Properties

Label 3920.2.a.br.1.1
Level $3920$
Weight $2$
Character 3920.1
Self dual yes
Analytic conductor $31.301$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(31.3013575923\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3920.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.41421 q^{3} +1.00000 q^{5} +2.82843 q^{9} +O(q^{10})\) \(q-2.41421 q^{3} +1.00000 q^{5} +2.82843 q^{9} +5.82843 q^{11} +1.58579 q^{13} -2.41421 q^{15} -5.24264 q^{17} -6.00000 q^{19} -4.58579 q^{23} +1.00000 q^{25} +0.414214 q^{27} +2.65685 q^{29} -1.75736 q^{31} -14.0711 q^{33} -6.24264 q^{37} -3.82843 q^{39} +2.24264 q^{41} -2.00000 q^{43} +2.82843 q^{45} -1.24264 q^{47} +12.6569 q^{51} -4.24264 q^{53} +5.82843 q^{55} +14.4853 q^{57} -6.24264 q^{59} +2.82843 q^{61} +1.58579 q^{65} -0.242641 q^{67} +11.0711 q^{69} +8.82843 q^{71} +8.48528 q^{73} -2.41421 q^{75} +15.4853 q^{79} -9.48528 q^{81} -5.24264 q^{85} -6.41421 q^{87} -8.00000 q^{89} +4.24264 q^{93} -6.00000 q^{95} +4.75736 q^{97} +16.4853 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} + 2q^{5} + O(q^{10}) \) \( 2q - 2q^{3} + 2q^{5} + 6q^{11} + 6q^{13} - 2q^{15} - 2q^{17} - 12q^{19} - 12q^{23} + 2q^{25} - 2q^{27} - 6q^{29} - 12q^{31} - 14q^{33} - 4q^{37} - 2q^{39} - 4q^{41} - 4q^{43} + 6q^{47} + 14q^{51} + 6q^{55} + 12q^{57} - 4q^{59} + 6q^{65} + 8q^{67} + 8q^{69} + 12q^{71} - 2q^{75} + 14q^{79} - 2q^{81} - 2q^{85} - 10q^{87} - 16q^{89} - 12q^{95} + 18q^{97} + 16q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.41421 −1.39385 −0.696923 0.717146i \(-0.745448\pi\)
−0.696923 + 0.717146i \(0.745448\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.82843 0.942809
\(10\) 0 0
\(11\) 5.82843 1.75734 0.878668 0.477432i \(-0.158432\pi\)
0.878668 + 0.477432i \(0.158432\pi\)
\(12\) 0 0
\(13\) 1.58579 0.439818 0.219909 0.975520i \(-0.429424\pi\)
0.219909 + 0.975520i \(0.429424\pi\)
\(14\) 0 0
\(15\) −2.41421 −0.623347
\(16\) 0 0
\(17\) −5.24264 −1.27153 −0.635764 0.771884i \(-0.719315\pi\)
−0.635764 + 0.771884i \(0.719315\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.58579 −0.956203 −0.478101 0.878305i \(-0.658675\pi\)
−0.478101 + 0.878305i \(0.658675\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0.414214 0.0797154
\(28\) 0 0
\(29\) 2.65685 0.493365 0.246683 0.969096i \(-0.420659\pi\)
0.246683 + 0.969096i \(0.420659\pi\)
\(30\) 0 0
\(31\) −1.75736 −0.315631 −0.157816 0.987469i \(-0.550445\pi\)
−0.157816 + 0.987469i \(0.550445\pi\)
\(32\) 0 0
\(33\) −14.0711 −2.44946
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.24264 −1.02628 −0.513142 0.858304i \(-0.671519\pi\)
−0.513142 + 0.858304i \(0.671519\pi\)
\(38\) 0 0
\(39\) −3.82843 −0.613039
\(40\) 0 0
\(41\) 2.24264 0.350242 0.175121 0.984547i \(-0.443968\pi\)
0.175121 + 0.984547i \(0.443968\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 2.82843 0.421637
\(46\) 0 0
\(47\) −1.24264 −0.181258 −0.0906289 0.995885i \(-0.528888\pi\)
−0.0906289 + 0.995885i \(0.528888\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 12.6569 1.77231
\(52\) 0 0
\(53\) −4.24264 −0.582772 −0.291386 0.956606i \(-0.594116\pi\)
−0.291386 + 0.956606i \(0.594116\pi\)
\(54\) 0 0
\(55\) 5.82843 0.785905
\(56\) 0 0
\(57\) 14.4853 1.91862
\(58\) 0 0
\(59\) −6.24264 −0.812723 −0.406361 0.913712i \(-0.633203\pi\)
−0.406361 + 0.913712i \(0.633203\pi\)
\(60\) 0 0
\(61\) 2.82843 0.362143 0.181071 0.983470i \(-0.442043\pi\)
0.181071 + 0.983470i \(0.442043\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.58579 0.196693
\(66\) 0 0
\(67\) −0.242641 −0.0296433 −0.0148216 0.999890i \(-0.504718\pi\)
−0.0148216 + 0.999890i \(0.504718\pi\)
\(68\) 0 0
\(69\) 11.0711 1.33280
\(70\) 0 0
\(71\) 8.82843 1.04774 0.523871 0.851798i \(-0.324487\pi\)
0.523871 + 0.851798i \(0.324487\pi\)
\(72\) 0 0
\(73\) 8.48528 0.993127 0.496564 0.868000i \(-0.334595\pi\)
0.496564 + 0.868000i \(0.334595\pi\)
\(74\) 0 0
\(75\) −2.41421 −0.278769
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 15.4853 1.74223 0.871115 0.491079i \(-0.163397\pi\)
0.871115 + 0.491079i \(0.163397\pi\)
\(80\) 0 0
\(81\) −9.48528 −1.05392
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −5.24264 −0.568644
\(86\) 0 0
\(87\) −6.41421 −0.687676
\(88\) 0 0
\(89\) −8.00000 −0.847998 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.24264 0.439941
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 4.75736 0.483037 0.241518 0.970396i \(-0.422355\pi\)
0.241518 + 0.970396i \(0.422355\pi\)
\(98\) 0 0
\(99\) 16.4853 1.65683
\(100\) 0 0
\(101\) −14.4853 −1.44134 −0.720670 0.693279i \(-0.756166\pi\)
−0.720670 + 0.693279i \(0.756166\pi\)
\(102\) 0 0
\(103\) −10.7574 −1.05995 −0.529977 0.848012i \(-0.677799\pi\)
−0.529977 + 0.848012i \(0.677799\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.4853 −1.40035 −0.700173 0.713974i \(-0.746894\pi\)
−0.700173 + 0.713974i \(0.746894\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) 15.0711 1.43048
\(112\) 0 0
\(113\) 1.07107 0.100758 0.0503788 0.998730i \(-0.483957\pi\)
0.0503788 + 0.998730i \(0.483957\pi\)
\(114\) 0 0
\(115\) −4.58579 −0.427627
\(116\) 0 0
\(117\) 4.48528 0.414664
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 22.9706 2.08823
\(122\) 0 0
\(123\) −5.41421 −0.488183
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.242641 0.0215309 0.0107654 0.999942i \(-0.496573\pi\)
0.0107654 + 0.999942i \(0.496573\pi\)
\(128\) 0 0
\(129\) 4.82843 0.425119
\(130\) 0 0
\(131\) −3.75736 −0.328282 −0.164141 0.986437i \(-0.552485\pi\)
−0.164141 + 0.986437i \(0.552485\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.414214 0.0356498
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −16.2426 −1.37768 −0.688841 0.724912i \(-0.741880\pi\)
−0.688841 + 0.724912i \(0.741880\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) 0 0
\(143\) 9.24264 0.772908
\(144\) 0 0
\(145\) 2.65685 0.220640
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.8284 −1.21479 −0.607396 0.794399i \(-0.707786\pi\)
−0.607396 + 0.794399i \(0.707786\pi\)
\(150\) 0 0
\(151\) −9.48528 −0.771901 −0.385951 0.922519i \(-0.626126\pi\)
−0.385951 + 0.922519i \(0.626126\pi\)
\(152\) 0 0
\(153\) −14.8284 −1.19881
\(154\) 0 0
\(155\) −1.75736 −0.141154
\(156\) 0 0
\(157\) −20.8284 −1.66229 −0.831145 0.556056i \(-0.812314\pi\)
−0.831145 + 0.556056i \(0.812314\pi\)
\(158\) 0 0
\(159\) 10.2426 0.812294
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.75736 0.137647 0.0688235 0.997629i \(-0.478075\pi\)
0.0688235 + 0.997629i \(0.478075\pi\)
\(164\) 0 0
\(165\) −14.0711 −1.09543
\(166\) 0 0
\(167\) −9.24264 −0.715217 −0.357609 0.933872i \(-0.616408\pi\)
−0.357609 + 0.933872i \(0.616408\pi\)
\(168\) 0 0
\(169\) −10.4853 −0.806560
\(170\) 0 0
\(171\) −16.9706 −1.29777
\(172\) 0 0
\(173\) 1.24264 0.0944762 0.0472381 0.998884i \(-0.484958\pi\)
0.0472381 + 0.998884i \(0.484958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 15.0711 1.13281
\(178\) 0 0
\(179\) −2.48528 −0.185759 −0.0928793 0.995677i \(-0.529607\pi\)
−0.0928793 + 0.995677i \(0.529607\pi\)
\(180\) 0 0
\(181\) 6.72792 0.500083 0.250041 0.968235i \(-0.419556\pi\)
0.250041 + 0.968235i \(0.419556\pi\)
\(182\) 0 0
\(183\) −6.82843 −0.504772
\(184\) 0 0
\(185\) −6.24264 −0.458968
\(186\) 0 0
\(187\) −30.5563 −2.23450
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.9706 1.44502 0.722510 0.691361i \(-0.242989\pi\)
0.722510 + 0.691361i \(0.242989\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) −3.82843 −0.274159
\(196\) 0 0
\(197\) 10.5858 0.754206 0.377103 0.926171i \(-0.376920\pi\)
0.377103 + 0.926171i \(0.376920\pi\)
\(198\) 0 0
\(199\) 4.58579 0.325078 0.162539 0.986702i \(-0.448032\pi\)
0.162539 + 0.986702i \(0.448032\pi\)
\(200\) 0 0
\(201\) 0.585786 0.0413182
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.24264 0.156633
\(206\) 0 0
\(207\) −12.9706 −0.901516
\(208\) 0 0
\(209\) −34.9706 −2.41896
\(210\) 0 0
\(211\) −9.00000 −0.619586 −0.309793 0.950804i \(-0.600260\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(212\) 0 0
\(213\) −21.3137 −1.46039
\(214\) 0 0
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −20.4853 −1.38427
\(220\) 0 0
\(221\) −8.31371 −0.559241
\(222\) 0 0
\(223\) −18.2132 −1.21965 −0.609823 0.792538i \(-0.708760\pi\)
−0.609823 + 0.792538i \(0.708760\pi\)
\(224\) 0 0
\(225\) 2.82843 0.188562
\(226\) 0 0
\(227\) 9.72792 0.645665 0.322832 0.946456i \(-0.395365\pi\)
0.322832 + 0.946456i \(0.395365\pi\)
\(228\) 0 0
\(229\) −30.0416 −1.98521 −0.992603 0.121402i \(-0.961261\pi\)
−0.992603 + 0.121402i \(0.961261\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.8284 −0.971443 −0.485721 0.874114i \(-0.661443\pi\)
−0.485721 + 0.874114i \(0.661443\pi\)
\(234\) 0 0
\(235\) −1.24264 −0.0810609
\(236\) 0 0
\(237\) −37.3848 −2.42840
\(238\) 0 0
\(239\) 0.514719 0.0332944 0.0166472 0.999861i \(-0.494701\pi\)
0.0166472 + 0.999861i \(0.494701\pi\)
\(240\) 0 0
\(241\) 24.7279 1.59287 0.796433 0.604727i \(-0.206718\pi\)
0.796433 + 0.604727i \(0.206718\pi\)
\(242\) 0 0
\(243\) 21.6569 1.38929
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.51472 −0.605407
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.2132 1.59144 0.795722 0.605663i \(-0.207092\pi\)
0.795722 + 0.605663i \(0.207092\pi\)
\(252\) 0 0
\(253\) −26.7279 −1.68037
\(254\) 0 0
\(255\) 12.6569 0.792603
\(256\) 0 0
\(257\) −26.4853 −1.65211 −0.826053 0.563592i \(-0.809419\pi\)
−0.826053 + 0.563592i \(0.809419\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7.51472 0.465149
\(262\) 0 0
\(263\) −28.6274 −1.76524 −0.882621 0.470085i \(-0.844223\pi\)
−0.882621 + 0.470085i \(0.844223\pi\)
\(264\) 0 0
\(265\) −4.24264 −0.260623
\(266\) 0 0
\(267\) 19.3137 1.18198
\(268\) 0 0
\(269\) −7.75736 −0.472975 −0.236487 0.971635i \(-0.575996\pi\)
−0.236487 + 0.971635i \(0.575996\pi\)
\(270\) 0 0
\(271\) 23.3137 1.41621 0.708103 0.706109i \(-0.249551\pi\)
0.708103 + 0.706109i \(0.249551\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.82843 0.351467
\(276\) 0 0
\(277\) −27.2132 −1.63508 −0.817541 0.575870i \(-0.804664\pi\)
−0.817541 + 0.575870i \(0.804664\pi\)
\(278\) 0 0
\(279\) −4.97056 −0.297580
\(280\) 0 0
\(281\) −20.3137 −1.21181 −0.605907 0.795535i \(-0.707190\pi\)
−0.605907 + 0.795535i \(0.707190\pi\)
\(282\) 0 0
\(283\) 6.55635 0.389735 0.194867 0.980830i \(-0.437572\pi\)
0.194867 + 0.980830i \(0.437572\pi\)
\(284\) 0 0
\(285\) 14.4853 0.858034
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 10.4853 0.616781
\(290\) 0 0
\(291\) −11.4853 −0.673279
\(292\) 0 0
\(293\) 0.272078 0.0158950 0.00794748 0.999968i \(-0.497470\pi\)
0.00794748 + 0.999968i \(0.497470\pi\)
\(294\) 0 0
\(295\) −6.24264 −0.363461
\(296\) 0 0
\(297\) 2.41421 0.140087
\(298\) 0 0
\(299\) −7.27208 −0.420555
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 34.9706 2.00901
\(304\) 0 0
\(305\) 2.82843 0.161955
\(306\) 0 0
\(307\) −11.1005 −0.633539 −0.316770 0.948503i \(-0.602598\pi\)
−0.316770 + 0.948503i \(0.602598\pi\)
\(308\) 0 0
\(309\) 25.9706 1.47741
\(310\) 0 0
\(311\) 10.0000 0.567048 0.283524 0.958965i \(-0.408496\pi\)
0.283524 + 0.958965i \(0.408496\pi\)
\(312\) 0 0
\(313\) 24.2132 1.36861 0.684306 0.729195i \(-0.260105\pi\)
0.684306 + 0.729195i \(0.260105\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.6569 −0.654714 −0.327357 0.944901i \(-0.606158\pi\)
−0.327357 + 0.944901i \(0.606158\pi\)
\(318\) 0 0
\(319\) 15.4853 0.867009
\(320\) 0 0
\(321\) 34.9706 1.95187
\(322\) 0 0
\(323\) 31.4558 1.75025
\(324\) 0 0
\(325\) 1.58579 0.0879636
\(326\) 0 0
\(327\) −12.0711 −0.667532
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −23.4558 −1.28925 −0.644625 0.764499i \(-0.722986\pi\)
−0.644625 + 0.764499i \(0.722986\pi\)
\(332\) 0 0
\(333\) −17.6569 −0.967590
\(334\) 0 0
\(335\) −0.242641 −0.0132569
\(336\) 0 0
\(337\) 13.7574 0.749411 0.374706 0.927144i \(-0.377744\pi\)
0.374706 + 0.927144i \(0.377744\pi\)
\(338\) 0 0
\(339\) −2.58579 −0.140441
\(340\) 0 0
\(341\) −10.2426 −0.554670
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 11.0711 0.596046
\(346\) 0 0
\(347\) 1.07107 0.0574979 0.0287490 0.999587i \(-0.490848\pi\)
0.0287490 + 0.999587i \(0.490848\pi\)
\(348\) 0 0
\(349\) 22.9706 1.22959 0.614793 0.788688i \(-0.289240\pi\)
0.614793 + 0.788688i \(0.289240\pi\)
\(350\) 0 0
\(351\) 0.656854 0.0350603
\(352\) 0 0
\(353\) 36.2132 1.92743 0.963717 0.266925i \(-0.0860078\pi\)
0.963717 + 0.266925i \(0.0860078\pi\)
\(354\) 0 0
\(355\) 8.82843 0.468564
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.3137 −0.597115 −0.298557 0.954392i \(-0.596505\pi\)
−0.298557 + 0.954392i \(0.596505\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −55.4558 −2.91068
\(364\) 0 0
\(365\) 8.48528 0.444140
\(366\) 0 0
\(367\) −29.8701 −1.55920 −0.779602 0.626275i \(-0.784579\pi\)
−0.779602 + 0.626275i \(0.784579\pi\)
\(368\) 0 0
\(369\) 6.34315 0.330211
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.485281 0.0251269 0.0125635 0.999921i \(-0.496001\pi\)
0.0125635 + 0.999921i \(0.496001\pi\)
\(374\) 0 0
\(375\) −2.41421 −0.124669
\(376\) 0 0
\(377\) 4.21320 0.216991
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) −0.585786 −0.0300107
\(382\) 0 0
\(383\) 12.4853 0.637968 0.318984 0.947760i \(-0.396658\pi\)
0.318984 + 0.947760i \(0.396658\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.65685 −0.287554
\(388\) 0 0
\(389\) −35.1421 −1.78178 −0.890889 0.454222i \(-0.849917\pi\)
−0.890889 + 0.454222i \(0.849917\pi\)
\(390\) 0 0
\(391\) 24.0416 1.21584
\(392\) 0 0
\(393\) 9.07107 0.457575
\(394\) 0 0
\(395\) 15.4853 0.779149
\(396\) 0 0
\(397\) 4.41421 0.221543 0.110772 0.993846i \(-0.464668\pi\)
0.110772 + 0.993846i \(0.464668\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.17157 0.308194 0.154097 0.988056i \(-0.450753\pi\)
0.154097 + 0.988056i \(0.450753\pi\)
\(402\) 0 0
\(403\) −2.78680 −0.138820
\(404\) 0 0
\(405\) −9.48528 −0.471327
\(406\) 0 0
\(407\) −36.3848 −1.80353
\(408\) 0 0
\(409\) −14.4853 −0.716251 −0.358126 0.933673i \(-0.616584\pi\)
−0.358126 + 0.933673i \(0.616584\pi\)
\(410\) 0 0
\(411\) −28.9706 −1.42901
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 39.2132 1.92028
\(418\) 0 0
\(419\) 6.72792 0.328681 0.164340 0.986404i \(-0.447450\pi\)
0.164340 + 0.986404i \(0.447450\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) −3.51472 −0.170891
\(424\) 0 0
\(425\) −5.24264 −0.254305
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −22.3137 −1.07732
\(430\) 0 0
\(431\) −10.7990 −0.520169 −0.260085 0.965586i \(-0.583750\pi\)
−0.260085 + 0.965586i \(0.583750\pi\)
\(432\) 0 0
\(433\) −22.9706 −1.10389 −0.551947 0.833879i \(-0.686115\pi\)
−0.551947 + 0.833879i \(0.686115\pi\)
\(434\) 0 0
\(435\) −6.41421 −0.307538
\(436\) 0 0
\(437\) 27.5147 1.31621
\(438\) 0 0
\(439\) −6.38478 −0.304729 −0.152364 0.988324i \(-0.548689\pi\)
−0.152364 + 0.988324i \(0.548689\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.8284 −0.989588 −0.494794 0.869010i \(-0.664757\pi\)
−0.494794 + 0.869010i \(0.664757\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) 0 0
\(447\) 35.7990 1.69323
\(448\) 0 0
\(449\) −29.8284 −1.40769 −0.703845 0.710353i \(-0.748535\pi\)
−0.703845 + 0.710353i \(0.748535\pi\)
\(450\) 0 0
\(451\) 13.0711 0.615493
\(452\) 0 0
\(453\) 22.8995 1.07591
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −20.2426 −0.946911 −0.473455 0.880818i \(-0.656993\pi\)
−0.473455 + 0.880818i \(0.656993\pi\)
\(458\) 0 0
\(459\) −2.17157 −0.101360
\(460\) 0 0
\(461\) 36.9706 1.72189 0.860945 0.508697i \(-0.169873\pi\)
0.860945 + 0.508697i \(0.169873\pi\)
\(462\) 0 0
\(463\) −29.4558 −1.36893 −0.684465 0.729046i \(-0.739964\pi\)
−0.684465 + 0.729046i \(0.739964\pi\)
\(464\) 0 0
\(465\) 4.24264 0.196748
\(466\) 0 0
\(467\) −19.7279 −0.912899 −0.456450 0.889749i \(-0.650879\pi\)
−0.456450 + 0.889749i \(0.650879\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 50.2843 2.31698
\(472\) 0 0
\(473\) −11.6569 −0.535983
\(474\) 0 0
\(475\) −6.00000 −0.275299
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) −20.2426 −0.924910 −0.462455 0.886643i \(-0.653031\pi\)
−0.462455 + 0.886643i \(0.653031\pi\)
\(480\) 0 0
\(481\) −9.89949 −0.451378
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.75736 0.216021
\(486\) 0 0
\(487\) 31.6985 1.43640 0.718198 0.695839i \(-0.244967\pi\)
0.718198 + 0.695839i \(0.244967\pi\)
\(488\) 0 0
\(489\) −4.24264 −0.191859
\(490\) 0 0
\(491\) −19.2843 −0.870287 −0.435143 0.900361i \(-0.643302\pi\)
−0.435143 + 0.900361i \(0.643302\pi\)
\(492\) 0 0
\(493\) −13.9289 −0.627328
\(494\) 0 0
\(495\) 16.4853 0.740958
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.00000 −0.134298 −0.0671492 0.997743i \(-0.521390\pi\)
−0.0671492 + 0.997743i \(0.521390\pi\)
\(500\) 0 0
\(501\) 22.3137 0.996903
\(502\) 0 0
\(503\) 32.7574 1.46058 0.730289 0.683138i \(-0.239385\pi\)
0.730289 + 0.683138i \(0.239385\pi\)
\(504\) 0 0
\(505\) −14.4853 −0.644587
\(506\) 0 0
\(507\) 25.3137 1.12422
\(508\) 0 0
\(509\) 17.2132 0.762962 0.381481 0.924377i \(-0.375414\pi\)
0.381481 + 0.924377i \(0.375414\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.48528 −0.109728
\(514\) 0 0
\(515\) −10.7574 −0.474026
\(516\) 0 0
\(517\) −7.24264 −0.318531
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) −18.9706 −0.831115 −0.415558 0.909567i \(-0.636414\pi\)
−0.415558 + 0.909567i \(0.636414\pi\)
\(522\) 0 0
\(523\) −15.5147 −0.678411 −0.339206 0.940712i \(-0.610158\pi\)
−0.339206 + 0.940712i \(0.610158\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.21320 0.401333
\(528\) 0 0
\(529\) −1.97056 −0.0856766
\(530\) 0 0
\(531\) −17.6569 −0.766242
\(532\) 0 0
\(533\) 3.55635 0.154043
\(534\) 0 0
\(535\) −14.4853 −0.626253
\(536\) 0 0
\(537\) 6.00000 0.258919
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.9706 0.514655 0.257327 0.966324i \(-0.417158\pi\)
0.257327 + 0.966324i \(0.417158\pi\)
\(542\) 0 0
\(543\) −16.2426 −0.697038
\(544\) 0 0
\(545\) 5.00000 0.214176
\(546\) 0 0
\(547\) 7.51472 0.321306 0.160653 0.987011i \(-0.448640\pi\)
0.160653 + 0.987011i \(0.448640\pi\)
\(548\) 0 0
\(549\) 8.00000 0.341432
\(550\) 0 0
\(551\) −15.9411 −0.679115
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 15.0711 0.639731
\(556\) 0 0
\(557\) 31.7990 1.34737 0.673683 0.739020i \(-0.264711\pi\)
0.673683 + 0.739020i \(0.264711\pi\)
\(558\) 0 0
\(559\) −3.17157 −0.134143
\(560\) 0 0
\(561\) 73.7696 3.11455
\(562\) 0 0
\(563\) −35.9411 −1.51474 −0.757369 0.652987i \(-0.773516\pi\)
−0.757369 + 0.652987i \(0.773516\pi\)
\(564\) 0 0
\(565\) 1.07107 0.0450602
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.14214 −0.0898030 −0.0449015 0.998991i \(-0.514297\pi\)
−0.0449015 + 0.998991i \(0.514297\pi\)
\(570\) 0 0
\(571\) 34.4853 1.44316 0.721582 0.692329i \(-0.243415\pi\)
0.721582 + 0.692329i \(0.243415\pi\)
\(572\) 0 0
\(573\) −48.2132 −2.01414
\(574\) 0 0
\(575\) −4.58579 −0.191241
\(576\) 0 0
\(577\) −9.72792 −0.404979 −0.202489 0.979284i \(-0.564903\pi\)
−0.202489 + 0.979284i \(0.564903\pi\)
\(578\) 0 0
\(579\) 38.6274 1.60530
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −24.7279 −1.02413
\(584\) 0 0
\(585\) 4.48528 0.185444
\(586\) 0 0
\(587\) −13.4558 −0.555382 −0.277691 0.960670i \(-0.589569\pi\)
−0.277691 + 0.960670i \(0.589569\pi\)
\(588\) 0 0
\(589\) 10.5442 0.434464
\(590\) 0 0
\(591\) −25.5563 −1.05125
\(592\) 0 0
\(593\) 10.7574 0.441752 0.220876 0.975302i \(-0.429108\pi\)
0.220876 + 0.975302i \(0.429108\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11.0711 −0.453109
\(598\) 0 0
\(599\) 12.1716 0.497317 0.248658 0.968591i \(-0.420010\pi\)
0.248658 + 0.968591i \(0.420010\pi\)
\(600\) 0 0
\(601\) 22.9706 0.936989 0.468494 0.883466i \(-0.344797\pi\)
0.468494 + 0.883466i \(0.344797\pi\)
\(602\) 0 0
\(603\) −0.686292 −0.0279480
\(604\) 0 0
\(605\) 22.9706 0.933886
\(606\) 0 0
\(607\) 24.8995 1.01064 0.505320 0.862932i \(-0.331375\pi\)
0.505320 + 0.862932i \(0.331375\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.97056 −0.0797204
\(612\) 0 0
\(613\) 43.9411 1.77477 0.887383 0.461034i \(-0.152521\pi\)
0.887383 + 0.461034i \(0.152521\pi\)
\(614\) 0 0
\(615\) −5.41421 −0.218322
\(616\) 0 0
\(617\) 7.41421 0.298485 0.149242 0.988801i \(-0.452316\pi\)
0.149242 + 0.988801i \(0.452316\pi\)
\(618\) 0 0
\(619\) −31.0711 −1.24885 −0.624426 0.781084i \(-0.714667\pi\)
−0.624426 + 0.781084i \(0.714667\pi\)
\(620\) 0 0
\(621\) −1.89949 −0.0762241
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 84.4264 3.37167
\(628\) 0 0
\(629\) 32.7279 1.30495
\(630\) 0 0
\(631\) −8.45584 −0.336622 −0.168311 0.985734i \(-0.553831\pi\)
−0.168311 + 0.985734i \(0.553831\pi\)
\(632\) 0 0
\(633\) 21.7279 0.863607
\(634\) 0 0
\(635\) 0.242641 0.00962890
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 24.9706 0.987820
\(640\) 0 0
\(641\) −0.686292 −0.0271069 −0.0135534 0.999908i \(-0.504314\pi\)
−0.0135534 + 0.999908i \(0.504314\pi\)
\(642\) 0 0
\(643\) −27.7279 −1.09348 −0.546741 0.837302i \(-0.684132\pi\)
−0.546741 + 0.837302i \(0.684132\pi\)
\(644\) 0 0
\(645\) 4.82843 0.190119
\(646\) 0 0
\(647\) 28.4853 1.11987 0.559936 0.828536i \(-0.310826\pi\)
0.559936 + 0.828536i \(0.310826\pi\)
\(648\) 0 0
\(649\) −36.3848 −1.42823
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.02944 0.0402850 0.0201425 0.999797i \(-0.493588\pi\)
0.0201425 + 0.999797i \(0.493588\pi\)
\(654\) 0 0
\(655\) −3.75736 −0.146812
\(656\) 0 0
\(657\) 24.0000 0.936329
\(658\) 0 0
\(659\) 13.9706 0.544216 0.272108 0.962267i \(-0.412279\pi\)
0.272108 + 0.962267i \(0.412279\pi\)
\(660\) 0 0
\(661\) −37.4558 −1.45686 −0.728432 0.685118i \(-0.759750\pi\)
−0.728432 + 0.685118i \(0.759750\pi\)
\(662\) 0 0
\(663\) 20.0711 0.779496
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.1838 −0.471757
\(668\) 0 0
\(669\) 43.9706 1.70000
\(670\) 0 0
\(671\) 16.4853 0.636407
\(672\) 0 0
\(673\) 20.4853 0.789650 0.394825 0.918756i \(-0.370805\pi\)
0.394825 + 0.918756i \(0.370805\pi\)
\(674\) 0 0
\(675\) 0.414214 0.0159431
\(676\) 0 0
\(677\) 1.78680 0.0686722 0.0343361 0.999410i \(-0.489068\pi\)
0.0343361 + 0.999410i \(0.489068\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −23.4853 −0.899958
\(682\) 0 0
\(683\) 7.79899 0.298420 0.149210 0.988806i \(-0.452327\pi\)
0.149210 + 0.988806i \(0.452327\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 72.5269 2.76707
\(688\) 0 0
\(689\) −6.72792 −0.256313
\(690\) 0 0
\(691\) −9.17157 −0.348903 −0.174452 0.984666i \(-0.555815\pi\)
−0.174452 + 0.984666i \(0.555815\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.2426 −0.616118
\(696\) 0 0
\(697\) −11.7574 −0.445342
\(698\) 0 0
\(699\) 35.7990 1.35404
\(700\) 0 0
\(701\) −4.45584 −0.168295 −0.0841475 0.996453i \(-0.526817\pi\)
−0.0841475 + 0.996453i \(0.526817\pi\)
\(702\) 0 0
\(703\) 37.4558 1.41267
\(704\) 0 0
\(705\) 3.00000 0.112987
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 17.0000 0.638448 0.319224 0.947679i \(-0.396578\pi\)
0.319224 + 0.947679i \(0.396578\pi\)
\(710\) 0 0
\(711\) 43.7990 1.64259
\(712\) 0 0
\(713\) 8.05887 0.301807
\(714\) 0 0
\(715\) 9.24264 0.345655
\(716\) 0 0
\(717\) −1.24264 −0.0464073
\(718\) 0 0
\(719\) −17.2132 −0.641944 −0.320972 0.947089i \(-0.604010\pi\)
−0.320972 + 0.947089i \(0.604010\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −59.6985 −2.22021
\(724\) 0 0
\(725\) 2.65685 0.0986731
\(726\) 0 0
\(727\) 29.3137 1.08719 0.543593 0.839349i \(-0.317064\pi\)
0.543593 + 0.839349i \(0.317064\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) 10.4853 0.387812
\(732\) 0 0
\(733\) −44.6985 −1.65098 −0.825488 0.564420i \(-0.809100\pi\)
−0.825488 + 0.564420i \(0.809100\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.41421 −0.0520932
\(738\) 0 0
\(739\) 3.97056 0.146060 0.0730298 0.997330i \(-0.476733\pi\)
0.0730298 + 0.997330i \(0.476733\pi\)
\(740\) 0 0
\(741\) 22.9706 0.843845
\(742\) 0 0
\(743\) −36.7279 −1.34742 −0.673708 0.738997i \(-0.735300\pi\)
−0.673708 + 0.738997i \(0.735300\pi\)
\(744\) 0 0
\(745\) −14.8284 −0.543272
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.5147 −0.456669 −0.228334 0.973583i \(-0.573328\pi\)
−0.228334 + 0.973583i \(0.573328\pi\)
\(752\) 0 0
\(753\) −60.8701 −2.21823
\(754\) 0 0
\(755\) −9.48528 −0.345205
\(756\) 0 0
\(757\) −16.4853 −0.599168 −0.299584 0.954070i \(-0.596848\pi\)
−0.299584 + 0.954070i \(0.596848\pi\)
\(758\) 0 0
\(759\) 64.5269 2.34218
\(760\) 0 0
\(761\) 12.7279 0.461387 0.230693 0.973026i \(-0.425901\pi\)
0.230693 + 0.973026i \(0.425901\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −14.8284 −0.536123
\(766\) 0 0
\(767\) −9.89949 −0.357450
\(768\) 0 0
\(769\) −3.17157 −0.114370 −0.0571849 0.998364i \(-0.518212\pi\)
−0.0571849 + 0.998364i \(0.518212\pi\)
\(770\) 0 0
\(771\) 63.9411 2.30278
\(772\) 0 0
\(773\) 36.2132 1.30250 0.651249 0.758864i \(-0.274245\pi\)
0.651249 + 0.758864i \(0.274245\pi\)
\(774\) 0 0
\(775\) −1.75736 −0.0631262
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13.4558 −0.482106
\(780\) 0 0
\(781\) 51.4558 1.84123
\(782\) 0 0
\(783\) 1.10051 0.0393288
\(784\) 0 0
\(785\) −20.8284 −0.743398
\(786\) 0 0
\(787\) −45.7279 −1.63002 −0.815012 0.579444i \(-0.803270\pi\)
−0.815012 + 0.579444i \(0.803270\pi\)
\(788\) 0 0
\(789\) 69.1127 2.46048
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.48528 0.159277
\(794\) 0 0
\(795\) 10.2426 0.363269
\(796\) 0 0
\(797\) 55.1838 1.95471 0.977355 0.211608i \(-0.0678700\pi\)
0.977355 + 0.211608i \(0.0678700\pi\)
\(798\) 0 0
\(799\) 6.51472 0.230474
\(800\) 0 0
\(801\) −22.6274 −0.799500
\(802\) 0 0
\(803\) 49.4558 1.74526
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.7279 0.659254
\(808\) 0 0
\(809\) 30.5980 1.07577 0.537884 0.843019i \(-0.319224\pi\)
0.537884 + 0.843019i \(0.319224\pi\)
\(810\) 0 0
\(811\) 23.3553 0.820117 0.410058 0.912059i \(-0.365508\pi\)
0.410058 + 0.912059i \(0.365508\pi\)
\(812\) 0 0
\(813\) −56.2843 −1.97398
\(814\) 0 0
\(815\) 1.75736 0.0615576
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.51472 −0.227365 −0.113683 0.993517i \(-0.536265\pi\)
−0.113683 + 0.993517i \(0.536265\pi\)
\(822\) 0 0
\(823\) 8.72792 0.304236 0.152118 0.988362i \(-0.451391\pi\)
0.152118 + 0.988362i \(0.451391\pi\)
\(824\) 0 0
\(825\) −14.0711 −0.489892
\(826\) 0 0
\(827\) 6.04163 0.210088 0.105044 0.994468i \(-0.466502\pi\)
0.105044 + 0.994468i \(0.466502\pi\)
\(828\) 0 0
\(829\) 54.0416 1.87694 0.938472 0.345356i \(-0.112242\pi\)
0.938472 + 0.345356i \(0.112242\pi\)
\(830\) 0 0
\(831\) 65.6985 2.27906
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.24264 −0.319855
\(836\) 0 0
\(837\) −0.727922 −0.0251607
\(838\) 0 0
\(839\) 48.7279 1.68227 0.841137 0.540822i \(-0.181887\pi\)
0.841137 + 0.540822i \(0.181887\pi\)
\(840\) 0 0
\(841\) −21.9411 −0.756591
\(842\) 0 0
\(843\) 49.0416 1.68908
\(844\) 0 0
\(845\) −10.4853 −0.360705
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −15.8284 −0.543230
\(850\) 0 0
\(851\) 28.6274 0.981335
\(852\) 0 0
\(853\) −22.9706 −0.786497 −0.393249 0.919432i \(-0.628649\pi\)
−0.393249 + 0.919432i \(0.628649\pi\)
\(854\) 0 0
\(855\) −16.9706 −0.580381
\(856\) 0 0
\(857\) −5.51472 −0.188379 −0.0941896 0.995554i \(-0.530026\pi\)
−0.0941896 + 0.995554i \(0.530026\pi\)
\(858\) 0 0
\(859\) −48.7696 −1.66400 −0.831998 0.554779i \(-0.812803\pi\)
−0.831998 + 0.554779i \(0.812803\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.3848 0.625825 0.312913 0.949782i \(-0.398695\pi\)
0.312913 + 0.949782i \(0.398695\pi\)
\(864\) 0 0
\(865\) 1.24264 0.0422511
\(866\) 0 0
\(867\) −25.3137 −0.859699
\(868\) 0 0
\(869\) 90.2548 3.06169
\(870\) 0 0
\(871\) −0.384776 −0.0130376
\(872\) 0 0
\(873\) 13.4558 0.455411
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 46.9706 1.58608 0.793042 0.609167i \(-0.208496\pi\)
0.793042 + 0.609167i \(0.208496\pi\)
\(878\) 0 0
\(879\) −0.656854 −0.0221551
\(880\) 0 0
\(881\) −19.0294 −0.641118 −0.320559 0.947229i \(-0.603871\pi\)
−0.320559 + 0.947229i \(0.603871\pi\)
\(882\) 0 0
\(883\) −48.4853 −1.63166 −0.815830 0.578292i \(-0.803719\pi\)
−0.815830 + 0.578292i \(0.803719\pi\)
\(884\) 0 0
\(885\) 15.0711 0.506608
\(886\) 0 0
\(887\) 30.9706 1.03989 0.519945 0.854200i \(-0.325952\pi\)
0.519945 + 0.854200i \(0.325952\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −55.2843 −1.85209
\(892\) 0 0
\(893\) 7.45584 0.249500
\(894\) 0 0
\(895\) −2.48528 −0.0830738
\(896\) 0 0
\(897\) 17.5563 0.586189
\(898\) 0 0
\(899\) −4.66905 −0.155721
\(900\) 0 0
\(901\) 22.2426 0.741010
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.72792 0.223644
\(906\) 0 0
\(907\) −32.1838 −1.06864 −0.534322 0.845281i \(-0.679433\pi\)
−0.534322 + 0.845281i \(0.679433\pi\)
\(908\) 0 0
\(909\) −40.9706 −1.35891
\(910\) 0 0
\(911\) 5.65685 0.187420 0.0937100 0.995600i \(-0.470127\pi\)
0.0937100 + 0.995600i \(0.470127\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −6.82843 −0.225741
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 38.4558 1.26854 0.634271 0.773111i \(-0.281301\pi\)
0.634271 + 0.773111i \(0.281301\pi\)
\(920\) 0 0
\(921\) 26.7990 0.883057
\(922\) 0 0
\(923\) 14.0000 0.460816
\(924\) 0 0
\(925\) −6.24264 −0.205257
\(926\) 0 0
\(927\) −30.4264 −0.999334
\(928\) 0 0
\(929\) 54.7279 1.79556 0.897782 0.440439i \(-0.145177\pi\)
0.897782 + 0.440439i \(0.145177\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −24.1421 −0.790378
\(934\) 0 0
\(935\) −30.5563 −0.999299
\(936\) 0 0
\(937\) −17.4437 −0.569859 −0.284930 0.958548i \(-0.591970\pi\)
−0.284930 + 0.958548i \(0.591970\pi\)
\(938\) 0 0
\(939\) −58.4558 −1.90763
\(940\) 0 0
\(941\) −4.97056 −0.162036 −0.0810179 0.996713i \(-0.525817\pi\)
−0.0810179 + 0.996713i \(0.525817\pi\)
\(942\) 0 0
\(943\) −10.2843 −0.334902
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.7574 1.42192 0.710962 0.703231i \(-0.248260\pi\)
0.710962 + 0.703231i \(0.248260\pi\)
\(948\) 0 0
\(949\) 13.4558 0.436795
\(950\) 0 0
\(951\) 28.1421 0.912571
\(952\) 0 0
\(953\) −29.0122 −0.939797 −0.469899 0.882720i \(-0.655710\pi\)
−0.469899 + 0.882720i \(0.655710\pi\)
\(954\) 0 0
\(955\) 19.9706 0.646232
\(956\) 0 0
\(957\) −37.3848 −1.20848
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.9117 −0.900377
\(962\) 0 0
\(963\) −40.9706 −1.32026
\(964\) 0 0
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) −24.4264 −0.785500 −0.392750 0.919645i \(-0.628476\pi\)
−0.392750 + 0.919645i \(0.628476\pi\)
\(968\) 0 0
\(969\) −75.9411 −2.43958
\(970\) 0 0
\(971\) 42.7279 1.37120 0.685602 0.727976i \(-0.259539\pi\)
0.685602 + 0.727976i \(0.259539\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.82843 −0.122608
\(976\) 0 0
\(977\) −30.7696 −0.984405 −0.492203 0.870481i \(-0.663808\pi\)
−0.492203 + 0.870481i \(0.663808\pi\)
\(978\) 0 0
\(979\) −46.6274 −1.49022
\(980\) 0 0
\(981\) 14.1421 0.451524
\(982\) 0 0
\(983\) 42.2132 1.34639 0.673196 0.739464i \(-0.264921\pi\)
0.673196 + 0.739464i \(0.264921\pi\)
\(984\) 0 0
\(985\) 10.5858 0.337291
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.17157 0.291639
\(990\) 0 0
\(991\) 47.9411 1.52290 0.761450 0.648224i \(-0.224488\pi\)
0.761450 + 0.648224i \(0.224488\pi\)
\(992\) 0 0
\(993\) 56.6274 1.79702
\(994\) 0 0
\(995\) 4.58579 0.145379
\(996\) 0 0
\(997\) 3.72792 0.118064 0.0590322 0.998256i \(-0.481199\pi\)
0.0590322 + 0.998256i \(0.481199\pi\)
\(998\) 0 0
\(999\) −2.58579 −0.0818107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.2.a.br.1.1 2
4.3 odd 2 245.2.a.f.1.2 yes 2
7.6 odd 2 3920.2.a.bw.1.2 2
12.11 even 2 2205.2.a.t.1.1 2
20.3 even 4 1225.2.b.j.99.2 4
20.7 even 4 1225.2.b.j.99.3 4
20.19 odd 2 1225.2.a.p.1.1 2
28.3 even 6 245.2.e.g.226.1 4
28.11 odd 6 245.2.e.f.226.1 4
28.19 even 6 245.2.e.g.116.1 4
28.23 odd 6 245.2.e.f.116.1 4
28.27 even 2 245.2.a.e.1.2 2
84.83 odd 2 2205.2.a.v.1.1 2
140.27 odd 4 1225.2.b.i.99.4 4
140.83 odd 4 1225.2.b.i.99.1 4
140.139 even 2 1225.2.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.a.e.1.2 2 28.27 even 2
245.2.a.f.1.2 yes 2 4.3 odd 2
245.2.e.f.116.1 4 28.23 odd 6
245.2.e.f.226.1 4 28.11 odd 6
245.2.e.g.116.1 4 28.19 even 6
245.2.e.g.226.1 4 28.3 even 6
1225.2.a.p.1.1 2 20.19 odd 2
1225.2.a.r.1.1 2 140.139 even 2
1225.2.b.i.99.1 4 140.83 odd 4
1225.2.b.i.99.4 4 140.27 odd 4
1225.2.b.j.99.2 4 20.3 even 4
1225.2.b.j.99.3 4 20.7 even 4
2205.2.a.t.1.1 2 12.11 even 2
2205.2.a.v.1.1 2 84.83 odd 2
3920.2.a.br.1.1 2 1.1 even 1 trivial
3920.2.a.bw.1.2 2 7.6 odd 2