Properties

Label 3920.1.j.d
Level $3920$
Weight $1$
Character orbit 3920.j
Self dual yes
Analytic conductor $1.956$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3920,1,Mod(3039,3920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3920.3039"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3920.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 560)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.3841600.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + q^{5} + 2 q^{9} - \beta q^{15} + \beta q^{23} + q^{25} - \beta q^{27} - q^{29} - q^{41} + \beta q^{43} + 2 q^{45} - q^{61} - \beta q^{67} - 3 q^{69} - \beta q^{75} + q^{81} + \beta q^{83} + \cdots + q^{89} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 4 q^{9} + 2 q^{25} - 2 q^{29} - 2 q^{41} + 4 q^{45} - 2 q^{61} - 6 q^{69} + 2 q^{81} + 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3920\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1471\) \(3041\) \(3137\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3039.1
1.73205
−1.73205
0 −1.73205 0 1.00000 0 0 0 2.00000 0
3039.2 0 1.73205 0 1.00000 0 0 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
4.b odd 2 1 inner
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.1.j.d 2
4.b odd 2 1 inner 3920.1.j.d 2
5.b even 2 1 inner 3920.1.j.d 2
7.b odd 2 1 3920.1.j.b 2
7.c even 3 2 3920.1.bt.c 4
7.d odd 6 2 560.1.bt.a 4
20.d odd 2 1 CM 3920.1.j.d 2
28.d even 2 1 3920.1.j.b 2
28.f even 6 2 560.1.bt.a 4
28.g odd 6 2 3920.1.bt.c 4
35.c odd 2 1 3920.1.j.b 2
35.i odd 6 2 560.1.bt.a 4
35.j even 6 2 3920.1.bt.c 4
35.k even 12 2 2800.1.ce.a 2
35.k even 12 2 2800.1.ce.b 2
56.j odd 6 2 2240.1.bt.c 4
56.m even 6 2 2240.1.bt.c 4
140.c even 2 1 3920.1.j.b 2
140.p odd 6 2 3920.1.bt.c 4
140.s even 6 2 560.1.bt.a 4
140.x odd 12 2 2800.1.ce.a 2
140.x odd 12 2 2800.1.ce.b 2
280.ba even 6 2 2240.1.bt.c 4
280.bk odd 6 2 2240.1.bt.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
560.1.bt.a 4 7.d odd 6 2
560.1.bt.a 4 28.f even 6 2
560.1.bt.a 4 35.i odd 6 2
560.1.bt.a 4 140.s even 6 2
2240.1.bt.c 4 56.j odd 6 2
2240.1.bt.c 4 56.m even 6 2
2240.1.bt.c 4 280.ba even 6 2
2240.1.bt.c 4 280.bk odd 6 2
2800.1.ce.a 2 35.k even 12 2
2800.1.ce.a 2 140.x odd 12 2
2800.1.ce.b 2 35.k even 12 2
2800.1.ce.b 2 140.x odd 12 2
3920.1.j.b 2 7.b odd 2 1
3920.1.j.b 2 28.d even 2 1
3920.1.j.b 2 35.c odd 2 1
3920.1.j.b 2 140.c even 2 1
3920.1.j.d 2 1.a even 1 1 trivial
3920.1.j.d 2 4.b odd 2 1 inner
3920.1.j.d 2 5.b even 2 1 inner
3920.1.j.d 2 20.d odd 2 1 CM
3920.1.bt.c 4 7.c even 3 2
3920.1.bt.c 4 28.g odd 6 2
3920.1.bt.c 4 35.j even 6 2
3920.1.bt.c 4 140.p odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3920, [\chi])\):

\( T_{3}^{2} - 3 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{41} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 3 \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 3 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 3 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 3 \) Copy content Toggle raw display
$89$ \( (T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less