Properties

Label 3920.1.j
Level $3920$
Weight $1$
Character orbit 3920.j
Rep. character $\chi_{3920}(3039,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $5$
Sturm bound $672$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3920.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(672\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3920, [\chi])\).

Total New Old
Modular forms 86 11 75
Cusp forms 38 11 27
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 11 0 0 0

Trace form

\( 11 q + q^{5} + 13 q^{9} - q^{25} - 2 q^{29} + 2 q^{41} - q^{45} + 2 q^{61} + 11 q^{81} - 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3920, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3920.1.j.a 3920.j 20.d $1$ $1.956$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \) \(\Q(\sqrt{5}) \) 80.1.h.a \(0\) \(0\) \(1\) \(0\) \(q+q^{5}-q^{9}+q^{25}+2q^{29}+2q^{41}+\cdots\)
3920.1.j.b 3920.j 20.d $2$ $1.956$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-5}) \) None 560.1.bt.a \(0\) \(0\) \(-2\) \(0\) \(q-\beta q^{3}-q^{5}+2q^{9}+\beta q^{15}-\beta q^{23}+\cdots\)
3920.1.j.c 3920.j 20.d $2$ $1.956$ \(\Q(\sqrt{-1}) \) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-35}) \) \(\Q(\sqrt{35}) \) 3920.1.j.c \(0\) \(0\) \(0\) \(0\) \(q-i q^{5}-q^{9}+2 i q^{13}+2 i q^{17}+\cdots\)
3920.1.j.d 3920.j 20.d $2$ $1.956$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-5}) \) None 560.1.bt.a \(0\) \(0\) \(2\) \(0\) \(q-\beta q^{3}+q^{5}+2q^{9}-\beta q^{15}+\beta q^{23}+\cdots\)
3920.1.j.e 3920.j 20.d $4$ $1.956$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-35}) \) None 3920.1.j.e \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{12}+\zeta_{12}^{5})q^{3}-\zeta_{12}^{3}q^{5}+(1+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3920, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3920, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 3}\)