Properties

Label 392.6.i.k.361.1
Level $392$
Weight $6$
Character 392.361
Analytic conductor $62.870$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,6,Mod(177,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.177"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,14,0,-42,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{193})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(3.72311 - 6.44862i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.6.i.k.177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.44622 + 5.96903i) q^{3} +(24.2311 + 41.9695i) q^{5} +(97.7471 + 169.303i) q^{9} +(81.7529 - 141.600i) q^{11} -120.828 q^{13} -334.023 q^{15} +(-39.0960 + 67.7162i) q^{17} +(1132.50 + 1961.55i) q^{19} +(1225.98 + 2123.45i) q^{23} +(388.207 - 672.394i) q^{25} -3022.30 q^{27} +6985.27 q^{29} +(-1397.02 + 2419.70i) q^{31} +(563.477 + 975.971i) q^{33} +(-4729.72 - 8192.11i) q^{37} +(416.402 - 721.229i) q^{39} +10088.5 q^{41} -6934.29 q^{43} +(-4737.04 + 8204.80i) q^{45} +(-582.882 - 1009.58i) q^{47} +(-269.467 - 466.730i) q^{51} +(-4281.21 + 7415.27i) q^{53} +7923.85 q^{55} -15611.4 q^{57} +(-3110.13 + 5386.90i) q^{59} +(20964.4 + 36311.5i) q^{61} +(-2927.81 - 5071.11i) q^{65} +(-906.046 + 1569.32i) q^{67} -16900.0 q^{69} -56823.3 q^{71} +(22149.7 - 38364.5i) q^{73} +(2675.69 + 4634.44i) q^{75} +(-17456.2 - 30235.1i) q^{79} +(-13337.0 + 23100.4i) q^{81} -39652.9 q^{83} -3789.36 q^{85} +(-24072.8 + 41695.3i) q^{87} +(63149.7 + 109378. i) q^{89} +(-9628.85 - 16677.7i) q^{93} +(-54883.4 + 95060.8i) q^{95} -145513. q^{97} +31964.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{3} - 42 q^{5} + 2 q^{9} + 716 q^{11} - 1428 q^{13} - 4448 q^{15} + 1344 q^{17} + 1946 q^{19} + 1792 q^{23} - 4282 q^{25} - 3976 q^{27} - 2400 q^{29} + 6804 q^{31} - 10416 q^{33} - 14640 q^{37}+ \cdots - 149880 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.44622 + 5.96903i −0.221075 + 0.382914i −0.955135 0.296172i \(-0.904290\pi\)
0.734060 + 0.679085i \(0.237623\pi\)
\(4\) 0 0
\(5\) 24.2311 + 41.9695i 0.433459 + 0.750773i 0.997168 0.0751998i \(-0.0239595\pi\)
−0.563709 + 0.825973i \(0.690626\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 97.7471 + 169.303i 0.402251 + 0.696720i
\(10\) 0 0
\(11\) 81.7529 141.600i 0.203714 0.352843i −0.746008 0.665937i \(-0.768032\pi\)
0.949722 + 0.313093i \(0.101365\pi\)
\(12\) 0 0
\(13\) −120.828 −0.198295 −0.0991473 0.995073i \(-0.531611\pi\)
−0.0991473 + 0.995073i \(0.531611\pi\)
\(14\) 0 0
\(15\) −334.023 −0.383308
\(16\) 0 0
\(17\) −39.0960 + 67.7162i −0.0328103 + 0.0568291i −0.881964 0.471316i \(-0.843779\pi\)
0.849154 + 0.528145i \(0.177112\pi\)
\(18\) 0 0
\(19\) 1132.50 + 1961.55i 0.719704 + 1.24656i 0.961117 + 0.276141i \(0.0890556\pi\)
−0.241414 + 0.970422i \(0.577611\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1225.98 + 2123.45i 0.483240 + 0.836996i 0.999815 0.0192461i \(-0.00612660\pi\)
−0.516575 + 0.856242i \(0.672793\pi\)
\(24\) 0 0
\(25\) 388.207 672.394i 0.124226 0.215166i
\(26\) 0 0
\(27\) −3022.30 −0.797862
\(28\) 0 0
\(29\) 6985.27 1.54237 0.771185 0.636611i \(-0.219664\pi\)
0.771185 + 0.636611i \(0.219664\pi\)
\(30\) 0 0
\(31\) −1397.02 + 2419.70i −0.261094 + 0.452228i −0.966533 0.256543i \(-0.917417\pi\)
0.705439 + 0.708771i \(0.250750\pi\)
\(32\) 0 0
\(33\) 563.477 + 975.971i 0.0900724 + 0.156010i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4729.72 8192.11i −0.567977 0.983765i −0.996766 0.0803606i \(-0.974393\pi\)
0.428789 0.903405i \(-0.358941\pi\)
\(38\) 0 0
\(39\) 416.402 721.229i 0.0438380 0.0759297i
\(40\) 0 0
\(41\) 10088.5 0.937271 0.468636 0.883392i \(-0.344746\pi\)
0.468636 + 0.883392i \(0.344746\pi\)
\(42\) 0 0
\(43\) −6934.29 −0.571914 −0.285957 0.958242i \(-0.592311\pi\)
−0.285957 + 0.958242i \(0.592311\pi\)
\(44\) 0 0
\(45\) −4737.04 + 8204.80i −0.348719 + 0.603999i
\(46\) 0 0
\(47\) −582.882 1009.58i −0.0384889 0.0666648i 0.846139 0.532962i \(-0.178921\pi\)
−0.884628 + 0.466297i \(0.845588\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −269.467 466.730i −0.0145071 0.0251270i
\(52\) 0 0
\(53\) −4281.21 + 7415.27i −0.209352 + 0.362608i −0.951511 0.307616i \(-0.900469\pi\)
0.742159 + 0.670224i \(0.233802\pi\)
\(54\) 0 0
\(55\) 7923.85 0.353207
\(56\) 0 0
\(57\) −15611.4 −0.636435
\(58\) 0 0
\(59\) −3110.13 + 5386.90i −0.116318 + 0.201469i −0.918306 0.395871i \(-0.870443\pi\)
0.801988 + 0.597341i \(0.203776\pi\)
\(60\) 0 0
\(61\) 20964.4 + 36311.5i 0.721371 + 1.24945i 0.960451 + 0.278451i \(0.0898209\pi\)
−0.239080 + 0.971000i \(0.576846\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2927.81 5071.11i −0.0859526 0.148874i
\(66\) 0 0
\(67\) −906.046 + 1569.32i −0.0246583 + 0.0427095i −0.878091 0.478493i \(-0.841183\pi\)
0.853433 + 0.521203i \(0.174516\pi\)
\(68\) 0 0
\(69\) −16900.0 −0.427329
\(70\) 0 0
\(71\) −56823.3 −1.33777 −0.668884 0.743367i \(-0.733228\pi\)
−0.668884 + 0.743367i \(0.733228\pi\)
\(72\) 0 0
\(73\) 22149.7 38364.5i 0.486476 0.842602i −0.513403 0.858148i \(-0.671615\pi\)
0.999879 + 0.0155461i \(0.00494868\pi\)
\(74\) 0 0
\(75\) 2675.69 + 4634.44i 0.0549266 + 0.0951357i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −17456.2 30235.1i −0.314690 0.545058i 0.664682 0.747127i \(-0.268567\pi\)
−0.979371 + 0.202068i \(0.935234\pi\)
\(80\) 0 0
\(81\) −13337.0 + 23100.4i −0.225864 + 0.391208i
\(82\) 0 0
\(83\) −39652.9 −0.631800 −0.315900 0.948793i \(-0.602306\pi\)
−0.315900 + 0.948793i \(0.602306\pi\)
\(84\) 0 0
\(85\) −3789.36 −0.0568877
\(86\) 0 0
\(87\) −24072.8 + 41695.3i −0.340980 + 0.590594i
\(88\) 0 0
\(89\) 63149.7 + 109378.i 0.845077 + 1.46372i 0.885554 + 0.464536i \(0.153779\pi\)
−0.0404777 + 0.999180i \(0.512888\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −9628.85 16677.7i −0.115443 0.199953i
\(94\) 0 0
\(95\) −54883.4 + 95060.8i −0.623924 + 1.08067i
\(96\) 0 0
\(97\) −145513. −1.57026 −0.785130 0.619331i \(-0.787404\pi\)
−0.785130 + 0.619331i \(0.787404\pi\)
\(98\) 0 0
\(99\) 31964.4 0.327777
\(100\) 0 0
\(101\) −49772.7 + 86208.9i −0.485499 + 0.840909i −0.999861 0.0166644i \(-0.994695\pi\)
0.514362 + 0.857573i \(0.328029\pi\)
\(102\) 0 0
\(103\) 64895.6 + 112402.i 0.602729 + 1.04396i 0.992406 + 0.123005i \(0.0392533\pi\)
−0.389677 + 0.920952i \(0.627413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −109406. 189496.i −0.923804 1.60008i −0.793473 0.608606i \(-0.791729\pi\)
−0.130332 0.991470i \(-0.541604\pi\)
\(108\) 0 0
\(109\) −100814. + 174614.i −0.812743 + 1.40771i 0.0981950 + 0.995167i \(0.468693\pi\)
−0.910938 + 0.412544i \(0.864640\pi\)
\(110\) 0 0
\(111\) 65198.6 0.502263
\(112\) 0 0
\(113\) 31803.9 0.234306 0.117153 0.993114i \(-0.462623\pi\)
0.117153 + 0.993114i \(0.462623\pi\)
\(114\) 0 0
\(115\) −59413.6 + 102907.i −0.418930 + 0.725607i
\(116\) 0 0
\(117\) −11810.6 20456.6i −0.0797643 0.138156i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 67158.4 + 116322.i 0.417001 + 0.722267i
\(122\) 0 0
\(123\) −34767.1 + 60218.3i −0.207207 + 0.358894i
\(124\) 0 0
\(125\) 189071. 1.08231
\(126\) 0 0
\(127\) −318115. −1.75015 −0.875075 0.483988i \(-0.839188\pi\)
−0.875075 + 0.483988i \(0.839188\pi\)
\(128\) 0 0
\(129\) 23897.1 41391.0i 0.126436 0.218994i
\(130\) 0 0
\(131\) 152597. + 264306.i 0.776905 + 1.34564i 0.933717 + 0.358011i \(0.116545\pi\)
−0.156812 + 0.987628i \(0.550122\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −73233.6 126844.i −0.345841 0.599014i
\(136\) 0 0
\(137\) −90022.3 + 155923.i −0.409778 + 0.709757i −0.994865 0.101214i \(-0.967727\pi\)
0.585086 + 0.810971i \(0.301061\pi\)
\(138\) 0 0
\(139\) −323204. −1.41886 −0.709430 0.704776i \(-0.751047\pi\)
−0.709430 + 0.704776i \(0.751047\pi\)
\(140\) 0 0
\(141\) 8034.96 0.0340358
\(142\) 0 0
\(143\) −9878.08 + 17109.3i −0.0403954 + 0.0699669i
\(144\) 0 0
\(145\) 169261. + 293169.i 0.668554 + 1.15797i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −147079. 254749.i −0.542733 0.940041i −0.998746 0.0500677i \(-0.984056\pi\)
0.456013 0.889973i \(-0.349277\pi\)
\(150\) 0 0
\(151\) 167481. 290085.i 0.597754 1.03534i −0.395397 0.918510i \(-0.629393\pi\)
0.993152 0.116831i \(-0.0372736\pi\)
\(152\) 0 0
\(153\) −15286.1 −0.0527919
\(154\) 0 0
\(155\) −135405. −0.452694
\(156\) 0 0
\(157\) 72574.9 125703.i 0.234984 0.407003i −0.724284 0.689501i \(-0.757830\pi\)
0.959268 + 0.282498i \(0.0911630\pi\)
\(158\) 0 0
\(159\) −29508.0 51109.3i −0.0925650 0.160327i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 88110.6 + 152612.i 0.259752 + 0.449904i 0.966175 0.257886i \(-0.0830258\pi\)
−0.706423 + 0.707790i \(0.749692\pi\)
\(164\) 0 0
\(165\) −27307.4 + 47297.7i −0.0780854 + 0.135248i
\(166\) 0 0
\(167\) −45460.7 −0.126138 −0.0630689 0.998009i \(-0.520089\pi\)
−0.0630689 + 0.998009i \(0.520089\pi\)
\(168\) 0 0
\(169\) −356693. −0.960679
\(170\) 0 0
\(171\) −221397. + 383471.i −0.579004 + 1.00286i
\(172\) 0 0
\(173\) 102921. + 178264.i 0.261450 + 0.452844i 0.966627 0.256186i \(-0.0824661\pi\)
−0.705178 + 0.709031i \(0.749133\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −21436.4 37128.9i −0.0514302 0.0890798i
\(178\) 0 0
\(179\) 99602.6 172517.i 0.232348 0.402438i −0.726151 0.687535i \(-0.758693\pi\)
0.958499 + 0.285097i \(0.0920260\pi\)
\(180\) 0 0
\(181\) 198411. 0.450162 0.225081 0.974340i \(-0.427735\pi\)
0.225081 + 0.974340i \(0.427735\pi\)
\(182\) 0 0
\(183\) −288992. −0.637909
\(184\) 0 0
\(185\) 229213. 397008.i 0.492390 0.852845i
\(186\) 0 0
\(187\) 6392.42 + 11072.0i 0.0133678 + 0.0231538i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −186474. 322982.i −0.369857 0.640611i 0.619686 0.784850i \(-0.287260\pi\)
−0.989543 + 0.144239i \(0.953927\pi\)
\(192\) 0 0
\(193\) −87509.8 + 151571.i −0.169108 + 0.292903i −0.938106 0.346347i \(-0.887422\pi\)
0.768999 + 0.639250i \(0.220755\pi\)
\(194\) 0 0
\(195\) 40359.5 0.0760080
\(196\) 0 0
\(197\) 883770. 1.62246 0.811229 0.584728i \(-0.198799\pi\)
0.811229 + 0.584728i \(0.198799\pi\)
\(198\) 0 0
\(199\) −392921. + 680560.i −0.703353 + 1.21824i 0.263930 + 0.964542i \(0.414981\pi\)
−0.967283 + 0.253701i \(0.918352\pi\)
\(200\) 0 0
\(201\) −6244.87 10816.4i −0.0109027 0.0188840i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 244455. + 423408.i 0.406269 + 0.703678i
\(206\) 0 0
\(207\) −239671. + 415123.i −0.388768 + 0.673366i
\(208\) 0 0
\(209\) 370340. 0.586456
\(210\) 0 0
\(211\) 763861. 1.18116 0.590579 0.806980i \(-0.298899\pi\)
0.590579 + 0.806980i \(0.298899\pi\)
\(212\) 0 0
\(213\) 195826. 339180.i 0.295747 0.512249i
\(214\) 0 0
\(215\) −168025. 291029.i −0.247901 0.429378i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 152666. + 264425.i 0.215096 + 0.372557i
\(220\) 0 0
\(221\) 4723.91 8182.05i 0.00650610 0.0112689i
\(222\) 0 0
\(223\) −204400. −0.275245 −0.137623 0.990485i \(-0.543946\pi\)
−0.137623 + 0.990485i \(0.543946\pi\)
\(224\) 0 0
\(225\) 151784. 0.199881
\(226\) 0 0
\(227\) −504028. + 873003.i −0.649218 + 1.12448i 0.334093 + 0.942540i \(0.391570\pi\)
−0.983310 + 0.181938i \(0.941763\pi\)
\(228\) 0 0
\(229\) 122162. + 211591.i 0.153938 + 0.266629i 0.932672 0.360726i \(-0.117471\pi\)
−0.778734 + 0.627355i \(0.784138\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10411.4 18033.1i −0.0125638 0.0217611i 0.859675 0.510841i \(-0.170666\pi\)
−0.872239 + 0.489080i \(0.837333\pi\)
\(234\) 0 0
\(235\) 28247.7 48926.5i 0.0333668 0.0577929i
\(236\) 0 0
\(237\) 240632. 0.278280
\(238\) 0 0
\(239\) −474033. −0.536801 −0.268401 0.963307i \(-0.586495\pi\)
−0.268401 + 0.963307i \(0.586495\pi\)
\(240\) 0 0
\(241\) 851950. 1.47562e6i 0.944869 1.63656i 0.188854 0.982005i \(-0.439523\pi\)
0.756014 0.654555i \(-0.227144\pi\)
\(242\) 0 0
\(243\) −459134. 795243.i −0.498797 0.863941i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −136838. 237010.i −0.142713 0.247187i
\(248\) 0 0
\(249\) 136653. 236689.i 0.139675 0.241925i
\(250\) 0 0
\(251\) −810918. −0.812442 −0.406221 0.913775i \(-0.633154\pi\)
−0.406221 + 0.913775i \(0.633154\pi\)
\(252\) 0 0
\(253\) 400909. 0.393771
\(254\) 0 0
\(255\) 13059.0 22618.8i 0.0125765 0.0217831i
\(256\) 0 0
\(257\) −633283. 1.09688e6i −0.598088 1.03592i −0.993103 0.117244i \(-0.962594\pi\)
0.395016 0.918674i \(-0.370739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 682790. + 1.18263e6i 0.620420 + 1.07460i
\(262\) 0 0
\(263\) 980241. 1.69783e6i 0.873863 1.51358i 0.0158947 0.999874i \(-0.494940\pi\)
0.857969 0.513702i \(-0.171726\pi\)
\(264\) 0 0
\(265\) −414954. −0.362982
\(266\) 0 0
\(267\) −870511. −0.747302
\(268\) 0 0
\(269\) 746790. 1.29348e6i 0.629242 1.08988i −0.358462 0.933544i \(-0.616699\pi\)
0.987704 0.156335i \(-0.0499679\pi\)
\(270\) 0 0
\(271\) −618128. 1.07063e6i −0.511275 0.885555i −0.999915 0.0130691i \(-0.995840\pi\)
0.488639 0.872486i \(-0.337493\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −63474.0 109940.i −0.0506133 0.0876647i
\(276\) 0 0
\(277\) 85075.0 147354.i 0.0666197 0.115389i −0.830792 0.556584i \(-0.812112\pi\)
0.897411 + 0.441195i \(0.145445\pi\)
\(278\) 0 0
\(279\) −546217. −0.420102
\(280\) 0 0
\(281\) 1.29957e6 0.981824 0.490912 0.871209i \(-0.336664\pi\)
0.490912 + 0.871209i \(0.336664\pi\)
\(282\) 0 0
\(283\) 187016. 323921.i 0.138807 0.240422i −0.788238 0.615370i \(-0.789006\pi\)
0.927045 + 0.374949i \(0.122340\pi\)
\(284\) 0 0
\(285\) −378281. 655201.i −0.275868 0.477818i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 706872. + 1.22434e6i 0.497847 + 0.862296i
\(290\) 0 0
\(291\) 501469. 868570.i 0.347146 0.601274i
\(292\) 0 0
\(293\) 1.15022e6 0.782728 0.391364 0.920236i \(-0.372003\pi\)
0.391364 + 0.920236i \(0.372003\pi\)
\(294\) 0 0
\(295\) −301448. −0.201677
\(296\) 0 0
\(297\) −247082. + 427958.i −0.162536 + 0.281520i
\(298\) 0 0
\(299\) −148133. 256574.i −0.0958238 0.165972i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −343056. 594190.i −0.214664 0.371808i
\(304\) 0 0
\(305\) −1.01598e6 + 1.75973e6i −0.625370 + 1.08317i
\(306\) 0 0
\(307\) 2.61214e6 1.58179 0.790897 0.611949i \(-0.209614\pi\)
0.790897 + 0.611949i \(0.209614\pi\)
\(308\) 0 0
\(309\) −894578. −0.532994
\(310\) 0 0
\(311\) 703229. 1.21803e6i 0.412283 0.714095i −0.582856 0.812576i \(-0.698065\pi\)
0.995139 + 0.0984801i \(0.0313981\pi\)
\(312\) 0 0
\(313\) −1.18965e6 2.06053e6i −0.686369 1.18883i −0.973004 0.230786i \(-0.925870\pi\)
0.286635 0.958040i \(-0.407463\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 281600. + 487745.i 0.157393 + 0.272612i 0.933928 0.357462i \(-0.116358\pi\)
−0.776535 + 0.630074i \(0.783025\pi\)
\(318\) 0 0
\(319\) 571066. 989116.i 0.314203 0.544215i
\(320\) 0 0
\(321\) 1.50814e6 0.816921
\(322\) 0 0
\(323\) −177105. −0.0944547
\(324\) 0 0
\(325\) −46906.4 + 81244.3i −0.0246334 + 0.0426662i
\(326\) 0 0
\(327\) −694852. 1.20352e6i −0.359355 0.622420i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 425324. + 736683.i 0.213378 + 0.369582i 0.952770 0.303694i \(-0.0982200\pi\)
−0.739391 + 0.673276i \(0.764887\pi\)
\(332\) 0 0
\(333\) 924633. 1.60151e6i 0.456939 0.791442i
\(334\) 0 0
\(335\) −87818.0 −0.0427535
\(336\) 0 0
\(337\) 4.01506e6 1.92582 0.962912 0.269814i \(-0.0869623\pi\)
0.962912 + 0.269814i \(0.0869623\pi\)
\(338\) 0 0
\(339\) −109603. + 189838.i −0.0517993 + 0.0897191i
\(340\) 0 0
\(341\) 228420. + 395635.i 0.106377 + 0.184251i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −409505. 709283.i −0.185230 0.320828i
\(346\) 0 0
\(347\) 1.19980e6 2.07812e6i 0.534918 0.926505i −0.464250 0.885704i \(-0.653676\pi\)
0.999167 0.0408002i \(-0.0129907\pi\)
\(348\) 0 0
\(349\) −919171. −0.403955 −0.201977 0.979390i \(-0.564737\pi\)
−0.201977 + 0.979390i \(0.564737\pi\)
\(350\) 0 0
\(351\) 365179. 0.158212
\(352\) 0 0
\(353\) −538418. + 932568.i −0.229976 + 0.398331i −0.957801 0.287433i \(-0.907198\pi\)
0.727825 + 0.685763i \(0.240532\pi\)
\(354\) 0 0
\(355\) −1.37689e6 2.38485e6i −0.579868 1.00436i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 621095. + 1.07577e6i 0.254344 + 0.440537i 0.964717 0.263288i \(-0.0848071\pi\)
−0.710373 + 0.703825i \(0.751474\pi\)
\(360\) 0 0
\(361\) −1.32706e6 + 2.29853e6i −0.535947 + 0.928287i
\(362\) 0 0
\(363\) −925771. −0.368754
\(364\) 0 0
\(365\) 2.14685e6 0.843471
\(366\) 0 0
\(367\) −2.08647e6 + 3.61387e6i −0.808624 + 1.40058i 0.105194 + 0.994452i \(0.466454\pi\)
−0.913817 + 0.406125i \(0.866880\pi\)
\(368\) 0 0
\(369\) 986118. + 1.70801e6i 0.377019 + 0.653016i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 861191. + 1.49163e6i 0.320500 + 0.555121i 0.980591 0.196064i \(-0.0628159\pi\)
−0.660092 + 0.751185i \(0.729483\pi\)
\(374\) 0 0
\(375\) −651581. + 1.12857e6i −0.239271 + 0.414430i
\(376\) 0 0
\(377\) −844020. −0.305844
\(378\) 0 0
\(379\) 1.72998e6 0.618647 0.309324 0.950957i \(-0.399897\pi\)
0.309324 + 0.950957i \(0.399897\pi\)
\(380\) 0 0
\(381\) 1.09630e6 1.89884e6i 0.386915 0.670156i
\(382\) 0 0
\(383\) 1.67441e6 + 2.90016e6i 0.583262 + 1.01024i 0.995090 + 0.0989781i \(0.0315574\pi\)
−0.411827 + 0.911262i \(0.635109\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −677806. 1.17400e6i −0.230053 0.398464i
\(388\) 0 0
\(389\) 2.59346e6 4.49200e6i 0.868970 1.50510i 0.00592035 0.999982i \(-0.498115\pi\)
0.863050 0.505118i \(-0.168551\pi\)
\(390\) 0 0
\(391\) −191723. −0.0634209
\(392\) 0 0
\(393\) −2.10353e6 −0.687018
\(394\) 0 0
\(395\) 845967. 1.46526e6i 0.272810 0.472521i
\(396\) 0 0
\(397\) 651353. + 1.12818e6i 0.207415 + 0.359254i 0.950900 0.309500i \(-0.100162\pi\)
−0.743484 + 0.668753i \(0.766828\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 765180. + 1.32533e6i 0.237631 + 0.411588i 0.960034 0.279884i \(-0.0902959\pi\)
−0.722403 + 0.691472i \(0.756963\pi\)
\(402\) 0 0
\(403\) 168799. 292369.i 0.0517735 0.0896744i
\(404\) 0 0
\(405\) −1.29269e6 −0.391611
\(406\) 0 0
\(407\) −1.54667e6 −0.462820
\(408\) 0 0
\(409\) 1.46845e6 2.54343e6i 0.434062 0.751817i −0.563157 0.826350i \(-0.690413\pi\)
0.997219 + 0.0745332i \(0.0237467\pi\)
\(410\) 0 0
\(411\) −620474. 1.07469e6i −0.181184 0.313819i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −960833. 1.66421e6i −0.273859 0.474339i
\(416\) 0 0
\(417\) 1.11383e6 1.92921e6i 0.313675 0.543301i
\(418\) 0 0
\(419\) −1.16465e6 −0.324085 −0.162043 0.986784i \(-0.551808\pi\)
−0.162043 + 0.986784i \(0.551808\pi\)
\(420\) 0 0
\(421\) −1.58204e6 −0.435022 −0.217511 0.976058i \(-0.569794\pi\)
−0.217511 + 0.976058i \(0.569794\pi\)
\(422\) 0 0
\(423\) 113950. 197367.i 0.0309644 0.0536320i
\(424\) 0 0
\(425\) 30354.6 + 52575.8i 0.00815179 + 0.0141193i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −68084.1 117925.i −0.0178609 0.0309359i
\(430\) 0 0
\(431\) −3.05116e6 + 5.28477e6i −0.791174 + 1.37035i 0.134066 + 0.990972i \(0.457197\pi\)
−0.925240 + 0.379382i \(0.876137\pi\)
\(432\) 0 0
\(433\) 1.08115e6 0.277118 0.138559 0.990354i \(-0.455753\pi\)
0.138559 + 0.990354i \(0.455753\pi\)
\(434\) 0 0
\(435\) −2.33324e6 −0.591203
\(436\) 0 0
\(437\) −2.77683e6 + 4.80962e6i −0.695579 + 1.20478i
\(438\) 0 0
\(439\) 3.52403e6 + 6.10381e6i 0.872728 + 1.51161i 0.859164 + 0.511701i \(0.170984\pi\)
0.0135639 + 0.999908i \(0.495682\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.16016e6 + 2.00945e6i 0.280871 + 0.486483i 0.971599 0.236631i \(-0.0760434\pi\)
−0.690729 + 0.723114i \(0.742710\pi\)
\(444\) 0 0
\(445\) −3.06037e6 + 5.30072e6i −0.732613 + 1.26892i
\(446\) 0 0
\(447\) 2.02747e6 0.479939
\(448\) 0 0
\(449\) −5.45039e6 −1.27589 −0.637943 0.770084i \(-0.720214\pi\)
−0.637943 + 0.770084i \(0.720214\pi\)
\(450\) 0 0
\(451\) 824761. 1.42853e6i 0.190935 0.330710i
\(452\) 0 0
\(453\) 1.15435e6 + 1.99940e6i 0.264297 + 0.457777i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.31338e6 5.73895e6i −0.742132 1.28541i −0.951523 0.307578i \(-0.900482\pi\)
0.209391 0.977832i \(-0.432852\pi\)
\(458\) 0 0
\(459\) 118160. 204659.i 0.0261781 0.0453417i
\(460\) 0 0
\(461\) 606397. 0.132894 0.0664469 0.997790i \(-0.478834\pi\)
0.0664469 + 0.997790i \(0.478834\pi\)
\(462\) 0 0
\(463\) 3.65855e6 0.793153 0.396576 0.918002i \(-0.370198\pi\)
0.396576 + 0.918002i \(0.370198\pi\)
\(464\) 0 0
\(465\) 466635. 808236.i 0.100080 0.173343i
\(466\) 0 0
\(467\) −2.81356e6 4.87323e6i −0.596986 1.03401i −0.993263 0.115879i \(-0.963031\pi\)
0.396277 0.918131i \(-0.370302\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 500219. + 866404.i 0.103898 + 0.179957i
\(472\) 0 0
\(473\) −566898. + 981896.i −0.116507 + 0.201796i
\(474\) 0 0
\(475\) 1.75857e6 0.357624
\(476\) 0 0
\(477\) −1.67390e6 −0.336848
\(478\) 0 0
\(479\) −2.12553e6 + 3.68153e6i −0.423281 + 0.733145i −0.996258 0.0864268i \(-0.972455\pi\)
0.572977 + 0.819571i \(0.305788\pi\)
\(480\) 0 0
\(481\) 571485. + 989840.i 0.112627 + 0.195075i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.52593e6 6.10710e6i −0.680644 1.17891i
\(486\) 0 0
\(487\) −2.64378e6 + 4.57916e6i −0.505130 + 0.874911i 0.494852 + 0.868977i \(0.335222\pi\)
−0.999982 + 0.00593382i \(0.998111\pi\)
\(488\) 0 0
\(489\) −1.21459e6 −0.229699
\(490\) 0 0
\(491\) −3.33842e6 −0.624939 −0.312469 0.949928i \(-0.601156\pi\)
−0.312469 + 0.949928i \(0.601156\pi\)
\(492\) 0 0
\(493\) −273096. + 473016.i −0.0506056 + 0.0876514i
\(494\) 0 0
\(495\) 774534. + 1.34153e6i 0.142078 + 0.246087i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.26424e6 2.18972e6i −0.227288 0.393675i 0.729715 0.683751i \(-0.239653\pi\)
−0.957003 + 0.290076i \(0.906319\pi\)
\(500\) 0 0
\(501\) 156668. 271356.i 0.0278859 0.0482999i
\(502\) 0 0
\(503\) −5.94498e6 −1.04768 −0.523842 0.851815i \(-0.675502\pi\)
−0.523842 + 0.851815i \(0.675502\pi\)
\(504\) 0 0
\(505\) −4.82420e6 −0.841776
\(506\) 0 0
\(507\) 1.22924e6 2.12911e6i 0.212382 0.367857i
\(508\) 0 0
\(509\) 301762. + 522668.i 0.0516263 + 0.0894193i 0.890684 0.454624i \(-0.150226\pi\)
−0.839057 + 0.544043i \(0.816893\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.42275e6 5.92837e6i −0.574224 0.994585i
\(514\) 0 0
\(515\) −3.14498e6 + 5.44727e6i −0.522517 + 0.905026i
\(516\) 0 0
\(517\) −190609. −0.0313630
\(518\) 0 0
\(519\) −1.41875e6 −0.231200
\(520\) 0 0
\(521\) −5.16943e6 + 8.95371e6i −0.834350 + 1.44514i 0.0602088 + 0.998186i \(0.480823\pi\)
−0.894559 + 0.446951i \(0.852510\pi\)
\(522\) 0 0
\(523\) 4.41155e6 + 7.64103e6i 0.705240 + 1.22151i 0.966605 + 0.256272i \(0.0824943\pi\)
−0.261364 + 0.965240i \(0.584172\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −109235. 189201.i −0.0171331 0.0296755i
\(528\) 0 0
\(529\) 212133. 367425.i 0.0329586 0.0570860i
\(530\) 0 0
\(531\) −1.21602e6 −0.187157
\(532\) 0 0
\(533\) −1.21897e6 −0.185856
\(534\) 0 0
\(535\) 5.30204e6 9.18340e6i 0.800863 1.38714i
\(536\) 0 0
\(537\) 686505. + 1.18906e6i 0.102733 + 0.177938i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −584056. 1.01161e6i −0.0857949 0.148601i 0.819935 0.572457i \(-0.194010\pi\)
−0.905730 + 0.423856i \(0.860676\pi\)
\(542\) 0 0
\(543\) −683767. + 1.18432e6i −0.0995196 + 0.172373i
\(544\) 0 0
\(545\) −9.77130e6 −1.40916
\(546\) 0 0
\(547\) 9.17075e6 1.31050 0.655249 0.755413i \(-0.272564\pi\)
0.655249 + 0.755413i \(0.272564\pi\)
\(548\) 0 0
\(549\) −4.09842e6 + 7.09868e6i −0.580345 + 1.00519i
\(550\) 0 0
\(551\) 7.91081e6 + 1.37019e7i 1.11005 + 1.92266i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.57984e6 + 2.73636e6i 0.217710 + 0.377086i
\(556\) 0 0
\(557\) −3.11211e6 + 5.39033e6i −0.425027 + 0.736168i −0.996423 0.0845062i \(-0.973069\pi\)
0.571396 + 0.820674i \(0.306402\pi\)
\(558\) 0 0
\(559\) 837859. 0.113407
\(560\) 0 0
\(561\) −88118.8 −0.0118212
\(562\) 0 0
\(563\) 2.82021e6 4.88475e6i 0.374982 0.649488i −0.615342 0.788260i \(-0.710982\pi\)
0.990324 + 0.138772i \(0.0443155\pi\)
\(564\) 0 0
\(565\) 770643. + 1.33479e6i 0.101562 + 0.175911i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.26432e6 + 9.11807e6i 0.681650 + 1.18065i 0.974477 + 0.224487i \(0.0720707\pi\)
−0.292827 + 0.956165i \(0.594596\pi\)
\(570\) 0 0
\(571\) 3.65698e6 6.33407e6i 0.469388 0.813004i −0.530000 0.847998i \(-0.677808\pi\)
0.999388 + 0.0349941i \(0.0111413\pi\)
\(572\) 0 0
\(573\) 2.57052e6 0.327065
\(574\) 0 0
\(575\) 1.90373e6 0.240124
\(576\) 0 0
\(577\) −1.33267e6 + 2.30825e6i −0.166641 + 0.288631i −0.937237 0.348693i \(-0.886625\pi\)
0.770596 + 0.637324i \(0.219959\pi\)
\(578\) 0 0
\(579\) −603156. 1.04470e6i −0.0747710 0.129507i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 700002. + 1.21244e6i 0.0852959 + 0.147737i
\(584\) 0 0
\(585\) 572369. 991373.i 0.0691491 0.119770i
\(586\) 0 0
\(587\) 4.92431e6 0.589861 0.294931 0.955519i \(-0.404703\pi\)
0.294931 + 0.955519i \(0.404703\pi\)
\(588\) 0 0
\(589\) −6.32847e6 −0.751641
\(590\) 0 0
\(591\) −3.04567e6 + 5.27525e6i −0.358685 + 0.621261i
\(592\) 0 0
\(593\) 2.54368e6 + 4.40578e6i 0.297047 + 0.514501i 0.975459 0.220181i \(-0.0706648\pi\)
−0.678412 + 0.734682i \(0.737332\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.70819e6 4.69072e6i −0.310988 0.538646i
\(598\) 0 0
\(599\) −2.32339e6 + 4.02423e6i −0.264579 + 0.458263i −0.967453 0.253050i \(-0.918566\pi\)
0.702875 + 0.711314i \(0.251900\pi\)
\(600\) 0 0
\(601\) −4.35424e6 −0.491730 −0.245865 0.969304i \(-0.579072\pi\)
−0.245865 + 0.969304i \(0.579072\pi\)
\(602\) 0 0
\(603\) −354254. −0.0396754
\(604\) 0 0
\(605\) −3.25465e6 + 5.63721e6i −0.361506 + 0.626147i
\(606\) 0 0
\(607\) 6.27303e6 + 1.08652e7i 0.691043 + 1.19692i 0.971496 + 0.237054i \(0.0761820\pi\)
−0.280453 + 0.959868i \(0.590485\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 70428.7 + 121986.i 0.00763214 + 0.0132193i
\(612\) 0 0
\(613\) 2.03818e6 3.53024e6i 0.219075 0.379448i −0.735451 0.677578i \(-0.763030\pi\)
0.954525 + 0.298130i \(0.0963629\pi\)
\(614\) 0 0
\(615\) −3.36978e6 −0.359264
\(616\) 0 0
\(617\) −8.88533e6 −0.939639 −0.469819 0.882763i \(-0.655681\pi\)
−0.469819 + 0.882763i \(0.655681\pi\)
\(618\) 0 0
\(619\) 6.42650e6 1.11310e7i 0.674136 1.16764i −0.302584 0.953123i \(-0.597849\pi\)
0.976721 0.214516i \(-0.0688174\pi\)
\(620\) 0 0
\(621\) −3.70527e6 6.41771e6i −0.385559 0.667807i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.36826e6 + 5.83399e6i 0.344910 + 0.597401i
\(626\) 0 0
\(627\) −1.27627e6 + 2.21057e6i −0.129651 + 0.224562i
\(628\) 0 0
\(629\) 739652. 0.0745420
\(630\) 0 0
\(631\) −288616. −0.0288567 −0.0144283 0.999896i \(-0.504593\pi\)
−0.0144283 + 0.999896i \(0.504593\pi\)
\(632\) 0 0
\(633\) −2.63243e6 + 4.55951e6i −0.261125 + 0.452282i
\(634\) 0 0
\(635\) −7.70829e6 1.33511e7i −0.758619 1.31397i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.55432e6 9.62036e6i −0.538119 0.932050i
\(640\) 0 0
\(641\) 9.72953e6 1.68520e7i 0.935291 1.61997i 0.161177 0.986926i \(-0.448471\pi\)
0.774114 0.633046i \(-0.218196\pi\)
\(642\) 0 0
\(643\) 1.30171e7 1.24161 0.620805 0.783965i \(-0.286806\pi\)
0.620805 + 0.783965i \(0.286806\pi\)
\(644\) 0 0
\(645\) 2.31621e6 0.219219
\(646\) 0 0
\(647\) −3.21432e6 + 5.56736e6i −0.301876 + 0.522864i −0.976561 0.215242i \(-0.930946\pi\)
0.674685 + 0.738106i \(0.264279\pi\)
\(648\) 0 0
\(649\) 508524. + 880790.i 0.0473914 + 0.0820844i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.01012e6 8.67778e6i −0.459796 0.796390i 0.539154 0.842207i \(-0.318744\pi\)
−0.998950 + 0.0458174i \(0.985411\pi\)
\(654\) 0 0
\(655\) −7.39519e6 + 1.28089e7i −0.673514 + 1.16656i
\(656\) 0 0
\(657\) 8.66030e6 0.782743
\(658\) 0 0
\(659\) 1.49356e7 1.33971 0.669854 0.742493i \(-0.266357\pi\)
0.669854 + 0.742493i \(0.266357\pi\)
\(660\) 0 0
\(661\) 675276. 1.16961e6i 0.0601143 0.104121i −0.834402 0.551156i \(-0.814187\pi\)
0.894516 + 0.447035i \(0.147520\pi\)
\(662\) 0 0
\(663\) 32559.3 + 56394.3i 0.00287668 + 0.00498255i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.56378e6 + 1.48329e7i 0.745334 + 1.29096i
\(668\) 0 0
\(669\) 704409. 1.22007e6i 0.0608499 0.105395i
\(670\) 0 0
\(671\) 6.85561e6 0.587814
\(672\) 0 0
\(673\) 6.59401e6 0.561193 0.280596 0.959826i \(-0.409468\pi\)
0.280596 + 0.959826i \(0.409468\pi\)
\(674\) 0 0
\(675\) −1.17328e6 + 2.03217e6i −0.0991153 + 0.171673i
\(676\) 0 0
\(677\) −7.12586e6 1.23424e7i −0.597538 1.03497i −0.993183 0.116563i \(-0.962812\pi\)
0.395645 0.918404i \(-0.370521\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −3.47399e6 6.01712e6i −0.287052 0.497188i
\(682\) 0 0
\(683\) 3.82503e6 6.62515e6i 0.313749 0.543430i −0.665421 0.746468i \(-0.731748\pi\)
0.979171 + 0.203038i \(0.0650815\pi\)
\(684\) 0 0
\(685\) −8.72536e6 −0.710489
\(686\) 0 0
\(687\) −1.68399e6 −0.136128
\(688\) 0 0
\(689\) 517292. 895976.i 0.0415133 0.0719032i
\(690\) 0 0
\(691\) −6.93274e6 1.20079e7i −0.552344 0.956688i −0.998105 0.0615362i \(-0.980400\pi\)
0.445761 0.895152i \(-0.352933\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.83159e6 1.35647e7i −0.615018 1.06524i
\(696\) 0 0
\(697\) −394418. + 683153.i −0.0307521 + 0.0532642i
\(698\) 0 0
\(699\) 143521. 0.0111102
\(700\) 0 0
\(701\) −2.38825e6 −0.183563 −0.0917814 0.995779i \(-0.529256\pi\)
−0.0917814 + 0.995779i \(0.529256\pi\)
\(702\) 0 0
\(703\) 1.07128e7 1.85551e7i 0.817551 1.41604i
\(704\) 0 0
\(705\) 194696. + 337223.i 0.0147531 + 0.0255532i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.78204e6 + 1.34789e7i 0.581404 + 1.00702i 0.995313 + 0.0967032i \(0.0308298\pi\)
−0.413909 + 0.910318i \(0.635837\pi\)
\(710\) 0 0
\(711\) 3.41259e6 5.91078e6i 0.253169 0.438501i
\(712\) 0 0
\(713\) −6.85083e6 −0.504684
\(714\) 0 0
\(715\) −957427. −0.0700391
\(716\) 0 0
\(717\) 1.63362e6 2.82952e6i 0.118673 0.205548i
\(718\) 0 0
\(719\) −9.12775e6 1.58097e7i −0.658478 1.14052i −0.981010 0.193959i \(-0.937867\pi\)
0.322531 0.946559i \(-0.395466\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.87202e6 + 1.01706e7i 0.417774 + 0.723606i
\(724\) 0 0
\(725\) 2.71173e6 4.69685e6i 0.191603 0.331865i
\(726\) 0 0
\(727\) −2.11427e6 −0.148362 −0.0741812 0.997245i \(-0.523634\pi\)
−0.0741812 + 0.997245i \(0.523634\pi\)
\(728\) 0 0
\(729\) −152693. −0.0106414
\(730\) 0 0
\(731\) 271103. 469564.i 0.0187647 0.0325013i
\(732\) 0 0
\(733\) −1.06466e6 1.84404e6i −0.0731898 0.126768i 0.827108 0.562043i \(-0.189985\pi\)
−0.900298 + 0.435275i \(0.856651\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 148144. + 256593.i 0.0100465 + 0.0174010i
\(738\) 0 0
\(739\) 4.04335e6 7.00329e6i 0.272352 0.471728i −0.697112 0.716963i \(-0.745532\pi\)
0.969464 + 0.245235i \(0.0788651\pi\)
\(740\) 0 0
\(741\) 1.88630e6 0.126202
\(742\) 0 0
\(743\) −1.18944e7 −0.790442 −0.395221 0.918586i \(-0.629332\pi\)
−0.395221 + 0.918586i \(0.629332\pi\)
\(744\) 0 0
\(745\) 7.12779e6 1.23457e7i 0.470505 0.814939i
\(746\) 0 0
\(747\) −3.87595e6 6.71335e6i −0.254142 0.440188i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9.27692e6 + 1.60681e7i 0.600211 + 1.03960i 0.992789 + 0.119877i \(0.0382500\pi\)
−0.392578 + 0.919719i \(0.628417\pi\)
\(752\) 0 0
\(753\) 2.79460e6 4.84039e6i 0.179611 0.311095i
\(754\) 0 0
\(755\) 1.62330e7 1.03641
\(756\) 0 0
\(757\) 9.32534e6 0.591459 0.295730 0.955272i \(-0.404437\pi\)
0.295730 + 0.955272i \(0.404437\pi\)
\(758\) 0 0
\(759\) −1.38162e6 + 2.39304e6i −0.0870531 + 0.150780i
\(760\) 0 0
\(761\) −4.00378e6 6.93475e6i −0.250616 0.434079i 0.713080 0.701083i \(-0.247300\pi\)
−0.963696 + 0.267004i \(0.913966\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −370399. 641549.i −0.0228832 0.0396348i
\(766\) 0 0
\(767\) 375792. 650891.i 0.0230653 0.0399503i
\(768\) 0 0
\(769\) 2.02720e7 1.23618 0.618089 0.786108i \(-0.287907\pi\)
0.618089 + 0.786108i \(0.287907\pi\)
\(770\) 0 0
\(771\) 8.72973e6 0.528889
\(772\) 0 0
\(773\) −1.43940e6 + 2.49312e6i −0.0866431 + 0.150070i −0.906090 0.423085i \(-0.860947\pi\)
0.819447 + 0.573155i \(0.194281\pi\)
\(774\) 0 0
\(775\) 1.08466e6 + 1.87869e6i 0.0648694 + 0.112357i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.14252e7 + 1.97890e7i 0.674557 + 1.16837i
\(780\) 0 0
\(781\) −4.64547e6 + 8.04619e6i −0.272522 + 0.472023i
\(782\) 0 0
\(783\) −2.11116e7 −1.23060
\(784\) 0 0
\(785\) 7.03428e6 0.407423
\(786\) 0 0
\(787\) 1.01754e7 1.76243e7i 0.585618 1.01432i −0.409180 0.912454i \(-0.634185\pi\)
0.994798 0.101867i \(-0.0324815\pi\)
\(788\) 0 0
\(789\) 6.75626e6 + 1.17022e7i 0.386379 + 0.669228i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.53310e6 4.38746e6i −0.143044 0.247759i
\(794\) 0 0
\(795\) 1.43002e6 2.47687e6i 0.0802463 0.138991i
\(796\) 0 0
\(797\) −2.24765e7 −1.25338 −0.626689 0.779269i \(-0.715590\pi\)
−0.626689 + 0.779269i \(0.715590\pi\)
\(798\) 0 0
\(799\) 91153.3 0.00505133
\(800\) 0 0
\(801\) −1.23454e7 + 2.13829e7i −0.679867 + 1.17756i
\(802\) 0 0
\(803\) −3.62161e6 6.27282e6i −0.198204 0.343300i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.14721e6 + 8.91523e6i 0.278220 + 0.481891i
\(808\) 0 0
\(809\) 577134. 999625.i 0.0310031 0.0536990i −0.850108 0.526609i \(-0.823463\pi\)
0.881111 + 0.472910i \(0.156796\pi\)
\(810\) 0 0
\(811\) −2.26698e7 −1.21031 −0.605154 0.796108i \(-0.706888\pi\)
−0.605154 + 0.796108i \(0.706888\pi\)
\(812\) 0 0
\(813\) 8.52082e6 0.452121
\(814\) 0 0
\(815\) −4.27003e6 + 7.39592e6i −0.225184 + 0.390030i
\(816\) 0 0
\(817\) −7.85307e6 1.36019e7i −0.411608 0.712927i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.20829e6 + 2.09281e6i 0.0625622 + 0.108361i 0.895610 0.444840i \(-0.146739\pi\)
−0.833048 + 0.553201i \(0.813406\pi\)
\(822\) 0 0
\(823\) 1.05085e6 1.82012e6i 0.0540804 0.0936699i −0.837718 0.546103i \(-0.816111\pi\)
0.891798 + 0.452433i \(0.149444\pi\)
\(824\) 0 0
\(825\) 874982. 0.0447574
\(826\) 0 0
\(827\) 1.53997e7 0.782977 0.391489 0.920183i \(-0.371960\pi\)
0.391489 + 0.920183i \(0.371960\pi\)
\(828\) 0 0
\(829\) 1.16920e7 2.02511e7i 0.590883 1.02344i −0.403231 0.915098i \(-0.632113\pi\)
0.994114 0.108341i \(-0.0345539\pi\)
\(830\) 0 0
\(831\) 586375. + 1.01563e6i 0.0294559 + 0.0510192i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.10156e6 1.90796e6i −0.0546756 0.0947009i
\(836\) 0 0
\(837\) 4.22219e6 7.31305e6i 0.208317 0.360815i
\(838\) 0 0
\(839\) 2.03016e7 0.995695 0.497848 0.867265i \(-0.334124\pi\)
0.497848 + 0.867265i \(0.334124\pi\)
\(840\) 0 0
\(841\) 2.82829e7 1.37890
\(842\) 0 0
\(843\) −4.47860e6 + 7.75717e6i −0.217057 + 0.375954i
\(844\) 0 0
\(845\) −8.64308e6 1.49703e7i −0.416415 0.721253i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.28900e6 + 2.23261e6i 0.0613738 + 0.106303i
\(850\) 0 0
\(851\) 1.15971e7 2.00867e7i 0.548938 0.950789i
\(852\) 0 0
\(853\) 3.35163e7 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(854\) 0 0
\(855\) −2.14588e7 −1.00390
\(856\) 0 0
\(857\) 1.15331e7 1.99759e7i 0.536405 0.929081i −0.462689 0.886521i \(-0.653115\pi\)
0.999094 0.0425602i \(-0.0135514\pi\)
\(858\) 0 0
\(859\) −1.92805e7 3.33947e7i −0.891527 1.54417i −0.838045 0.545601i \(-0.816301\pi\)
−0.0534819 0.998569i \(-0.517032\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.93446e7 3.35058e7i −0.884163 1.53142i −0.846670 0.532118i \(-0.821396\pi\)
−0.0374930 0.999297i \(-0.511937\pi\)
\(864\) 0 0
\(865\) −4.98778e6 + 8.63908e6i −0.226656 + 0.392579i
\(866\) 0 0
\(867\) −9.74414e6 −0.440247
\(868\) 0 0
\(869\) −5.70838e6 −0.256427
\(870\) 0 0
\(871\) 109476. 189618.i 0.00488961 0.00846905i
\(872\) 0 0
\(873\) −1.42234e7 2.46357e7i −0.631639 1.09403i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.08685e7 + 1.88247e7i 0.477166 + 0.826476i 0.999658 0.0261687i \(-0.00833072\pi\)
−0.522492 + 0.852644i \(0.674997\pi\)
\(878\) 0 0
\(879\) −3.96390e6 + 6.86568e6i −0.173042 + 0.299717i
\(880\) 0 0
\(881\) 8.42086e6 0.365525 0.182762 0.983157i \(-0.441496\pi\)
0.182762 + 0.983157i \(0.441496\pi\)
\(882\) 0 0
\(883\) 3.22954e7 1.39392 0.696962 0.717108i \(-0.254535\pi\)
0.696962 + 0.717108i \(0.254535\pi\)
\(884\) 0 0
\(885\) 1.03886e6 1.79935e6i 0.0445858 0.0772249i
\(886\) 0 0
\(887\) 2.10900e7 + 3.65290e7i 0.900052 + 1.55894i 0.827424 + 0.561577i \(0.189805\pi\)
0.0726278 + 0.997359i \(0.476861\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.18068e6 + 3.77705e6i 0.0920234 + 0.159389i
\(892\) 0 0
\(893\) 1.32023e6 2.28670e6i 0.0554012 0.0959577i
\(894\) 0 0
\(895\) 9.65393e6 0.402853
\(896\) 0 0
\(897\) 2.04200e6 0.0847371
\(898\) 0 0
\(899\) −9.75853e6 + 1.69023e7i −0.402703 + 0.697503i
\(900\) 0 0
\(901\) −334756. 579815.i −0.0137378 0.0237945i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.80771e6 + 8.32720e6i 0.195127 + 0.337970i
\(906\) 0 0
\(907\) 3.82259e6 6.62092e6i 0.154291 0.267239i −0.778510 0.627632i \(-0.784024\pi\)
0.932800 + 0.360393i \(0.117357\pi\)
\(908\) 0 0
\(909\) −1.94606e7 −0.781170
\(910\) 0 0
\(911\) −3.93310e7 −1.57014 −0.785072 0.619405i \(-0.787374\pi\)
−0.785072 + 0.619405i \(0.787374\pi\)
\(912\) 0 0
\(913\) −3.24174e6 + 5.61485e6i −0.128707 + 0.222926i
\(914\) 0 0
\(915\) −7.00260e6 1.21289e7i −0.276507 0.478925i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.76102e7 3.05018e7i −0.687822 1.19134i −0.972541 0.232731i \(-0.925234\pi\)
0.284720 0.958611i \(-0.408100\pi\)
\(920\) 0 0
\(921\) −9.00201e6 + 1.55919e7i −0.349696 + 0.605691i
\(922\) 0 0
\(923\) 6.86587e6 0.265272
\(924\) 0 0
\(925\) −7.34443e6 −0.282230
\(926\) 0 0
\(927\) −1.26867e7 + 2.19740e7i −0.484897 + 0.839866i
\(928\) 0 0
\(929\) 8.31501e6 + 1.44020e7i 0.316099 + 0.547500i 0.979671 0.200613i \(-0.0642933\pi\)
−0.663571 + 0.748113i \(0.730960\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.84696e6 + 8.39519e6i 0.182291 + 0.315738i
\(934\) 0 0
\(935\) −309791. + 536574.i −0.0115888 + 0.0200724i
\(936\) 0 0
\(937\) 2.07121e7 0.770681 0.385341 0.922774i \(-0.374084\pi\)
0.385341 + 0.922774i \(0.374084\pi\)
\(938\) 0 0
\(939\) 1.63992e7 0.606957
\(940\) 0 0
\(941\) 5.48985e6 9.50871e6i 0.202110 0.350064i −0.747098 0.664713i \(-0.768554\pi\)
0.949208 + 0.314649i \(0.101887\pi\)
\(942\) 0 0
\(943\) 1.23682e7 + 2.14224e7i 0.452927 + 0.784492i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.35861e6 2.35319e6i −0.0492290 0.0852672i 0.840361 0.542027i \(-0.182343\pi\)
−0.889590 + 0.456760i \(0.849010\pi\)
\(948\) 0 0
\(949\) −2.67632e6 + 4.63552e6i −0.0964656 + 0.167083i
\(950\) 0 0
\(951\) −3.88182e6 −0.139182
\(952\) 0 0
\(953\) −9.24083e6 −0.329594 −0.164797 0.986328i \(-0.552697\pi\)
−0.164797 + 0.986328i \(0.552697\pi\)
\(954\) 0 0
\(955\) 9.03693e6 1.56524e7i 0.320636 0.555358i
\(956\) 0 0
\(957\) 3.93604e6 + 6.81743e6i 0.138925 + 0.240625i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.04113e7 + 1.80329e7i 0.363660 + 0.629877i
\(962\) 0 0
\(963\) 2.13882e7 3.70454e7i 0.743203 1.28727i
\(964\) 0 0
\(965\) −8.48183e6 −0.293205
\(966\) 0 0
\(967\) −1.50444e7 −0.517379 −0.258690 0.965960i \(-0.583291\pi\)
−0.258690 + 0.965960i \(0.583291\pi\)
\(968\) 0 0
\(969\) 610342. 1.05714e6i 0.0208816 0.0361680i
\(970\) 0 0
\(971\) −1.13947e7 1.97362e7i −0.387842 0.671763i 0.604317 0.796744i \(-0.293446\pi\)
−0.992159 + 0.124981i \(0.960113\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −323300. 559972.i −0.0108917 0.0188649i
\(976\) 0 0
\(977\) 1.98341e7 3.43537e7i 0.664777 1.15143i −0.314568 0.949235i \(-0.601860\pi\)
0.979346 0.202193i \(-0.0648069\pi\)
\(978\) 0 0
\(979\) 2.06507e7 0.688617
\(980\) 0 0
\(981\) −3.94170e7 −1.30771
\(982\) 0 0
\(983\) −1.38546e7 + 2.39969e7i −0.457310 + 0.792085i −0.998818 0.0486112i \(-0.984520\pi\)
0.541507 + 0.840696i \(0.317854\pi\)
\(984\) 0 0
\(985\) 2.14147e7 + 3.70914e7i 0.703270 + 1.21810i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.50127e6 1.47246e7i −0.276372 0.478690i
\(990\) 0 0
\(991\) −2.39267e7 + 4.14423e7i −0.773926 + 1.34048i 0.161470 + 0.986878i \(0.448376\pi\)
−0.935396 + 0.353601i \(0.884957\pi\)
\(992\) 0 0
\(993\) −5.86305e6 −0.188691
\(994\) 0 0
\(995\) −3.80837e7 −1.21950
\(996\) 0 0
\(997\) 2.74144e7 4.74832e7i 0.873457 1.51287i 0.0150590 0.999887i \(-0.495206\pi\)
0.858398 0.512985i \(-0.171460\pi\)
\(998\) 0 0
\(999\) 1.42946e7 + 2.47590e7i 0.453167 + 0.784909i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.i.k.361.1 4
7.2 even 3 inner 392.6.i.k.177.1 4
7.3 odd 6 392.6.a.e.1.1 2
7.4 even 3 56.6.a.d.1.2 2
7.5 odd 6 392.6.i.h.177.2 4
7.6 odd 2 392.6.i.h.361.2 4
21.11 odd 6 504.6.a.m.1.2 2
28.3 even 6 784.6.a.q.1.2 2
28.11 odd 6 112.6.a.j.1.1 2
56.11 odd 6 448.6.a.r.1.2 2
56.53 even 6 448.6.a.x.1.1 2
84.11 even 6 1008.6.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.d.1.2 2 7.4 even 3
112.6.a.j.1.1 2 28.11 odd 6
392.6.a.e.1.1 2 7.3 odd 6
392.6.i.h.177.2 4 7.5 odd 6
392.6.i.h.361.2 4 7.6 odd 2
392.6.i.k.177.1 4 7.2 even 3 inner
392.6.i.k.361.1 4 1.1 even 1 trivial
448.6.a.r.1.2 2 56.11 odd 6
448.6.a.x.1.1 2 56.53 even 6
504.6.a.m.1.2 2 21.11 odd 6
784.6.a.q.1.2 2 28.3 even 6
1008.6.a.bi.1.2 2 84.11 even 6