0.997616i \(0.478015\pi\)
\(282\) 0 0
\(283\) 24.5563 1.45972 0.729862 0.683595i \(-0.239584\pi\)
0.729862 + 0.683595i \(0.239584\pi\)
\(284\) 0 0
\(285\) 2.48528 0.147215
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −6.48528 −0.381487
\(290\) 0 0
\(291\) 5.48528 0.321553
\(292\) 0 0
\(293\) −25.7279 −1.50304 −0.751521 0.659710i \(-0.770679\pi\)
−0.751521 + 0.659710i \(0.770679\pi\)
\(294\) 0 0
\(295\) 2.24264 0.130572
\(296\) 0 0
\(297\) 0.414214 0.0240351
\(298\) 0 0
\(299\) 32.7279 1.89270
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.02944 0.0591396
\(304\) 0 0
\(305\) −2.82843 −0.161955
\(306\) 0 0
\(307\) 30.8995 1.76353 0.881764 0.471691i \(-0.156356\pi\)
0.881764 + 0.471691i \(0.156356\pi\)
\(308\) 0 0
\(309\) −7.97056 −0.453429
\(310\) 0 0
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) 18.2132 1.02947 0.514736 0.857349i \(-0.327890\pi\)
0.514736 + 0.857349i \(0.327890\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.343146 −0.0192730 −0.00963649 0.999954i \(-0.503067\pi\)
−0.00963649 + 0.999954i \(0.503067\pi\)
\(318\) 0 0
\(319\) −1.48528 −0.0831598
\(320\) 0 0
\(321\) −1.02944 −0.0574576
\(322\) 0 0
\(323\) −19.4558 −1.08255
\(324\) 0 0
\(325\) −4.41421 −0.244857
\(326\) 0 0
\(327\) −2.07107 −0.114530
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 27.4558 1.50911 0.754555 0.656237i \(-0.227853\pi\)
0.754555 + 0.656237i \(0.227853\pi\)
\(332\) 0 0
\(333\) −6.34315 −0.347602
\(334\) 0 0
\(335\) −8.24264 −0.450344
\(336\) 0 0
\(337\) 22.2426 1.21163 0.605817 0.795604i \(-0.292846\pi\)
0.605817 + 0.795604i \(0.292846\pi\)
\(338\) 0 0
\(339\) 5.41421 0.294060
\(340\) 0 0
\(341\) 1.75736 0.0951663
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.07107 −0.165341
\(346\) 0 0
\(347\) −13.0711 −0.701692 −0.350846 0.936433i \(-0.614106\pi\)
−0.350846 + 0.936433i \(0.614106\pi\)
\(348\) 0 0
\(349\) 10.9706 0.587241 0.293620 0.955922i \(-0.405140\pi\)
0.293620 + 0.955922i \(0.405140\pi\)
\(350\) 0 0
\(351\) −10.6569 −0.568821
\(352\) 0 0
\(353\) 6.21320 0.330695 0.165348 0.986235i \(-0.447125\pi\)
0.165348 + 0.986235i \(0.447125\pi\)
\(354\) 0 0
\(355\) −3.17157 −0.168330
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.3137 0.597115 0.298557 0.954392i \(-0.403495\pi\)
0.298557 + 0.954392i \(0.403495\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 4.54416 0.238506
\(364\) 0 0
\(365\) −8.48528 −0.444140
\(366\) 0 0
\(367\) −23.8701 −1.24601 −0.623003 0.782219i \(-0.714088\pi\)
−0.623003 + 0.782219i \(0.714088\pi\)
\(368\) 0 0
\(369\) −17.6569 −0.919179
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −16.4853 −0.853576 −0.426788 0.904352i \(-0.640355\pi\)
−0.426788 + 0.904352i \(0.640355\pi\)
\(374\) 0 0
\(375\) 0.414214 0.0213899
\(376\) 0 0
\(377\) 38.2132 1.96808
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 3.41421 0.174915
\(382\) 0 0
\(383\) 4.48528 0.229187 0.114594 0.993412i \(-0.463443\pi\)
0.114594 + 0.993412i \(0.463443\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.65685 0.287554
\(388\) 0 0
\(389\) −6.85786 −0.347708 −0.173854 0.984771i \(-0.555622\pi\)
−0.173854 + 0.984771i \(0.555622\pi\)
\(390\) 0 0
\(391\) 24.0416 1.21584
\(392\) 0 0
\(393\) −5.07107 −0.255802
\(394\) 0 0
\(395\) 1.48528 0.0747326
\(396\) 0 0
\(397\) −1.58579 −0.0795883 −0.0397942 0.999208i \(-0.512670\pi\)
−0.0397942 + 0.999208i \(0.512670\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.8284 0.590683 0.295342 0.955392i \(-0.404566\pi\)
0.295342 + 0.955392i \(0.404566\pi\)
\(402\) 0 0
\(403\) −45.2132 −2.25223
\(404\) 0 0
\(405\) −7.48528 −0.371947
\(406\) 0 0
\(407\) 0.384776 0.0190727
\(408\) 0 0
\(409\) −2.48528 −0.122889 −0.0614446 0.998110i \(-0.519571\pi\)
−0.0614446 + 0.998110i \(0.519571\pi\)
\(410\) 0 0
\(411\) −4.97056 −0.245180
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3.21320 −0.157351
\(418\) 0 0
\(419\) 18.7279 0.914919 0.457459 0.889230i \(-0.348759\pi\)
0.457459 + 0.889230i \(0.348759\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 20.4853 0.996028
\(424\) 0 0
\(425\) −3.24264 −0.157291
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.313708 0.0151460
\(430\) 0 0
\(431\) 28.7990 1.38720 0.693599 0.720361i \(-0.256024\pi\)
0.693599 + 0.720361i \(0.256024\pi\)
\(432\) 0 0
\(433\) −10.9706 −0.527212 −0.263606 0.964630i \(-0.584912\pi\)
−0.263606 + 0.964630i \(0.584912\pi\)
\(434\) 0 0
\(435\) −3.58579 −0.171925
\(436\) 0 0
\(437\) −44.4853 −2.12802
\(438\) 0 0
\(439\) −30.3848 −1.45019 −0.725093 0.688651i \(-0.758203\pi\)
−0.725093 + 0.688651i \(0.758203\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15.1716 −0.720823 −0.360412 0.932793i \(-0.617364\pi\)
−0.360412 + 0.932793i \(0.617364\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) 0 0
\(447\) 3.79899 0.179686
\(448\) 0 0
\(449\) −24.1716 −1.14073 −0.570364 0.821392i \(-0.693198\pi\)
−0.570364 + 0.821392i \(0.693198\pi\)
\(450\) 0 0
\(451\) 1.07107 0.0504346
\(452\) 0 0
\(453\) −3.10051 −0.145674
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.7574 −0.549986 −0.274993 0.961446i \(-0.588676\pi\)
−0.274993 + 0.961446i \(0.588676\pi\)
\(458\) 0 0
\(459\) −7.82843 −0.365400
\(460\) 0 0
\(461\) −3.02944 −0.141095 −0.0705475 0.997508i \(-0.522475\pi\)
−0.0705475 + 0.997508i \(0.522475\pi\)
\(462\) 0 0
\(463\) 21.4558 0.997138 0.498569 0.866850i \(-0.333859\pi\)
0.498569 + 0.866850i \(0.333859\pi\)
\(464\) 0 0
\(465\) 4.24264 0.196748
\(466\) 0 0
\(467\) −5.72792 −0.265057 −0.132528 0.991179i \(-0.542310\pi\)
−0.132528 + 0.991179i \(0.542310\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −6.28427 −0.289564
\(472\) 0 0
\(473\) −0.343146 −0.0157779
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) 11.7574 0.537207 0.268604 0.963251i \(-0.413438\pi\)
0.268604 + 0.963251i \(0.413438\pi\)
\(480\) 0 0
\(481\) −9.89949 −0.451378
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.2426 0.601317
\(486\) 0 0
\(487\) −27.6985 −1.25514 −0.627569 0.778561i \(-0.715950\pi\)
−0.627569 + 0.778561i \(0.715950\pi\)
\(488\) 0 0
\(489\) −4.24264 −0.191859
\(490\) 0 0
\(491\) 37.2843 1.68262 0.841308 0.540556i \(-0.181786\pi\)
0.841308 + 0.540556i \(0.181786\pi\)
\(492\) 0 0
\(493\) 28.0711 1.26426
\(494\) 0 0
\(495\) 0.485281 0.0218118
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.00000 −0.134298 −0.0671492 0.997743i \(-0.521390\pi\)
−0.0671492 + 0.997743i \(0.521390\pi\)
\(500\) 0 0
\(501\) −0.313708 −0.0140155
\(502\) 0 0
\(503\) −41.2426 −1.83892 −0.919459 0.393185i \(-0.871373\pi\)
−0.919459 + 0.393185i \(0.871373\pi\)
\(504\) 0 0
\(505\) 2.48528 0.110594
\(506\) 0 0
\(507\) −2.68629 −0.119302
\(508\) 0 0
\(509\) 25.2132 1.11756 0.558778 0.829317i \(-0.311270\pi\)
0.558778 + 0.829317i \(0.311270\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 14.4853 0.639541
\(514\) 0 0
\(515\) −19.2426 −0.847932
\(516\) 0 0
\(517\) −1.24264 −0.0546513
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) −14.9706 −0.655872 −0.327936 0.944700i \(-0.606353\pi\)
−0.327936 + 0.944700i \(0.606353\pi\)
\(522\) 0 0
\(523\) 32.4853 1.42048 0.710241 0.703959i \(-0.248586\pi\)
0.710241 + 0.703959i \(0.248586\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −33.2132 −1.44679
\(528\) 0 0
\(529\) 31.9706 1.39002
\(530\) 0 0
\(531\) 6.34315 0.275269
\(532\) 0 0
\(533\) −27.5563 −1.19360
\(534\) 0 0
\(535\) −2.48528 −0.107448
\(536\) 0 0
\(537\) −6.00000 −0.258919
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −21.9706 −0.944588 −0.472294 0.881441i \(-0.656574\pi\)
−0.472294 + 0.881441i \(0.656574\pi\)
\(542\) 0 0
\(543\) −7.75736 −0.332900
\(544\) 0 0
\(545\) −5.00000 −0.214176
\(546\) 0 0
\(547\) 24.4853 1.04692 0.523458 0.852052i \(-0.324642\pi\)
0.523458 + 0.852052i \(0.324642\pi\)
\(548\) 0 0
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) −51.9411 −2.21277
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.928932 0.0394310
\(556\) 0 0
\(557\) −7.79899 −0.330454 −0.165227 0.986256i \(-0.552836\pi\)
−0.165227 + 0.986256i \(0.552836\pi\)
\(558\) 0 0
\(559\) 8.82843 0.373403
\(560\) 0 0
\(561\) 0.230447 0.00972950
\(562\) 0 0
\(563\) −31.9411 −1.34616 −0.673079 0.739571i \(-0.735029\pi\)
−0.673079 + 0.739571i \(0.735029\pi\)
\(564\) 0 0
\(565\) 13.0711 0.549904
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.1421 1.09594 0.547968 0.836500i \(-0.315402\pi\)
0.547968 + 0.836500i \(0.315402\pi\)
\(570\) 0 0
\(571\) 17.5147 0.732968 0.366484 0.930424i \(-0.380561\pi\)
0.366484 + 0.930424i \(0.380561\pi\)
\(572\) 0 0
\(573\) 5.78680 0.241747
\(574\) 0 0
\(575\) −7.41421 −0.309194
\(576\) 0 0
\(577\) −15.7279 −0.654762 −0.327381 0.944892i \(-0.606166\pi\)
−0.327381 + 0.944892i \(0.606166\pi\)
\(578\) 0 0
\(579\) 6.62742 0.275426
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0.727922 0.0301475
\(584\) 0 0
\(585\) −12.4853 −0.516203
\(586\) 0 0
\(587\) −37.4558 −1.54597 −0.772984 0.634425i \(-0.781237\pi\)
−0.772984 + 0.634425i \(0.781237\pi\)
\(588\) 0 0
\(589\) 61.4558 2.53224
\(590\) 0 0
\(591\) −5.55635 −0.228558
\(592\) 0 0
\(593\) −19.2426 −0.790201 −0.395100 0.918638i \(-0.629290\pi\)
−0.395100 + 0.918638i \(0.629290\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.07107 0.125690
\(598\) 0 0
\(599\) 17.8284 0.728450 0.364225 0.931311i \(-0.381334\pi\)
0.364225 + 0.931311i \(0.381334\pi\)
\(600\) 0 0
\(601\) 10.9706 0.447499 0.223749 0.974647i \(-0.428170\pi\)
0.223749 + 0.974647i \(0.428170\pi\)
\(602\) 0 0
\(603\) −23.3137 −0.949408
\(604\) 0 0
\(605\) 10.9706 0.446017
\(606\) 0 0
\(607\) −5.10051 −0.207023 −0.103512 0.994628i \(-0.533008\pi\)
−0.103512 + 0.994628i \(0.533008\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 31.9706 1.29339
\(612\) 0 0
\(613\) −23.9411 −0.966973 −0.483486 0.875352i \(-0.660630\pi\)
−0.483486 + 0.875352i \(0.660630\pi\)
\(614\) 0 0
\(615\) 2.58579 0.104269
\(616\) 0 0
\(617\) 4.58579 0.184617 0.0923084 0.995730i \(-0.470575\pi\)
0.0923084 + 0.995730i \(0.470575\pi\)
\(618\) 0 0
\(619\) 16.9289 0.680431 0.340216 0.940347i \(-0.389500\pi\)
0.340216 + 0.940347i \(0.389500\pi\)
\(620\) 0 0
\(621\) −17.8995 −0.718282
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −0.426407 −0.0170291
\(628\) 0 0
\(629\) −7.27208 −0.289957
\(630\) 0 0
\(631\) 42.4558 1.69014 0.845070 0.534655i \(-0.179559\pi\)
0.845070 + 0.534655i \(0.179559\pi\)
\(632\) 0 0
\(633\) 3.72792 0.148172
\(634\) 0 0
\(635\) 8.24264 0.327099
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.97056 −0.354870
\(640\) 0 0
\(641\) −23.3137 −0.920836 −0.460418 0.887702i \(-0.652300\pi\)
−0.460418 + 0.887702i \(0.652300\pi\)
\(642\) 0 0
\(643\) 2.27208 0.0896020 0.0448010 0.998996i \(-0.485735\pi\)
0.0448010 + 0.998996i \(0.485735\pi\)
\(644\) 0 0
\(645\) −0.828427 −0.0326193
\(646\) 0 0
\(647\) −11.5147 −0.452690 −0.226345 0.974047i \(-0.572678\pi\)
−0.226345 + 0.974047i \(0.572678\pi\)
\(648\) 0 0
\(649\) −0.384776 −0.0151038
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 34.9706 1.36850 0.684252 0.729246i \(-0.260129\pi\)
0.684252 + 0.729246i \(0.260129\pi\)
\(654\) 0 0
\(655\) −12.2426 −0.478360
\(656\) 0 0
\(657\) −24.0000 −0.936329
\(658\) 0 0
\(659\) −19.9706 −0.777943 −0.388971 0.921250i \(-0.627169\pi\)
−0.388971 + 0.921250i \(0.627169\pi\)
\(660\) 0 0
\(661\) −13.4558 −0.523372 −0.261686 0.965153i \(-0.584278\pi\)
−0.261686 + 0.965153i \(0.584278\pi\)
\(662\) 0 0
\(663\) −5.92893 −0.230261
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 64.1838 2.48521
\(668\) 0 0
\(669\) 10.0294 0.387760
\(670\) 0 0
\(671\) 0.485281 0.0187341
\(672\) 0 0
\(673\) 3.51472 0.135482 0.0677412 0.997703i \(-0.478421\pi\)
0.0677412 + 0.997703i \(0.478421\pi\)
\(674\) 0 0
\(675\) 2.41421 0.0929231
\(676\) 0 0
\(677\) −44.2132 −1.69925 −0.849626 0.527386i \(-0.823172\pi\)
−0.849626 + 0.527386i \(0.823172\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −6.51472 −0.249645
\(682\) 0 0
\(683\) −31.7990 −1.21675 −0.608377 0.793648i \(-0.708179\pi\)
−0.608377 + 0.793648i \(0.708179\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 7.47309 0.285116
\(688\) 0 0
\(689\) −18.7279 −0.713477
\(690\) 0 0
\(691\) 14.8284 0.564100 0.282050 0.959400i \(-0.408986\pi\)
0.282050 + 0.959400i \(0.408986\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.75736 −0.294253
\(696\) 0 0
\(697\) −20.2426 −0.766745
\(698\) 0 0
\(699\) 3.79899 0.143691
\(700\) 0 0
\(701\) 46.4558 1.75461 0.877307 0.479931i \(-0.159338\pi\)
0.877307 + 0.479931i \(0.159338\pi\)
\(702\) 0 0
\(703\) 13.4558 0.507497
\(704\) 0 0
\(705\) −3.00000 −0.112987
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 17.0000 0.638448 0.319224 0.947679i \(-0.396578\pi\)
0.319224 + 0.947679i \(0.396578\pi\)
\(710\) 0 0
\(711\) 4.20101 0.157550
\(712\) 0 0
\(713\) −75.9411 −2.84402
\(714\) 0 0
\(715\) 0.757359 0.0283236
\(716\) 0 0
\(717\) −7.24264 −0.270481
\(718\) 0 0
\(719\) −25.2132 −0.940294 −0.470147 0.882588i \(-0.655799\pi\)
−0.470147 + 0.882588i \(0.655799\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −0.301515 −0.0112135
\(724\) 0 0
\(725\) −8.65685 −0.321507
\(726\) 0 0
\(727\) −6.68629 −0.247981 −0.123990 0.992283i \(-0.539569\pi\)
−0.123990 + 0.992283i \(0.539569\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) 6.48528 0.239867
\(732\) 0 0
\(733\) −14.6985 −0.542901 −0.271450 0.962452i \(-0.587503\pi\)
−0.271450 + 0.962452i \(0.587503\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.41421 0.0520932
\(738\) 0 0
\(739\) −29.9706 −1.10248 −0.551242 0.834345i \(-0.685846\pi\)
−0.551242 + 0.834345i \(0.685846\pi\)
\(740\) 0 0
\(741\) 10.9706 0.403014
\(742\) 0 0
\(743\) −11.2721 −0.413532 −0.206766 0.978390i \(-0.566294\pi\)
−0.206766 + 0.978390i \(0.566294\pi\)
\(744\) 0 0
\(745\) 9.17157 0.336020
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −29.4853 −1.07593 −0.537967 0.842966i \(-0.680807\pi\)
−0.537967 + 0.842966i \(0.680807\pi\)
\(752\) 0 0
\(753\) −7.12994 −0.259830
\(754\) 0 0
\(755\) −7.48528 −0.272417
\(756\) 0 0
\(757\) 0.485281 0.0176379 0.00881893 0.999961i \(-0.497193\pi\)
0.00881893 + 0.999961i \(0.497193\pi\)
\(758\) 0 0
\(759\) 0.526912 0.0191257
\(760\) 0 0
\(761\) 12.7279 0.461387 0.230693 0.973026i \(-0.425901\pi\)
0.230693 + 0.973026i \(0.425901\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −9.17157 −0.331599
\(766\) 0 0
\(767\) 9.89949 0.357450
\(768\) 0 0
\(769\) 8.82843 0.318361 0.159181 0.987249i \(-0.449115\pi\)
0.159181 + 0.987249i \(0.449115\pi\)
\(770\) 0 0
\(771\) −3.94113 −0.141936
\(772\) 0 0
\(773\) 6.21320 0.223473 0.111737 0.993738i \(-0.464359\pi\)
0.111737 + 0.993738i \(0.464359\pi\)
\(774\) 0 0
\(775\) 10.2426 0.367927
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 37.4558 1.34199
\(780\) 0 0
\(781\) 0.544156 0.0194714
\(782\) 0 0
\(783\) −20.8995 −0.746887
\(784\) 0 0
\(785\) −15.1716 −0.541497
\(786\) 0 0
\(787\) 20.2721 0.722622 0.361311 0.932445i \(-0.382329\pi\)
0.361311 + 0.932445i \(0.382329\pi\)
\(788\) 0 0
\(789\) −6.88730 −0.245194
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −12.4853 −0.443365
\(794\) 0 0
\(795\) 1.75736 0.0623271
\(796\) 0 0
\(797\) 21.1838 0.750367 0.375184 0.926950i \(-0.377580\pi\)
0.375184 + 0.926950i \(0.377580\pi\)
\(798\) 0 0
\(799\) 23.4853 0.830850
\(800\) 0 0
\(801\) −22.6274 −0.799500
\(802\) 0 0
\(803\) 1.45584 0.0513756
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.72792 −0.236834
\(808\) 0 0
\(809\) −48.5980 −1.70861 −0.854307 0.519769i \(-0.826018\pi\)
−0.854307 + 0.519769i \(0.826018\pi\)
\(810\) 0 0
\(811\) 47.3553 1.66287 0.831435 0.555621i \(-0.187520\pi\)
0.831435 + 0.555621i \(0.187520\pi\)
\(812\) 0 0
\(813\) 0.284271 0.00996983
\(814\) 0 0
\(815\) −10.2426 −0.358784
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.4853 −0.819642 −0.409821 0.912166i \(-0.634409\pi\)
−0.409821 + 0.912166i \(0.634409\pi\)
\(822\) 0 0
\(823\) −16.7279 −0.583099 −0.291549 0.956556i \(-0.594171\pi\)
−0.291549 + 0.956556i \(0.594171\pi\)
\(824\) 0 0
\(825\) −0.0710678 −0.00247426
\(826\) 0 0
\(827\) −42.0416 −1.46193 −0.730965 0.682415i \(-0.760930\pi\)
−0.730965 + 0.682415i \(0.760930\pi\)
\(828\) 0 0
\(829\) −5.95837 −0.206943 −0.103471 0.994632i \(-0.532995\pi\)
−0.103471 + 0.994632i \(0.532995\pi\)
\(830\) 0 0
\(831\) −6.30152 −0.218597
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.757359 −0.0262095
\(836\) 0 0
\(837\) 24.7279 0.854722
\(838\) 0 0
\(839\) −23.2721 −0.803441 −0.401721 0.915762i \(-0.631588\pi\)
−0.401721 + 0.915762i \(0.631588\pi\)
\(840\) 0 0
\(841\) 45.9411 1.58418
\(842\) 0 0
\(843\) −0.958369 −0.0330080
\(844\) 0 0
\(845\) −6.48528 −0.223100
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −10.1716 −0.349087
\(850\) 0 0
\(851\) −16.6274 −0.569981
\(852\) 0 0
\(853\) −10.9706 −0.375625 −0.187812 0.982205i \(-0.560140\pi\)
−0.187812 + 0.982205i \(0.560140\pi\)
\(854\) 0 0
\(855\) 16.9706 0.580381
\(856\) 0 0
\(857\) 22.4853 0.768083 0.384041 0.923316i \(-0.374532\pi\)
0.384041 + 0.923316i \(0.374532\pi\)
\(858\) 0 0
\(859\) −24.7696 −0.845126 −0.422563 0.906334i \(-0.638870\pi\)
−0.422563 + 0.906334i \(0.638870\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −18.3848 −0.625825 −0.312913 0.949782i \(-0.601305\pi\)
−0.312913 + 0.949782i \(0.601305\pi\)
\(864\) 0 0
\(865\) −7.24264 −0.246257
\(866\) 0 0
\(867\) 2.68629 0.0912312
\(868\) 0 0
\(869\) −0.254834 −0.00864465
\(870\) 0 0
\(871\) −36.3848 −1.23285
\(872\) 0 0
\(873\) 37.4558 1.26769
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.0294 0.439973 0.219986 0.975503i \(-0.429399\pi\)
0.219986 + 0.975503i \(0.429399\pi\)
\(878\) 0 0
\(879\) 10.6569 0.359447
\(880\) 0 0
\(881\) 52.9706 1.78462 0.892312 0.451420i \(-0.149082\pi\)
0.892312 + 0.451420i \(0.149082\pi\)
\(882\) 0 0
\(883\) −31.5147 −1.06055 −0.530277 0.847824i \(-0.677912\pi\)
−0.530277 + 0.847824i \(0.677912\pi\)
\(884\) 0 0
\(885\) −0.928932 −0.0312257
\(886\) 0 0
\(887\) 2.97056 0.0997417 0.0498709 0.998756i \(-0.484119\pi\)
0.0498709 + 0.998756i \(0.484119\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.28427 0.0430247
\(892\) 0 0
\(893\) −43.4558 −1.45419
\(894\) 0 0
\(895\) −14.4853 −0.484190
\(896\) 0 0
\(897\) −13.5563 −0.452633
\(898\) 0 0
\(899\) −88.6690 −2.95728
\(900\) 0 0
\(901\) −13.7574 −0.458324
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.7279 −0.622537
\(906\) 0 0
\(907\) 44.1838 1.46710 0.733549 0.679637i \(-0.237863\pi\)
0.733549 + 0.679637i \(0.237863\pi\)
\(908\) 0 0
\(909\) 7.02944 0.233152
\(910\) 0 0
\(911\) −5.65685 −0.187420 −0.0937100 0.995600i \(-0.529873\pi\)
−0.0937100 + 0.995600i \(0.529873\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.17157 0.0387310
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −12.4558 −0.410880 −0.205440 0.978670i \(-0.565863\pi\)
−0.205440 + 0.978670i \(0.565863\pi\)
\(920\) 0 0
\(921\) −12.7990 −0.421741
\(922\) 0 0
\(923\) −14.0000 −0.460816
\(924\) 0 0
\(925\) 2.24264 0.0737376
\(926\) 0 0
\(927\) −54.4264 −1.78760
\(928\) 0 0
\(929\) −29.2721 −0.960386 −0.480193 0.877163i \(-0.659433\pi\)
−0.480193 + 0.877163i \(0.659433\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.14214 0.135607
\(934\) 0 0
\(935\) 0.556349 0.0181946
\(936\) 0 0
\(937\) 48.5563 1.58627 0.793133 0.609048i \(-0.208448\pi\)
0.793133 + 0.609048i \(0.208448\pi\)
\(938\) 0 0
\(939\) −7.54416 −0.246194
\(940\) 0 0
\(941\) −28.9706 −0.944413 −0.472207 0.881488i \(-0.656542\pi\)
−0.472207 + 0.881488i \(0.656542\pi\)
\(942\) 0 0
\(943\) −46.2843 −1.50722
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 52.2426 1.69766 0.848829 0.528668i \(-0.177308\pi\)
0.848829 + 0.528668i \(0.177308\pi\)
\(948\) 0 0
\(949\) −37.4558 −1.21587
\(950\) 0 0
\(951\) 0.142136 0.00460906
\(952\) 0 0
\(953\) 53.0122 1.71723 0.858617 0.512618i \(-0.171324\pi\)
0.858617 + 0.512618i \(0.171324\pi\)
\(954\) 0 0
\(955\) 13.9706 0.452077
\(956\) 0 0
\(957\) 0.615224 0.0198874
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 73.9117 2.38425
\(962\) 0 0
\(963\) −7.02944 −0.226520
\(964\) 0 0
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) 60.4264 1.94318 0.971591 0.236666i \(-0.0760546\pi\)
0.971591 + 0.236666i \(0.0760546\pi\)
\(968\) 0 0
\(969\) 8.05887 0.258888
\(970\) 0 0
\(971\) −17.2721 −0.554287 −0.277144 0.960828i \(-0.589388\pi\)
−0.277144 + 0.960828i \(0.589388\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.82843 0.0585565
\(976\) 0 0
\(977\) 42.7696 1.36832 0.684160 0.729332i \(-0.260169\pi\)
0.684160 + 0.729332i \(0.260169\pi\)
\(978\) 0 0
\(979\) 1.37258 0.0438679
\(980\) 0 0
\(981\) −14.1421 −0.451524
\(982\) 0 0
\(983\) 0.213203 0.00680013 0.00340007 0.999994i \(-0.498918\pi\)
0.00340007 + 0.999994i \(0.498918\pi\)
\(984\) 0 0
\(985\) −13.4142 −0.427412
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.8284 0.471517
\(990\) 0 0
\(991\) −19.9411 −0.633451 −0.316725 0.948517i \(-0.602583\pi\)
−0.316725 + 0.948517i \(0.602583\pi\)
\(992\) 0 0
\(993\) −11.3726 −0.360898
\(994\) 0 0
\(995\) 7.41421 0.235046
\(996\) 0 0
\(997\) 21.7279 0.688130 0.344065 0.938946i \(-0.388196\pi\)
0.344065 + 0.938946i \(0.388196\pi\)
\(998\) 0 0
\(999\) 5.41421 0.171298
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.2.a.bw.1.1 2
4.3 odd 2 245.2.a.e.1.1 2
7.6 odd 2 3920.2.a.br.1.2 2
12.11 even 2 2205.2.a.v.1.2 2
20.3 even 4 1225.2.b.i.99.3 4
20.7 even 4 1225.2.b.i.99.2 4
20.19 odd 2 1225.2.a.r.1.2 2
28.3 even 6 245.2.e.f.226.2 4
28.11 odd 6 245.2.e.g.226.2 4
28.19 even 6 245.2.e.f.116.2 4
28.23 odd 6 245.2.e.g.116.2 4
28.27 even 2 245.2.a.f.1.1 yes 2
84.83 odd 2 2205.2.a.t.1.2 2
140.27 odd 4 1225.2.b.j.99.1 4
140.83 odd 4 1225.2.b.j.99.4 4
140.139 even 2 1225.2.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.a.e.1.1 2 4.3 odd 2
245.2.a.f.1.1 yes 2 28.27 even 2
245.2.e.f.116.2 4 28.19 even 6
245.2.e.f.226.2 4 28.3 even 6
245.2.e.g.116.2 4 28.23 odd 6
245.2.e.g.226.2 4 28.11 odd 6
1225.2.a.p.1.2 2 140.139 even 2
1225.2.a.r.1.2 2 20.19 odd 2
1225.2.b.i.99.2 4 20.7 even 4
1225.2.b.i.99.3 4 20.3 even 4
1225.2.b.j.99.1 4 140.27 odd 4
1225.2.b.j.99.4 4 140.83 odd 4
2205.2.a.t.1.2 2 84.83 odd 2
2205.2.a.v.1.2 2 12.11 even 2
3920.2.a.br.1.2 2 7.6 odd 2
3920.2.a.bw.1.1 2 1.1 even 1 trivial