Properties

Label 392.6.i.l.177.1
Level $392$
Weight $6$
Character 392.177
Analytic conductor $62.870$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-59})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 14x^{2} - 15x + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.1
Root \(3.57603 - 1.48727i\) of defining polynomial
Character \(\chi\) \(=\) 392.177
Dual form 392.6.i.l.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.152067 - 0.263388i) q^{3} +(-17.7603 + 30.7618i) q^{5} +(121.454 - 210.364i) q^{9} +O(q^{10})\) \(q+(-0.152067 - 0.263388i) q^{3} +(-17.7603 + 30.7618i) q^{5} +(121.454 - 210.364i) q^{9} +(-282.912 - 490.019i) q^{11} +983.594 q^{13} +10.8031 q^{15} +(-100.088 - 173.357i) q^{17} +(-414.374 + 717.716i) q^{19} +(-2217.71 + 3841.19i) q^{23} +(931.641 + 1613.65i) q^{25} -147.781 q^{27} -3717.74 q^{29} +(-496.231 - 859.498i) q^{31} +(-86.0435 + 149.032i) q^{33} +(4179.84 - 7239.70i) q^{37} +(-149.572 - 259.067i) q^{39} -13473.0 q^{41} +298.798 q^{43} +(4314.12 + 7472.27i) q^{45} +(9368.26 - 16226.3i) q^{47} +(-30.4401 + 52.7238i) q^{51} +(-8018.18 - 13887.9i) q^{53} +20098.5 q^{55} +252.051 q^{57} +(-6374.58 - 11041.1i) q^{59} +(17488.0 - 30290.1i) q^{61} +(-17469.0 + 30257.1i) q^{65} +(-5989.44 - 10374.0i) q^{67} +1348.97 q^{69} -12924.9 q^{71} +(-40588.6 - 70301.5i) q^{73} +(283.344 - 490.767i) q^{75} +(-23499.4 + 40702.2i) q^{79} +(-29490.8 - 51079.5i) q^{81} -111544. q^{83} +7110.36 q^{85} +(565.347 + 979.210i) q^{87} +(17363.4 - 30074.3i) q^{89} +(-150.921 + 261.403i) q^{93} +(-14718.8 - 25493.8i) q^{95} +92655.6 q^{97} -137443. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 26 q^{3} + 62 q^{5} - 206 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 26 q^{3} + 62 q^{5} - 206 q^{9} - 972 q^{11} + 156 q^{13} + 5152 q^{15} - 560 q^{17} - 2642 q^{19} - 2272 q^{23} - 4522 q^{25} - 11128 q^{27} - 15616 q^{29} - 5444 q^{31} + 10512 q^{33} - 576 q^{37} - 24120 q^{39} - 33776 q^{41} - 16792 q^{43} + 52406 q^{45} + 4532 q^{47} + 9404 q^{51} - 1420 q^{53} - 39024 q^{55} - 94888 q^{57} - 34146 q^{59} - 19106 q^{61} - 123252 q^{65} - 56952 q^{67} + 116512 q^{69} - 14448 q^{71} - 128828 q^{73} + 168526 q^{75} - 52808 q^{79} - 92366 q^{81} - 168972 q^{83} - 55960 q^{85} - 106460 q^{87} + 130972 q^{89} + 116792 q^{93} + 147392 q^{95} + 389248 q^{97} + 89784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.152067 0.263388i −0.00975512 0.0168964i 0.861107 0.508424i \(-0.169772\pi\)
−0.870862 + 0.491528i \(0.836439\pi\)
\(4\) 0 0
\(5\) −17.7603 + 30.7618i −0.317707 + 0.550284i −0.980009 0.198953i \(-0.936246\pi\)
0.662303 + 0.749236i \(0.269579\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 121.454 210.364i 0.499810 0.865696i
\(10\) 0 0
\(11\) −282.912 490.019i −0.704969 1.22104i −0.966703 0.255903i \(-0.917627\pi\)
0.261733 0.965140i \(-0.415706\pi\)
\(12\) 0 0
\(13\) 983.594 1.61420 0.807100 0.590415i \(-0.201036\pi\)
0.807100 + 0.590415i \(0.201036\pi\)
\(14\) 0 0
\(15\) 10.8031 0.0123971
\(16\) 0 0
\(17\) −100.088 173.357i −0.0839959 0.145485i 0.820967 0.570976i \(-0.193435\pi\)
−0.904963 + 0.425490i \(0.860102\pi\)
\(18\) 0 0
\(19\) −414.374 + 717.716i −0.263335 + 0.456109i −0.967126 0.254298i \(-0.918156\pi\)
0.703791 + 0.710407i \(0.251489\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2217.71 + 3841.19i −0.874149 + 1.51407i −0.0164834 + 0.999864i \(0.505247\pi\)
−0.857666 + 0.514207i \(0.828086\pi\)
\(24\) 0 0
\(25\) 931.641 + 1613.65i 0.298125 + 0.516368i
\(26\) 0 0
\(27\) −147.781 −0.0390131
\(28\) 0 0
\(29\) −3717.74 −0.820889 −0.410444 0.911886i \(-0.634626\pi\)
−0.410444 + 0.911886i \(0.634626\pi\)
\(30\) 0 0
\(31\) −496.231 859.498i −0.0927427 0.160635i 0.815922 0.578163i \(-0.196230\pi\)
−0.908664 + 0.417527i \(0.862897\pi\)
\(32\) 0 0
\(33\) −86.0435 + 149.032i −0.0137541 + 0.0238229i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4179.84 7239.70i 0.501945 0.869393i −0.498053 0.867147i \(-0.665951\pi\)
0.999997 0.00224683i \(-0.000715188\pi\)
\(38\) 0 0
\(39\) −149.572 259.067i −0.0157467 0.0272741i
\(40\) 0 0
\(41\) −13473.0 −1.25171 −0.625855 0.779940i \(-0.715250\pi\)
−0.625855 + 0.779940i \(0.715250\pi\)
\(42\) 0 0
\(43\) 298.798 0.0246437 0.0123218 0.999924i \(-0.496078\pi\)
0.0123218 + 0.999924i \(0.496078\pi\)
\(44\) 0 0
\(45\) 4314.12 + 7472.27i 0.317586 + 0.550074i
\(46\) 0 0
\(47\) 9368.26 16226.3i 0.618606 1.07146i −0.371134 0.928579i \(-0.621031\pi\)
0.989740 0.142878i \(-0.0456357\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −30.4401 + 52.7238i −0.00163878 + 0.00283845i
\(52\) 0 0
\(53\) −8018.18 13887.9i −0.392090 0.679121i 0.600635 0.799524i \(-0.294915\pi\)
−0.992725 + 0.120403i \(0.961581\pi\)
\(54\) 0 0
\(55\) 20098.5 0.895894
\(56\) 0 0
\(57\) 252.051 0.0102754
\(58\) 0 0
\(59\) −6374.58 11041.1i −0.238408 0.412935i 0.721849 0.692050i \(-0.243292\pi\)
−0.960258 + 0.279115i \(0.909959\pi\)
\(60\) 0 0
\(61\) 17488.0 30290.1i 0.601748 1.04226i −0.390808 0.920472i \(-0.627804\pi\)
0.992556 0.121786i \(-0.0388623\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17469.0 + 30257.1i −0.512842 + 0.888268i
\(66\) 0 0
\(67\) −5989.44 10374.0i −0.163004 0.282332i 0.772940 0.634479i \(-0.218785\pi\)
−0.935945 + 0.352147i \(0.885452\pi\)
\(68\) 0 0
\(69\) 1348.97 0.0341097
\(70\) 0 0
\(71\) −12924.9 −0.304285 −0.152143 0.988359i \(-0.548617\pi\)
−0.152143 + 0.988359i \(0.548617\pi\)
\(72\) 0 0
\(73\) −40588.6 70301.5i −0.891450 1.54404i −0.838138 0.545459i \(-0.816355\pi\)
−0.0533123 0.998578i \(-0.516978\pi\)
\(74\) 0 0
\(75\) 283.344 490.767i 0.00581649 0.0100745i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −23499.4 + 40702.2i −0.423632 + 0.733753i −0.996292 0.0860408i \(-0.972578\pi\)
0.572659 + 0.819793i \(0.305912\pi\)
\(80\) 0 0
\(81\) −29490.8 51079.5i −0.499429 0.865037i
\(82\) 0 0
\(83\) −111544. −1.77726 −0.888632 0.458621i \(-0.848344\pi\)
−0.888632 + 0.458621i \(0.848344\pi\)
\(84\) 0 0
\(85\) 7110.36 0.106744
\(86\) 0 0
\(87\) 565.347 + 979.210i 0.00800787 + 0.0138700i
\(88\) 0 0
\(89\) 17363.4 30074.3i 0.232359 0.402458i −0.726143 0.687544i \(-0.758689\pi\)
0.958502 + 0.285086i \(0.0920221\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −150.921 + 261.403i −0.00180943 + 0.00313403i
\(94\) 0 0
\(95\) −14718.8 25493.8i −0.167326 0.289818i
\(96\) 0 0
\(97\) 92655.6 0.999867 0.499933 0.866064i \(-0.333358\pi\)
0.499933 + 0.866064i \(0.333358\pi\)
\(98\) 0 0
\(99\) −137443. −1.40940
\(100\) 0 0
\(101\) 77382.6 + 134031.i 0.754814 + 1.30738i 0.945467 + 0.325718i \(0.105606\pi\)
−0.190653 + 0.981657i \(0.561061\pi\)
\(102\) 0 0
\(103\) 98572.8 170733.i 0.915512 1.58571i 0.109363 0.994002i \(-0.465119\pi\)
0.806149 0.591712i \(-0.201548\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −31950.6 + 55340.1i −0.269786 + 0.467284i −0.968807 0.247818i \(-0.920286\pi\)
0.699020 + 0.715102i \(0.253620\pi\)
\(108\) 0 0
\(109\) −33455.2 57946.1i −0.269710 0.467152i 0.699077 0.715047i \(-0.253595\pi\)
−0.968787 + 0.247895i \(0.920261\pi\)
\(110\) 0 0
\(111\) −2542.47 −0.0195861
\(112\) 0 0
\(113\) −100524. −0.740580 −0.370290 0.928916i \(-0.620742\pi\)
−0.370290 + 0.928916i \(0.620742\pi\)
\(114\) 0 0
\(115\) −78774.6 136442.i −0.555446 0.962061i
\(116\) 0 0
\(117\) 119461. 206913.i 0.806793 1.39741i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −79553.4 + 137790.i −0.493964 + 0.855570i
\(122\) 0 0
\(123\) 2048.80 + 3548.62i 0.0122106 + 0.0211493i
\(124\) 0 0
\(125\) −177187. −1.01428
\(126\) 0 0
\(127\) −155009. −0.852800 −0.426400 0.904535i \(-0.640218\pi\)
−0.426400 + 0.904535i \(0.640218\pi\)
\(128\) 0 0
\(129\) −45.4373 78.6998i −0.000240402 0.000416389i
\(130\) 0 0
\(131\) 35198.4 60965.4i 0.179203 0.310388i −0.762405 0.647100i \(-0.775982\pi\)
0.941608 + 0.336712i \(0.109315\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2624.65 4546.02i 0.0123947 0.0214683i
\(136\) 0 0
\(137\) −87865.9 152188.i −0.399962 0.692755i 0.593758 0.804643i \(-0.297643\pi\)
−0.993721 + 0.111888i \(0.964310\pi\)
\(138\) 0 0
\(139\) 44017.9 0.193238 0.0966189 0.995321i \(-0.469197\pi\)
0.0966189 + 0.995321i \(0.469197\pi\)
\(140\) 0 0
\(141\) −5698.43 −0.0241383
\(142\) 0 0
\(143\) −278271. 481979.i −1.13796 1.97101i
\(144\) 0 0
\(145\) 66028.4 114364.i 0.260802 0.451722i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 60568.1 104907.i 0.223500 0.387114i −0.732368 0.680909i \(-0.761585\pi\)
0.955868 + 0.293795i \(0.0949183\pi\)
\(150\) 0 0
\(151\) −199231. 345079.i −0.711075 1.23162i −0.964454 0.264251i \(-0.914875\pi\)
0.253379 0.967367i \(-0.418458\pi\)
\(152\) 0 0
\(153\) −48624.1 −0.167928
\(154\) 0 0
\(155\) 35252.9 0.117860
\(156\) 0 0
\(157\) 68369.3 + 118419.i 0.221367 + 0.383418i 0.955223 0.295886i \(-0.0956149\pi\)
−0.733857 + 0.679304i \(0.762282\pi\)
\(158\) 0 0
\(159\) −2438.61 + 4223.79i −0.00764978 + 0.0132498i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −321205. + 556343.i −0.946919 + 1.64011i −0.195056 + 0.980792i \(0.562489\pi\)
−0.751863 + 0.659319i \(0.770845\pi\)
\(164\) 0 0
\(165\) −3056.32 5293.71i −0.00873955 0.0151374i
\(166\) 0 0
\(167\) −290841. −0.806984 −0.403492 0.914983i \(-0.632204\pi\)
−0.403492 + 0.914983i \(0.632204\pi\)
\(168\) 0 0
\(169\) 596163. 1.60564
\(170\) 0 0
\(171\) 100654. + 174339.i 0.263234 + 0.455935i
\(172\) 0 0
\(173\) 281117. 486909.i 0.714121 1.23689i −0.249177 0.968458i \(-0.580160\pi\)
0.963298 0.268436i \(-0.0865067\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1938.73 + 3357.98i −0.00465141 + 0.00805647i
\(178\) 0 0
\(179\) 156084. + 270345.i 0.364103 + 0.630646i 0.988632 0.150356i \(-0.0480421\pi\)
−0.624528 + 0.781002i \(0.714709\pi\)
\(180\) 0 0
\(181\) 254232. 0.576811 0.288405 0.957508i \(-0.406875\pi\)
0.288405 + 0.957508i \(0.406875\pi\)
\(182\) 0 0
\(183\) −10637.4 −0.0234805
\(184\) 0 0
\(185\) 148471. + 257159.i 0.318942 + 0.552424i
\(186\) 0 0
\(187\) −56632.0 + 98089.6i −0.118429 + 0.205125i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 94529.8 163730.i 0.187493 0.324748i −0.756921 0.653507i \(-0.773297\pi\)
0.944414 + 0.328759i \(0.106630\pi\)
\(192\) 0 0
\(193\) −330213. 571946.i −0.638118 1.10525i −0.985845 0.167657i \(-0.946380\pi\)
0.347727 0.937596i \(-0.386953\pi\)
\(194\) 0 0
\(195\) 10625.8 0.0200113
\(196\) 0 0
\(197\) −786619. −1.44410 −0.722052 0.691838i \(-0.756801\pi\)
−0.722052 + 0.691838i \(0.756801\pi\)
\(198\) 0 0
\(199\) −180265. 312228.i −0.322685 0.558907i 0.658356 0.752707i \(-0.271252\pi\)
−0.981041 + 0.193800i \(0.937919\pi\)
\(200\) 0 0
\(201\) −1821.60 + 3155.10i −0.00318025 + 0.00550836i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 239284. 414453.i 0.397676 0.688795i
\(206\) 0 0
\(207\) 538699. + 933054.i 0.873817 + 1.51349i
\(208\) 0 0
\(209\) 468926. 0.742571
\(210\) 0 0
\(211\) −1.13491e6 −1.75491 −0.877455 0.479658i \(-0.840761\pi\)
−0.877455 + 0.479658i \(0.840761\pi\)
\(212\) 0 0
\(213\) 1965.45 + 3404.27i 0.00296834 + 0.00514132i
\(214\) 0 0
\(215\) −5306.74 + 9191.55i −0.00782946 + 0.0135610i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −12344.4 + 21381.1i −0.0173924 + 0.0301245i
\(220\) 0 0
\(221\) −98445.5 170513.i −0.135586 0.234842i
\(222\) 0 0
\(223\) −783934. −1.05564 −0.527822 0.849355i \(-0.676991\pi\)
−0.527822 + 0.849355i \(0.676991\pi\)
\(224\) 0 0
\(225\) 452605. 0.596023
\(226\) 0 0
\(227\) −300377. 520268.i −0.386903 0.670136i 0.605128 0.796128i \(-0.293122\pi\)
−0.992031 + 0.125992i \(0.959789\pi\)
\(228\) 0 0
\(229\) −739959. + 1.28165e6i −0.932435 + 1.61503i −0.153291 + 0.988181i \(0.548987\pi\)
−0.779145 + 0.626844i \(0.784346\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 521749. 903696.i 0.629610 1.09052i −0.358020 0.933714i \(-0.616548\pi\)
0.987630 0.156803i \(-0.0501188\pi\)
\(234\) 0 0
\(235\) 332767. + 576369.i 0.393070 + 0.680818i
\(236\) 0 0
\(237\) 14294.0 0.0165303
\(238\) 0 0
\(239\) 262948. 0.297767 0.148883 0.988855i \(-0.452432\pi\)
0.148883 + 0.988855i \(0.452432\pi\)
\(240\) 0 0
\(241\) 899728. + 1.55837e6i 0.997857 + 1.72834i 0.555591 + 0.831456i \(0.312492\pi\)
0.442266 + 0.896884i \(0.354175\pi\)
\(242\) 0 0
\(243\) −26924.6 + 46634.8i −0.0292505 + 0.0506634i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −407575. + 705941.i −0.425075 + 0.736251i
\(248\) 0 0
\(249\) 16962.2 + 29379.5i 0.0173374 + 0.0300293i
\(250\) 0 0
\(251\) 1.06631e6 1.06831 0.534156 0.845386i \(-0.320630\pi\)
0.534156 + 0.845386i \(0.320630\pi\)
\(252\) 0 0
\(253\) 2.50967e6 2.46499
\(254\) 0 0
\(255\) −1081.25 1872.79i −0.00104130 0.00180359i
\(256\) 0 0
\(257\) −337589. + 584721.i −0.318827 + 0.552225i −0.980244 0.197794i \(-0.936622\pi\)
0.661416 + 0.750019i \(0.269956\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −451534. + 782079.i −0.410288 + 0.710640i
\(262\) 0 0
\(263\) −150968. 261485.i −0.134585 0.233108i 0.790854 0.612005i \(-0.209637\pi\)
−0.925439 + 0.378897i \(0.876303\pi\)
\(264\) 0 0
\(265\) 569622. 0.498279
\(266\) 0 0
\(267\) −10561.6 −0.00906678
\(268\) 0 0
\(269\) 408714. + 707914.i 0.344381 + 0.596485i 0.985241 0.171172i \(-0.0547555\pi\)
−0.640860 + 0.767658i \(0.721422\pi\)
\(270\) 0 0
\(271\) −448310. + 776495.i −0.370813 + 0.642267i −0.989691 0.143220i \(-0.954254\pi\)
0.618878 + 0.785487i \(0.287588\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 527146. 913043.i 0.420338 0.728047i
\(276\) 0 0
\(277\) 454810. + 787754.i 0.356148 + 0.616866i 0.987314 0.158782i \(-0.0507566\pi\)
−0.631166 + 0.775648i \(0.717423\pi\)
\(278\) 0 0
\(279\) −241077. −0.185415
\(280\) 0 0
\(281\) 762090. 0.575758 0.287879 0.957667i \(-0.407050\pi\)
0.287879 + 0.957667i \(0.407050\pi\)
\(282\) 0 0
\(283\) −465530. 806322.i −0.345527 0.598470i 0.639923 0.768439i \(-0.278966\pi\)
−0.985449 + 0.169969i \(0.945633\pi\)
\(284\) 0 0
\(285\) −4476.51 + 7753.54i −0.00326458 + 0.00565441i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 689893. 1.19493e6i 0.485889 0.841585i
\(290\) 0 0
\(291\) −14089.9 24404.4i −0.00975382 0.0168941i
\(292\) 0 0
\(293\) 204188. 0.138951 0.0694755 0.997584i \(-0.477867\pi\)
0.0694755 + 0.997584i \(0.477867\pi\)
\(294\) 0 0
\(295\) 452859. 0.302976
\(296\) 0 0
\(297\) 41809.2 + 72415.6i 0.0275030 + 0.0476366i
\(298\) 0 0
\(299\) −2.18133e6 + 3.77817e6i −1.41105 + 2.44401i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 23534.7 40763.3i 0.0147266 0.0255072i
\(304\) 0 0
\(305\) 621184. + 1.07592e6i 0.382359 + 0.662265i
\(306\) 0 0
\(307\) −1.00786e6 −0.610314 −0.305157 0.952302i \(-0.598709\pi\)
−0.305157 + 0.952302i \(0.598709\pi\)
\(308\) 0 0
\(309\) −59958.8 −0.0357238
\(310\) 0 0
\(311\) −888681. 1.53924e6i −0.521009 0.902413i −0.999702 0.0244310i \(-0.992223\pi\)
0.478693 0.877982i \(-0.341111\pi\)
\(312\) 0 0
\(313\) 865502. 1.49909e6i 0.499352 0.864904i −0.500647 0.865651i \(-0.666905\pi\)
1.00000 0.000747608i \(0.000237971\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.11036e6 1.92320e6i 0.620605 1.07492i −0.368768 0.929521i \(-0.620220\pi\)
0.989373 0.145398i \(-0.0464463\pi\)
\(318\) 0 0
\(319\) 1.05180e6 + 1.82176e6i 0.578701 + 1.00234i
\(320\) 0 0
\(321\) 19434.6 0.0105272
\(322\) 0 0
\(323\) 165895. 0.0884761
\(324\) 0 0
\(325\) 916356. + 1.58718e6i 0.481233 + 0.833521i
\(326\) 0 0
\(327\) −10174.9 + 17623.4i −0.00526212 + 0.00911425i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.22609e6 2.12365e6i 0.615109 1.06540i −0.375256 0.926921i \(-0.622445\pi\)
0.990365 0.138479i \(-0.0442214\pi\)
\(332\) 0 0
\(333\) −1.01532e6 1.75858e6i −0.501753 0.869063i
\(334\) 0 0
\(335\) 425498. 0.207150
\(336\) 0 0
\(337\) −2.06932e6 −0.992549 −0.496275 0.868166i \(-0.665299\pi\)
−0.496275 + 0.868166i \(0.665299\pi\)
\(338\) 0 0
\(339\) 15286.4 + 26476.7i 0.00722445 + 0.0125131i
\(340\) 0 0
\(341\) −280780. + 486325.i −0.130762 + 0.226486i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −23958.1 + 41496.7i −0.0108369 + 0.0187700i
\(346\) 0 0
\(347\) 1.10969e6 + 1.92205e6i 0.494743 + 0.856920i 0.999982 0.00605935i \(-0.00192876\pi\)
−0.505238 + 0.862980i \(0.668595\pi\)
\(348\) 0 0
\(349\) 2.92580e6 1.28582 0.642911 0.765941i \(-0.277727\pi\)
0.642911 + 0.765941i \(0.277727\pi\)
\(350\) 0 0
\(351\) −145357. −0.0629749
\(352\) 0 0
\(353\) 1.51660e6 + 2.62682e6i 0.647788 + 1.12200i 0.983650 + 0.180091i \(0.0576391\pi\)
−0.335862 + 0.941911i \(0.609028\pi\)
\(354\) 0 0
\(355\) 229550. 397593.i 0.0966735 0.167443i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.83298e6 + 3.17482e6i −0.750623 + 1.30012i 0.196898 + 0.980424i \(0.436913\pi\)
−0.947521 + 0.319693i \(0.896420\pi\)
\(360\) 0 0
\(361\) 894639. + 1.54956e6i 0.361310 + 0.625807i
\(362\) 0 0
\(363\) 48389.9 0.0192747
\(364\) 0 0
\(365\) 2.88347e6 1.13288
\(366\) 0 0
\(367\) 1.73677e6 + 3.00818e6i 0.673098 + 1.16584i 0.977021 + 0.213143i \(0.0683702\pi\)
−0.303923 + 0.952697i \(0.598297\pi\)
\(368\) 0 0
\(369\) −1.63634e6 + 2.83423e6i −0.625616 + 1.08360i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −290715. + 503534.i −0.108192 + 0.187394i −0.915038 0.403368i \(-0.867840\pi\)
0.806846 + 0.590762i \(0.201173\pi\)
\(374\) 0 0
\(375\) 26944.4 + 46669.0i 0.00989441 + 0.0171376i
\(376\) 0 0
\(377\) −3.65675e6 −1.32508
\(378\) 0 0
\(379\) 1.83859e6 0.657486 0.328743 0.944419i \(-0.393375\pi\)
0.328743 + 0.944419i \(0.393375\pi\)
\(380\) 0 0
\(381\) 23571.8 + 40827.5i 0.00831917 + 0.0144092i
\(382\) 0 0
\(383\) −69566.4 + 120493.i −0.0242328 + 0.0419724i −0.877887 0.478867i \(-0.841048\pi\)
0.853655 + 0.520839i \(0.174381\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 36290.1 62856.3i 0.0123172 0.0213339i
\(388\) 0 0
\(389\) −1.10992e6 1.92245e6i −0.371894 0.644139i 0.617963 0.786207i \(-0.287958\pi\)
−0.989857 + 0.142068i \(0.954625\pi\)
\(390\) 0 0
\(391\) 887862. 0.293700
\(392\) 0 0
\(393\) −21410.1 −0.00699258
\(394\) 0 0
\(395\) −834715. 1.44577e6i −0.269182 0.466236i
\(396\) 0 0
\(397\) −252999. + 438207.i −0.0805643 + 0.139541i −0.903492 0.428604i \(-0.859006\pi\)
0.822928 + 0.568145i \(0.192339\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.03331e6 + 1.78975e6i −0.320901 + 0.555817i −0.980674 0.195648i \(-0.937319\pi\)
0.659773 + 0.751465i \(0.270652\pi\)
\(402\) 0 0
\(403\) −488090. 845396.i −0.149705 0.259297i
\(404\) 0 0
\(405\) 2.09507e6 0.634688
\(406\) 0 0
\(407\) −4.73012e6 −1.41542
\(408\) 0 0
\(409\) −2.98356e6 5.16767e6i −0.881913 1.52752i −0.849211 0.528054i \(-0.822922\pi\)
−0.0327024 0.999465i \(-0.510411\pi\)
\(410\) 0 0
\(411\) −26723.1 + 46285.7i −0.00780337 + 0.0135158i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.98106e6 3.43130e6i 0.564648 0.978000i
\(416\) 0 0
\(417\) −6693.68 11593.8i −0.00188506 0.00326502i
\(418\) 0 0
\(419\) −569081. −0.158358 −0.0791788 0.996860i \(-0.525230\pi\)
−0.0791788 + 0.996860i \(0.525230\pi\)
\(420\) 0 0
\(421\) −171377. −0.0471247 −0.0235623 0.999722i \(-0.507501\pi\)
−0.0235623 + 0.999722i \(0.507501\pi\)
\(422\) 0 0
\(423\) −2.27562e6 3.94149e6i −0.618371 1.07105i
\(424\) 0 0
\(425\) 186491. 323013.i 0.0500826 0.0867455i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −84631.8 + 146587.i −0.0222019 + 0.0384548i
\(430\) 0 0
\(431\) −2.37965e6 4.12168e6i −0.617049 1.06876i −0.990021 0.140918i \(-0.954995\pi\)
0.372972 0.927843i \(-0.378339\pi\)
\(432\) 0 0
\(433\) 623369. 0.159781 0.0798906 0.996804i \(-0.474543\pi\)
0.0798906 + 0.996804i \(0.474543\pi\)
\(434\) 0 0
\(435\) −40163.0 −0.0101766
\(436\) 0 0
\(437\) −1.83792e6 3.18338e6i −0.460388 0.797415i
\(438\) 0 0
\(439\) 2.62289e6 4.54298e6i 0.649559 1.12507i −0.333669 0.942690i \(-0.608287\pi\)
0.983228 0.182379i \(-0.0583797\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.82463e6 + 4.89241e6i −0.683837 + 1.18444i 0.289964 + 0.957038i \(0.406357\pi\)
−0.973801 + 0.227403i \(0.926977\pi\)
\(444\) 0 0
\(445\) 616760. + 1.06826e6i 0.147644 + 0.255727i
\(446\) 0 0
\(447\) −36841.7 −0.00872110
\(448\) 0 0
\(449\) 812156. 0.190118 0.0950591 0.995472i \(-0.469696\pi\)
0.0950591 + 0.995472i \(0.469696\pi\)
\(450\) 0 0
\(451\) 3.81167e6 + 6.60200e6i 0.882417 + 1.52839i
\(452\) 0 0
\(453\) −60593.2 + 104951.i −0.0138733 + 0.0240292i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 463460. 802736.i 0.103806 0.179797i −0.809444 0.587197i \(-0.800231\pi\)
0.913250 + 0.407400i \(0.133565\pi\)
\(458\) 0 0
\(459\) 14791.1 + 25618.9i 0.00327694 + 0.00567582i
\(460\) 0 0
\(461\) −3.67043e6 −0.804386 −0.402193 0.915555i \(-0.631752\pi\)
−0.402193 + 0.915555i \(0.631752\pi\)
\(462\) 0 0
\(463\) −2.70462e6 −0.586345 −0.293173 0.956060i \(-0.594711\pi\)
−0.293173 + 0.956060i \(0.594711\pi\)
\(464\) 0 0
\(465\) −5360.82 9285.21i −0.00114974 0.00199140i
\(466\) 0 0
\(467\) 4.12215e6 7.13978e6i 0.874645 1.51493i 0.0175052 0.999847i \(-0.494428\pi\)
0.857140 0.515083i \(-0.172239\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 20793.5 36015.4i 0.00431892 0.00748059i
\(472\) 0 0
\(473\) −84533.5 146416.i −0.0173731 0.0300910i
\(474\) 0 0
\(475\) −1.54419e6 −0.314027
\(476\) 0 0
\(477\) −3.89535e6 −0.783882
\(478\) 0 0
\(479\) 1.27501e6 + 2.20839e6i 0.253908 + 0.439781i 0.964598 0.263724i \(-0.0849507\pi\)
−0.710690 + 0.703505i \(0.751617\pi\)
\(480\) 0 0
\(481\) 4.11127e6 7.12092e6i 0.810239 1.40337i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.64559e6 + 2.85025e6i −0.317664 + 0.550211i
\(486\) 0 0
\(487\) −3.83408e6 6.64081e6i −0.732552 1.26882i −0.955789 0.294053i \(-0.904996\pi\)
0.223238 0.974764i \(-0.428337\pi\)
\(488\) 0 0
\(489\) 195379. 0.0369492
\(490\) 0 0
\(491\) 9.33268e6 1.74704 0.873519 0.486790i \(-0.161832\pi\)
0.873519 + 0.486790i \(0.161832\pi\)
\(492\) 0 0
\(493\) 372100. + 644496.i 0.0689513 + 0.119427i
\(494\) 0 0
\(495\) 2.44104e6 4.22800e6i 0.447776 0.775571i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 595327. 1.03114e6i 0.107030 0.185381i −0.807536 0.589818i \(-0.799199\pi\)
0.914566 + 0.404437i \(0.132533\pi\)
\(500\) 0 0
\(501\) 44227.5 + 76604.2i 0.00787223 + 0.0136351i
\(502\) 0 0
\(503\) 2.34213e6 0.412753 0.206377 0.978473i \(-0.433833\pi\)
0.206377 + 0.978473i \(0.433833\pi\)
\(504\) 0 0
\(505\) −5.49736e6 −0.959237
\(506\) 0 0
\(507\) −90657.0 157022.i −0.0156632 0.0271295i
\(508\) 0 0
\(509\) 3.34884e6 5.80035e6i 0.572927 0.992339i −0.423336 0.905973i \(-0.639141\pi\)
0.996263 0.0863663i \(-0.0275255\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 61236.7 106065.i 0.0102735 0.0177942i
\(514\) 0 0
\(515\) 3.50137e6 + 6.06456e6i 0.581729 + 1.00758i
\(516\) 0 0
\(517\) −1.06016e7 −1.74439
\(518\) 0 0
\(519\) −170995. −0.0278654
\(520\) 0 0
\(521\) −2.90863e6 5.03790e6i −0.469456 0.813121i 0.529934 0.848039i \(-0.322217\pi\)
−0.999390 + 0.0349174i \(0.988883\pi\)
\(522\) 0 0
\(523\) −5.12853e6 + 8.88287e6i −0.819858 + 1.42003i 0.0859292 + 0.996301i \(0.472614\pi\)
−0.905787 + 0.423734i \(0.860719\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −99333.2 + 172050.i −0.0155800 + 0.0269854i
\(528\) 0 0
\(529\) −6.61833e6 1.14633e7i −1.02827 1.78102i
\(530\) 0 0
\(531\) −3.09687e6 −0.476635
\(532\) 0 0
\(533\) −1.32519e7 −2.02051
\(534\) 0 0
\(535\) −1.13491e6 1.96572e6i −0.171426 0.296918i
\(536\) 0 0
\(537\) 47470.4 82221.2i 0.00710375 0.0123041i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.63300e6 + 4.56050e6i −0.386775 + 0.669914i −0.992014 0.126130i \(-0.959744\pi\)
0.605239 + 0.796044i \(0.293078\pi\)
\(542\) 0 0
\(543\) −38660.3 66961.7i −0.00562686 0.00974601i
\(544\) 0 0
\(545\) 2.37670e6 0.342755
\(546\) 0 0
\(547\) 4.89900e6 0.700066 0.350033 0.936737i \(-0.386170\pi\)
0.350033 + 0.936737i \(0.386170\pi\)
\(548\) 0 0
\(549\) −4.24796e6 7.35768e6i −0.601519 1.04186i
\(550\) 0 0
\(551\) 1.54053e6 2.66828e6i 0.216168 0.374415i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 45155.1 78211.0i 0.00622264 0.0107779i
\(556\) 0 0
\(557\) 4.58973e6 + 7.94965e6i 0.626829 + 1.08570i 0.988184 + 0.153272i \(0.0489809\pi\)
−0.361355 + 0.932428i \(0.617686\pi\)
\(558\) 0 0
\(559\) 293895. 0.0397799
\(560\) 0 0
\(561\) 34447.5 0.00462116
\(562\) 0 0
\(563\) 124736. + 216049.i 0.0165852 + 0.0287264i 0.874199 0.485568i \(-0.161387\pi\)
−0.857614 + 0.514294i \(0.828054\pi\)
\(564\) 0 0
\(565\) 1.78533e6 3.09229e6i 0.235287 0.407529i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.57490e6 + 1.13881e7i −0.851351 + 1.47458i 0.0286383 + 0.999590i \(0.490883\pi\)
−0.879989 + 0.474993i \(0.842450\pi\)
\(570\) 0 0
\(571\) −7.55189e6 1.30803e7i −0.969316 1.67891i −0.697542 0.716544i \(-0.745723\pi\)
−0.271774 0.962361i \(-0.587610\pi\)
\(572\) 0 0
\(573\) −57499.6 −0.00731608
\(574\) 0 0
\(575\) −8.26445e6 −1.04242
\(576\) 0 0
\(577\) 363911. + 630312.i 0.0455046 + 0.0788163i 0.887881 0.460074i \(-0.152177\pi\)
−0.842376 + 0.538890i \(0.818844\pi\)
\(578\) 0 0
\(579\) −100429. + 173949.i −0.0124498 + 0.0215638i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.53689e6 + 7.85812e6i −0.552823 + 0.957518i
\(584\) 0 0
\(585\) 4.24334e6 + 7.34968e6i 0.512647 + 0.887930i
\(586\) 0 0
\(587\) 1.24256e7 1.48841 0.744207 0.667949i \(-0.232828\pi\)
0.744207 + 0.667949i \(0.232828\pi\)
\(588\) 0 0
\(589\) 822500. 0.0976895
\(590\) 0 0
\(591\) 119619. + 207186.i 0.0140874 + 0.0244001i
\(592\) 0 0
\(593\) −3.08990e6 + 5.35187e6i −0.360835 + 0.624984i −0.988098 0.153823i \(-0.950841\pi\)
0.627264 + 0.778807i \(0.284175\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −54824.9 + 94959.5i −0.00629567 + 0.0109044i
\(598\) 0 0
\(599\) −6.53016e6 1.13106e7i −0.743630 1.28800i −0.950832 0.309706i \(-0.899769\pi\)
0.207202 0.978298i \(-0.433564\pi\)
\(600\) 0 0
\(601\) 9.01833e6 1.01845 0.509225 0.860633i \(-0.329932\pi\)
0.509225 + 0.860633i \(0.329932\pi\)
\(602\) 0 0
\(603\) −2.90976e6 −0.325884
\(604\) 0 0
\(605\) −2.82579e6 4.89441e6i −0.313871 0.543641i
\(606\) 0 0
\(607\) 6.84174e6 1.18502e7i 0.753694 1.30544i −0.192327 0.981331i \(-0.561603\pi\)
0.946021 0.324105i \(-0.105063\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.21456e6 1.59601e7i 0.998554 1.72955i
\(612\) 0 0
\(613\) 2.11633e6 + 3.66559e6i 0.227474 + 0.393997i 0.957059 0.289894i \(-0.0936199\pi\)
−0.729585 + 0.683891i \(0.760287\pi\)
\(614\) 0 0
\(615\) −145549. −0.0155175
\(616\) 0 0
\(617\) 3.32584e6 0.351713 0.175856 0.984416i \(-0.443731\pi\)
0.175856 + 0.984416i \(0.443731\pi\)
\(618\) 0 0
\(619\) 5.99934e6 + 1.03912e7i 0.629328 + 1.09003i 0.987687 + 0.156444i \(0.0500030\pi\)
−0.358359 + 0.933584i \(0.616664\pi\)
\(620\) 0 0
\(621\) 327737. 567656.i 0.0341033 0.0590686i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 235525. 407942.i 0.0241178 0.0417732i
\(626\) 0 0
\(627\) −71308.3 123510.i −0.00724388 0.0125468i
\(628\) 0 0
\(629\) −1.67340e6 −0.168645
\(630\) 0 0
\(631\) 9.99962e6 0.999793 0.499896 0.866085i \(-0.333371\pi\)
0.499896 + 0.866085i \(0.333371\pi\)
\(632\) 0 0
\(633\) 172583. + 298922.i 0.0171194 + 0.0296516i
\(634\) 0 0
\(635\) 2.75301e6 4.76835e6i 0.270940 0.469282i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.56978e6 + 2.71893e6i −0.152085 + 0.263419i
\(640\) 0 0
\(641\) 1.58312e6 + 2.74204e6i 0.152184 + 0.263590i 0.932030 0.362381i \(-0.118036\pi\)
−0.779846 + 0.625971i \(0.784703\pi\)
\(642\) 0 0
\(643\) 950578. 0.0906693 0.0453346 0.998972i \(-0.485565\pi\)
0.0453346 + 0.998972i \(0.485565\pi\)
\(644\) 0 0
\(645\) 3227.93 0.000305510
\(646\) 0 0
\(647\) 5.73353e6 + 9.93076e6i 0.538470 + 0.932657i 0.998987 + 0.0450059i \(0.0143307\pi\)
−0.460517 + 0.887651i \(0.652336\pi\)
\(648\) 0 0
\(649\) −3.60689e6 + 6.24732e6i −0.336141 + 0.582214i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.40468e6 2.43297e6i 0.128912 0.223282i −0.794343 0.607469i \(-0.792185\pi\)
0.923255 + 0.384187i \(0.125518\pi\)
\(654\) 0 0
\(655\) 1.25027e6 + 2.16553e6i 0.113868 + 0.197225i
\(656\) 0 0
\(657\) −1.97186e7 −1.78222
\(658\) 0 0
\(659\) −4.23794e6 −0.380138 −0.190069 0.981771i \(-0.560871\pi\)
−0.190069 + 0.981771i \(0.560871\pi\)
\(660\) 0 0
\(661\) −854514. 1.48006e6i −0.0760703 0.131758i 0.825481 0.564430i \(-0.190904\pi\)
−0.901551 + 0.432672i \(0.857571\pi\)
\(662\) 0 0
\(663\) −29940.7 + 51858.8i −0.00264532 + 0.00458183i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.24488e6 1.42806e7i 0.717579 1.24288i
\(668\) 0 0
\(669\) 119211. + 206479.i 0.0102979 + 0.0178365i
\(670\) 0 0
\(671\) −1.97903e7 −1.69686
\(672\) 0 0
\(673\) 1.11371e7 0.947836 0.473918 0.880569i \(-0.342839\pi\)
0.473918 + 0.880569i \(0.342839\pi\)
\(674\) 0 0
\(675\) −137679. 238467.i −0.0116308 0.0201451i
\(676\) 0 0
\(677\) −4.04936e6 + 7.01370e6i −0.339559 + 0.588133i −0.984350 0.176226i \(-0.943611\pi\)
0.644791 + 0.764359i \(0.276944\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −91355.1 + 158232.i −0.00754857 + 0.0130745i
\(682\) 0 0
\(683\) 7.49319e6 + 1.29786e7i 0.614632 + 1.06457i 0.990449 + 0.137880i \(0.0440287\pi\)
−0.375817 + 0.926694i \(0.622638\pi\)
\(684\) 0 0
\(685\) 6.24211e6 0.508283
\(686\) 0 0
\(687\) 450094. 0.0363841
\(688\) 0 0
\(689\) −7.88663e6 1.36600e7i −0.632912 1.09624i
\(690\) 0 0
\(691\) −1.09285e7 + 1.89286e7i −0.870691 + 1.50808i −0.00940700 + 0.999956i \(0.502994\pi\)
−0.861284 + 0.508125i \(0.830339\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −781772. + 1.35407e6i −0.0613929 + 0.106336i
\(696\) 0 0
\(697\) 1.34848e6 + 2.33563e6i 0.105138 + 0.182105i
\(698\) 0 0
\(699\) −317364. −0.0245677
\(700\) 0 0
\(701\) −1.21819e7 −0.936307 −0.468154 0.883647i \(-0.655081\pi\)
−0.468154 + 0.883647i \(0.655081\pi\)
\(702\) 0 0
\(703\) 3.46403e6 + 5.99988e6i 0.264359 + 0.457883i
\(704\) 0 0
\(705\) 101206. 175294.i 0.00766890 0.0132829i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.01520e6 6.95453e6i 0.299980 0.519580i −0.676151 0.736763i \(-0.736353\pi\)
0.976131 + 0.217183i \(0.0696868\pi\)
\(710\) 0 0
\(711\) 5.70818e6 + 9.88686e6i 0.423471 + 0.733473i
\(712\) 0 0
\(713\) 4.40199e6 0.324284
\(714\) 0 0
\(715\) 1.97687e7 1.44615
\(716\) 0 0
\(717\) −39985.9 69257.6i −0.00290475 0.00503117i
\(718\) 0 0
\(719\) 8.83404e6 1.53010e7i 0.637290 1.10382i −0.348735 0.937221i \(-0.613389\pi\)
0.986025 0.166598i \(-0.0532781\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 273638. 473956.i 0.0194684 0.0337203i
\(724\) 0 0
\(725\) −3.46360e6 5.99913e6i −0.244728 0.423880i
\(726\) 0 0
\(727\) 1.71905e7 1.20629 0.603146 0.797631i \(-0.293914\pi\)
0.603146 + 0.797631i \(0.293914\pi\)
\(728\) 0 0
\(729\) −1.43161e7 −0.997717
\(730\) 0 0
\(731\) −29905.9 51798.6i −0.00206997 0.00358529i
\(732\) 0 0
\(733\) −4.65110e6 + 8.05593e6i −0.319739 + 0.553804i −0.980433 0.196851i \(-0.936928\pi\)
0.660695 + 0.750655i \(0.270262\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.38897e6 + 5.86987e6i −0.229826 + 0.398070i
\(738\) 0 0
\(739\) 6.48126e6 + 1.12259e7i 0.436564 + 0.756151i 0.997422 0.0717608i \(-0.0228618\pi\)
−0.560858 + 0.827912i \(0.689528\pi\)
\(740\) 0 0
\(741\) 247915. 0.0165866
\(742\) 0 0
\(743\) 1.45466e7 0.966693 0.483347 0.875429i \(-0.339421\pi\)
0.483347 + 0.875429i \(0.339421\pi\)
\(744\) 0 0
\(745\) 2.15142e6 + 3.72637e6i 0.142015 + 0.245977i
\(746\) 0 0
\(747\) −1.35475e7 + 2.34649e7i −0.888294 + 1.53857i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.24749e6 + 1.25530e7i −0.468908 + 0.812173i −0.999368 0.0355371i \(-0.988686\pi\)
0.530460 + 0.847710i \(0.322019\pi\)
\(752\) 0 0
\(753\) −162150. 280853.i −0.0104215 0.0180506i
\(754\) 0 0
\(755\) 1.41537e7 0.903653
\(756\) 0 0
\(757\) 2.49809e7 1.58441 0.792207 0.610252i \(-0.208932\pi\)
0.792207 + 0.610252i \(0.208932\pi\)
\(758\) 0 0
\(759\) −381639. 661019.i −0.0240463 0.0416495i
\(760\) 0 0
\(761\) −7.82969e6 + 1.35614e7i −0.490098 + 0.848874i −0.999935 0.0113966i \(-0.996372\pi\)
0.509837 + 0.860271i \(0.329706\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 863580. 1.49576e6i 0.0533518 0.0924080i
\(766\) 0 0
\(767\) −6.26999e6 1.08599e7i −0.384839 0.666560i
\(768\) 0 0
\(769\) 1.30420e7 0.795292 0.397646 0.917539i \(-0.369827\pi\)
0.397646 + 0.917539i \(0.369827\pi\)
\(770\) 0 0
\(771\) 205345. 0.0124408
\(772\) 0 0
\(773\) 7.30422e6 + 1.26513e7i 0.439668 + 0.761527i 0.997664 0.0683164i \(-0.0217628\pi\)
−0.557996 + 0.829844i \(0.688429\pi\)
\(774\) 0 0
\(775\) 924619. 1.60149e6i 0.0552979 0.0957787i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.58284e6 9.66976e6i 0.329618 0.570916i
\(780\) 0 0
\(781\) 3.65661e6 + 6.33344e6i 0.214512 + 0.371546i
\(782\) 0 0
\(783\) 549413. 0.0320254
\(784\) 0 0
\(785\) −4.85705e6 −0.281319
\(786\) 0