Defining parameters
Level: | \( N \) | \(=\) | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3920.j (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3920, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 86 | 11 | 75 |
Cusp forms | 38 | 11 | 27 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 11 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3920, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3920.1.j.a | $1$ | $1.956$ | \(\Q\) | $D_{2}$ | \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \) | \(\Q(\sqrt{5}) \) | \(0\) | \(0\) | \(1\) | \(0\) | \(q+q^{5}-q^{9}+q^{25}+2q^{29}+2q^{41}+\cdots\) |
3920.1.j.b | $2$ | $1.956$ | \(\Q(\sqrt{3}) \) | $D_{6}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-\beta q^{3}-q^{5}+2q^{9}+\beta q^{15}-\beta q^{23}+\cdots\) |
3920.1.j.c | $2$ | $1.956$ | \(\Q(\sqrt{-1}) \) | $D_{2}$ | \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-35}) \) | \(\Q(\sqrt{35}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-i q^{5}-q^{9}+2 i q^{13}+2 i q^{17}+\cdots\) |
3920.1.j.d | $2$ | $1.956$ | \(\Q(\sqrt{3}) \) | $D_{6}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q-\beta q^{3}+q^{5}+2q^{9}-\beta q^{15}+\beta q^{23}+\cdots\) |
3920.1.j.e | $4$ | $1.956$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-35}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{12}+\zeta_{12}^{5})q^{3}-\zeta_{12}^{3}q^{5}+(1+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3920, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3920, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 3}\)