Properties

Label 392.8.a.c
Level $392$
Weight $8$
Character orbit 392.a
Self dual yes
Analytic conductor $122.455$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,8,Mod(1,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 392.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.454929990\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 18 q^{3} - 160 q^{5} - 1863 q^{9} + 5704 q^{11} - 1388 q^{13} - 2880 q^{15} + 31434 q^{17} + 19966 q^{19} - 77136 q^{23} - 52525 q^{25} - 72900 q^{27} - 193374 q^{29} + 26356 q^{31} + 102672 q^{33}+ \cdots - 10626552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 18.0000 0 −160.000 0 0 0 −1863.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.8.a.c 1
7.b odd 2 1 56.8.a.a 1
21.c even 2 1 504.8.a.a 1
28.d even 2 1 112.8.a.b 1
56.e even 2 1 448.8.a.e 1
56.h odd 2 1 448.8.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.8.a.a 1 7.b odd 2 1
112.8.a.b 1 28.d even 2 1
392.8.a.c 1 1.a even 1 1 trivial
448.8.a.e 1 56.e even 2 1
448.8.a.f 1 56.h odd 2 1
504.8.a.a 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 18 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(392))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 18 \) Copy content Toggle raw display
$5$ \( T + 160 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 5704 \) Copy content Toggle raw display
$13$ \( T + 1388 \) Copy content Toggle raw display
$17$ \( T - 31434 \) Copy content Toggle raw display
$19$ \( T - 19966 \) Copy content Toggle raw display
$23$ \( T + 77136 \) Copy content Toggle raw display
$29$ \( T + 193374 \) Copy content Toggle raw display
$31$ \( T - 26356 \) Copy content Toggle raw display
$37$ \( T - 204346 \) Copy content Toggle raw display
$41$ \( T - 663050 \) Copy content Toggle raw display
$43$ \( T + 335920 \) Copy content Toggle raw display
$47$ \( T + 1119812 \) Copy content Toggle raw display
$53$ \( T - 112782 \) Copy content Toggle raw display
$59$ \( T + 536154 \) Copy content Toggle raw display
$61$ \( T - 1170264 \) Copy content Toggle raw display
$67$ \( T - 3890660 \) Copy content Toggle raw display
$71$ \( T - 2505344 \) Copy content Toggle raw display
$73$ \( T - 1435070 \) Copy content Toggle raw display
$79$ \( T - 176536 \) Copy content Toggle raw display
$83$ \( T - 6211622 \) Copy content Toggle raw display
$89$ \( T - 4729062 \) Copy content Toggle raw display
$97$ \( T - 2129562 \) Copy content Toggle raw display
show more
show less