Properties

Label 392.6.i.j.177.1
Level $392$
Weight $6$
Character 392.177
Analytic conductor $62.870$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-115})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 28x^{2} - 29x + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.1
Root \(4.89354 + 2.24794i\) of defining polynomial
Character \(\chi\) \(=\) 392.177
Dual form 392.6.i.j.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.78709 - 13.4876i) q^{3} +(-48.3613 + 83.7642i) q^{5} +(0.222527 - 0.385428i) q^{9} +O(q^{10})\) \(q+(-7.78709 - 13.4876i) q^{3} +(-48.3613 + 83.7642i) q^{5} +(0.222527 - 0.385428i) q^{9} +(-140.723 - 243.739i) q^{11} -269.393 q^{13} +1506.37 q^{15} +(-859.723 - 1489.08i) q^{17} +(586.419 - 1015.71i) q^{19} +(-392.670 + 680.125i) q^{23} +(-3115.12 - 5395.55i) q^{25} -3791.46 q^{27} +6149.46 q^{29} +(3503.29 + 6067.87i) q^{31} +(-2191.64 + 3796.03i) q^{33} +(5749.96 - 9959.23i) q^{37} +(2097.79 + 3633.47i) q^{39} -13245.3 q^{41} -19824.2 q^{43} +(21.5234 + 37.2796i) q^{45} +(-3443.98 + 5965.15i) q^{47} +(-13389.5 + 23191.2i) q^{51} +(-4327.48 - 7495.42i) q^{53} +27222.1 q^{55} -18266.0 q^{57} +(23928.3 + 41445.0i) q^{59} +(-26381.0 + 45693.3i) q^{61} +(13028.2 - 22565.5i) q^{65} +(12020.1 + 20819.4i) q^{67} +12231.0 q^{69} +12540.9 q^{71} +(-2039.64 - 3532.76i) q^{73} +(-48515.5 + 84031.3i) q^{75} +(5959.54 - 10322.2i) q^{79} +(29470.3 + 51044.1i) q^{81} +81916.2 q^{83} +166309. q^{85} +(-47886.4 - 82941.6i) q^{87} +(48484.4 - 83977.4i) q^{89} +(54560.8 - 94502.1i) q^{93} +(56719.9 + 98241.8i) q^{95} -26410.7 q^{97} -125.258 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} - 82 q^{5} - 222 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 6 q^{3} - 82 q^{5} - 222 q^{9} - 340 q^{11} + 1820 q^{13} + 3648 q^{15} - 3216 q^{17} + 674 q^{19} + 1104 q^{23} - 3322 q^{25} - 6696 q^{27} + 16128 q^{29} + 6212 q^{31} - 3120 q^{33} + 8512 q^{37} + 29640 q^{39} - 2608 q^{41} - 20008 q^{43} + 3318 q^{45} + 12748 q^{47} + 5508 q^{51} + 11220 q^{53} + 52720 q^{55} - 58056 q^{57} + 12018 q^{59} - 102738 q^{61} + 43420 q^{65} - 24136 q^{67} + 105984 q^{69} + 179440 q^{71} + 55588 q^{73} - 159774 q^{75} - 48824 q^{79} + 122562 q^{81} + 71564 q^{83} + 288552 q^{85} - 54468 q^{87} + 18300 q^{89} + 126264 q^{93} + 120784 q^{95} - 139968 q^{97} + 25800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.78709 13.4876i −0.499542 0.865232i 0.500458 0.865761i \(-0.333165\pi\)
−1.00000 0.000528869i \(0.999832\pi\)
\(4\) 0 0
\(5\) −48.3613 + 83.7642i −0.865113 + 1.49842i 0.00182277 + 0.999998i \(0.499420\pi\)
−0.866935 + 0.498421i \(0.833914\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.222527 0.385428i 0.000915748 0.00158612i
\(10\) 0 0
\(11\) −140.723 243.739i −0.350657 0.607355i 0.635708 0.771930i \(-0.280708\pi\)
−0.986365 + 0.164575i \(0.947375\pi\)
\(12\) 0 0
\(13\) −269.393 −0.442107 −0.221054 0.975262i \(-0.570950\pi\)
−0.221054 + 0.975262i \(0.570950\pi\)
\(14\) 0 0
\(15\) 1506.37 1.72864
\(16\) 0 0
\(17\) −859.723 1489.08i −0.721499 1.24967i −0.960399 0.278629i \(-0.910120\pi\)
0.238899 0.971044i \(-0.423213\pi\)
\(18\) 0 0
\(19\) 586.419 1015.71i 0.372670 0.645483i −0.617306 0.786723i \(-0.711776\pi\)
0.989975 + 0.141241i \(0.0451091\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −392.670 + 680.125i −0.154778 + 0.268083i −0.932978 0.359933i \(-0.882799\pi\)
0.778200 + 0.628016i \(0.216133\pi\)
\(24\) 0 0
\(25\) −3115.12 5395.55i −0.996840 1.72658i
\(26\) 0 0
\(27\) −3791.46 −1.00091
\(28\) 0 0
\(29\) 6149.46 1.35782 0.678909 0.734222i \(-0.262453\pi\)
0.678909 + 0.734222i \(0.262453\pi\)
\(30\) 0 0
\(31\) 3503.29 + 6067.87i 0.654744 + 1.13405i 0.981958 + 0.189100i \(0.0605570\pi\)
−0.327214 + 0.944950i \(0.606110\pi\)
\(32\) 0 0
\(33\) −2191.64 + 3796.03i −0.350335 + 0.606798i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5749.96 9959.23i 0.690495 1.19597i −0.281180 0.959655i \(-0.590726\pi\)
0.971676 0.236318i \(-0.0759408\pi\)
\(38\) 0 0
\(39\) 2097.79 + 3633.47i 0.220851 + 0.382525i
\(40\) 0 0
\(41\) −13245.3 −1.23056 −0.615279 0.788310i \(-0.710957\pi\)
−0.615279 + 0.788310i \(0.710957\pi\)
\(42\) 0 0
\(43\) −19824.2 −1.63502 −0.817512 0.575911i \(-0.804647\pi\)
−0.817512 + 0.575911i \(0.804647\pi\)
\(44\) 0 0
\(45\) 21.5234 + 37.2796i 0.00158445 + 0.00274435i
\(46\) 0 0
\(47\) −3443.98 + 5965.15i −0.227413 + 0.393892i −0.957041 0.289953i \(-0.906360\pi\)
0.729627 + 0.683845i \(0.239694\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −13389.5 + 23191.2i −0.720838 + 1.24853i
\(52\) 0 0
\(53\) −4327.48 7495.42i −0.211615 0.366527i 0.740605 0.671940i \(-0.234539\pi\)
−0.952220 + 0.305413i \(0.901206\pi\)
\(54\) 0 0
\(55\) 27222.1 1.21343
\(56\) 0 0
\(57\) −18266.0 −0.744656
\(58\) 0 0
\(59\) 23928.3 + 41445.0i 0.894915 + 1.55004i 0.833909 + 0.551902i \(0.186098\pi\)
0.0610061 + 0.998137i \(0.480569\pi\)
\(60\) 0 0
\(61\) −26381.0 + 45693.3i −0.907752 + 1.57227i −0.0905720 + 0.995890i \(0.528870\pi\)
−0.817180 + 0.576383i \(0.804464\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13028.2 22565.5i 0.382473 0.662462i
\(66\) 0 0
\(67\) 12020.1 + 20819.4i 0.327130 + 0.566607i 0.981941 0.189186i \(-0.0605850\pi\)
−0.654811 + 0.755793i \(0.727252\pi\)
\(68\) 0 0
\(69\) 12231.0 0.309272
\(70\) 0 0
\(71\) 12540.9 0.295246 0.147623 0.989044i \(-0.452838\pi\)
0.147623 + 0.989044i \(0.452838\pi\)
\(72\) 0 0
\(73\) −2039.64 3532.76i −0.0447968 0.0775903i 0.842758 0.538293i \(-0.180931\pi\)
−0.887554 + 0.460703i \(0.847597\pi\)
\(74\) 0 0
\(75\) −48515.5 + 84031.3i −0.995926 + 1.72499i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5959.54 10322.2i 0.107435 0.186083i −0.807296 0.590147i \(-0.799070\pi\)
0.914730 + 0.404065i \(0.132403\pi\)
\(80\) 0 0
\(81\) 29470.3 + 51044.1i 0.499083 + 0.864436i
\(82\) 0 0
\(83\) 81916.2 1.30519 0.652596 0.757706i \(-0.273680\pi\)
0.652596 + 0.757706i \(0.273680\pi\)
\(84\) 0 0
\(85\) 166309. 2.49671
\(86\) 0 0
\(87\) −47886.4 82941.6i −0.678287 1.17483i
\(88\) 0 0
\(89\) 48484.4 83977.4i 0.648824 1.12380i −0.334581 0.942367i \(-0.608595\pi\)
0.983404 0.181428i \(-0.0580720\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 54560.8 94502.1i 0.654144 1.13301i
\(94\) 0 0
\(95\) 56719.9 + 98241.8i 0.644802 + 1.11683i
\(96\) 0 0
\(97\) −26410.7 −0.285004 −0.142502 0.989795i \(-0.545515\pi\)
−0.142502 + 0.989795i \(0.545515\pi\)
\(98\) 0 0
\(99\) −125.258 −0.00128445
\(100\) 0 0
\(101\) 36568.8 + 63339.1i 0.356704 + 0.617829i 0.987408 0.158194i \(-0.0505672\pi\)
−0.630704 + 0.776023i \(0.717234\pi\)
\(102\) 0 0
\(103\) −43824.7 + 75906.7i −0.407030 + 0.704996i −0.994555 0.104209i \(-0.966769\pi\)
0.587526 + 0.809206i \(0.300102\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 57719.1 99972.5i 0.487372 0.844153i −0.512523 0.858674i \(-0.671289\pi\)
0.999895 + 0.0145210i \(0.00462235\pi\)
\(108\) 0 0
\(109\) 58651.4 + 101587.i 0.472837 + 0.818979i 0.999517 0.0310856i \(-0.00989644\pi\)
−0.526679 + 0.850064i \(0.676563\pi\)
\(110\) 0 0
\(111\) −179102. −1.37973
\(112\) 0 0
\(113\) 181535. 1.33741 0.668705 0.743528i \(-0.266849\pi\)
0.668705 + 0.743528i \(0.266849\pi\)
\(114\) 0 0
\(115\) −37980.1 65783.4i −0.267800 0.463844i
\(116\) 0 0
\(117\) −59.9471 + 103.832i −0.000404859 + 0.000701236i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 40919.8 70875.2i 0.254080 0.440079i
\(122\) 0 0
\(123\) 103142. + 178648.i 0.614715 + 1.06472i
\(124\) 0 0
\(125\) 300347. 1.71929
\(126\) 0 0
\(127\) 106111. 0.583780 0.291890 0.956452i \(-0.405716\pi\)
0.291890 + 0.956452i \(0.405716\pi\)
\(128\) 0 0
\(129\) 154373. + 267381.i 0.816763 + 1.41468i
\(130\) 0 0
\(131\) −150167. + 260097.i −0.764534 + 1.32421i 0.175959 + 0.984397i \(0.443697\pi\)
−0.940493 + 0.339814i \(0.889636\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 183360. 317588.i 0.865903 1.49979i
\(136\) 0 0
\(137\) 45946.2 + 79581.2i 0.209146 + 0.362251i 0.951446 0.307817i \(-0.0995984\pi\)
−0.742300 + 0.670068i \(0.766265\pi\)
\(138\) 0 0
\(139\) 153133. 0.672252 0.336126 0.941817i \(-0.390883\pi\)
0.336126 + 0.941817i \(0.390883\pi\)
\(140\) 0 0
\(141\) 107274. 0.454410
\(142\) 0 0
\(143\) 37909.6 + 65661.4i 0.155028 + 0.268516i
\(144\) 0 0
\(145\) −297395. + 515104.i −1.17467 + 2.03458i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −249301. + 431802.i −0.919937 + 1.59338i −0.120429 + 0.992722i \(0.538427\pi\)
−0.799508 + 0.600656i \(0.794906\pi\)
\(150\) 0 0
\(151\) −104805. 181527.i −0.374057 0.647886i 0.616128 0.787646i \(-0.288700\pi\)
−0.990185 + 0.139760i \(0.955367\pi\)
\(152\) 0 0
\(153\) −765.245 −0.00264285
\(154\) 0 0
\(155\) −677694. −2.26571
\(156\) 0 0
\(157\) 3690.86 + 6392.76i 0.0119503 + 0.0206985i 0.871939 0.489615i \(-0.162863\pi\)
−0.859988 + 0.510314i \(0.829529\pi\)
\(158\) 0 0
\(159\) −67397.0 + 116735.i −0.211421 + 0.366192i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −194077. + 336152.i −0.572144 + 0.990983i 0.424201 + 0.905568i \(0.360555\pi\)
−0.996345 + 0.0854149i \(0.972778\pi\)
\(164\) 0 0
\(165\) −211981. 367161.i −0.606159 1.04990i
\(166\) 0 0
\(167\) −168240. −0.466808 −0.233404 0.972380i \(-0.574987\pi\)
−0.233404 + 0.972380i \(0.574987\pi\)
\(168\) 0 0
\(169\) −298720. −0.804541
\(170\) 0 0
\(171\) −260.988 452.044i −0.000682543 0.00118220i
\(172\) 0 0
\(173\) −160757. + 278439.i −0.408370 + 0.707317i −0.994707 0.102750i \(-0.967236\pi\)
0.586337 + 0.810067i \(0.300569\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 372664. 645472.i 0.894095 1.54862i
\(178\) 0 0
\(179\) 305953. + 529926.i 0.713710 + 1.23618i 0.963455 + 0.267870i \(0.0863199\pi\)
−0.249745 + 0.968312i \(0.580347\pi\)
\(180\) 0 0
\(181\) 261474. 0.593242 0.296621 0.954995i \(-0.404140\pi\)
0.296621 + 0.954995i \(0.404140\pi\)
\(182\) 0 0
\(183\) 821726. 1.81384
\(184\) 0 0
\(185\) 556151. + 963282.i 1.19471 + 2.06930i
\(186\) 0 0
\(187\) −241965. + 419095.i −0.505997 + 0.876412i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −351651. + 609077.i −0.697474 + 1.20806i 0.271866 + 0.962335i \(0.412359\pi\)
−0.969340 + 0.245725i \(0.920974\pi\)
\(192\) 0 0
\(193\) −258205. 447225.i −0.498967 0.864236i 0.501032 0.865429i \(-0.332954\pi\)
−0.999999 + 0.00119237i \(0.999620\pi\)
\(194\) 0 0
\(195\) −405806. −0.764244
\(196\) 0 0
\(197\) 142579. 0.261752 0.130876 0.991399i \(-0.458221\pi\)
0.130876 + 0.991399i \(0.458221\pi\)
\(198\) 0 0
\(199\) −492419. 852894.i −0.881458 1.52673i −0.849720 0.527234i \(-0.823229\pi\)
−0.0317383 0.999496i \(-0.510104\pi\)
\(200\) 0 0
\(201\) 187203. 324245.i 0.326831 0.566088i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 640559. 1.10948e6i 1.06457 1.84389i
\(206\) 0 0
\(207\) 174.759 + 302.692i 0.000283475 + 0.000490993i
\(208\) 0 0
\(209\) −330089. −0.522716
\(210\) 0 0
\(211\) −242836. −0.375497 −0.187748 0.982217i \(-0.560119\pi\)
−0.187748 + 0.982217i \(0.560119\pi\)
\(212\) 0 0
\(213\) −97657.4 169148.i −0.147488 0.255456i
\(214\) 0 0
\(215\) 958723. 1.66056e6i 1.41448 2.44995i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −31765.8 + 55019.9i −0.0447558 + 0.0775192i
\(220\) 0 0
\(221\) 231603. + 401148.i 0.318980 + 0.552490i
\(222\) 0 0
\(223\) −797063. −1.07332 −0.536661 0.843798i \(-0.680315\pi\)
−0.536661 + 0.843798i \(0.680315\pi\)
\(224\) 0 0
\(225\) −2772.79 −0.00365142
\(226\) 0 0
\(227\) 13060.7 + 22621.8i 0.0168229 + 0.0291382i 0.874314 0.485360i \(-0.161312\pi\)
−0.857491 + 0.514498i \(0.827978\pi\)
\(228\) 0 0
\(229\) 380796. 659558.i 0.479848 0.831121i −0.519885 0.854236i \(-0.674025\pi\)
0.999733 + 0.0231156i \(0.00735857\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −328926. + 569716.i −0.396925 + 0.687494i −0.993345 0.115179i \(-0.963256\pi\)
0.596420 + 0.802673i \(0.296589\pi\)
\(234\) 0 0
\(235\) −333111. 576964.i −0.393476 0.681521i
\(236\) 0 0
\(237\) −185630. −0.214673
\(238\) 0 0
\(239\) 965388. 1.09322 0.546609 0.837388i \(-0.315918\pi\)
0.546609 + 0.837388i \(0.315918\pi\)
\(240\) 0 0
\(241\) −17532.1 30366.5i −0.0194443 0.0336784i 0.856140 0.516745i \(-0.172856\pi\)
−0.875584 + 0.483066i \(0.839523\pi\)
\(242\) 0 0
\(243\) −1685.86 + 2919.99i −0.00183149 + 0.00317224i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −157977. + 273624.i −0.164760 + 0.285373i
\(248\) 0 0
\(249\) −637889. 1.10486e6i −0.651998 1.12929i
\(250\) 0 0
\(251\) 1.31610e6 1.31857 0.659286 0.751892i \(-0.270859\pi\)
0.659286 + 0.751892i \(0.270859\pi\)
\(252\) 0 0
\(253\) 221030. 0.217095
\(254\) 0 0
\(255\) −1.29506e6 2.24312e6i −1.24721 2.16024i
\(256\) 0 0
\(257\) 264901. 458822.i 0.250179 0.433323i −0.713396 0.700761i \(-0.752844\pi\)
0.963575 + 0.267439i \(0.0861772\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1368.42 2370.17i 0.00124342 0.00215367i
\(262\) 0 0
\(263\) 647286. + 1.12113e6i 0.577041 + 0.999465i 0.995817 + 0.0913747i \(0.0291261\pi\)
−0.418775 + 0.908090i \(0.637541\pi\)
\(264\) 0 0
\(265\) 837130. 0.732282
\(266\) 0 0
\(267\) −1.51021e6 −1.29646
\(268\) 0 0
\(269\) 222168. + 384807.i 0.187198 + 0.324236i 0.944315 0.329043i \(-0.106726\pi\)
−0.757117 + 0.653279i \(0.773393\pi\)
\(270\) 0 0
\(271\) −312379. + 541056.i −0.258379 + 0.447526i −0.965808 0.259259i \(-0.916522\pi\)
0.707428 + 0.706785i \(0.249855\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −876736. + 1.51855e6i −0.699097 + 1.21087i
\(276\) 0 0
\(277\) 1.00101e6 + 1.73380e6i 0.783860 + 1.35768i 0.929678 + 0.368373i \(0.120085\pi\)
−0.145818 + 0.989311i \(0.546582\pi\)
\(278\) 0 0
\(279\) 3118.30 0.00239832
\(280\) 0 0
\(281\) 249316. 0.188358 0.0941792 0.995555i \(-0.469977\pi\)
0.0941792 + 0.995555i \(0.469977\pi\)
\(282\) 0 0
\(283\) −322568. 558705.i −0.239417 0.414683i 0.721130 0.692800i \(-0.243623\pi\)
−0.960547 + 0.278117i \(0.910290\pi\)
\(284\) 0 0
\(285\) 883366. 1.53003e6i 0.644212 1.11581i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −768317. + 1.33076e6i −0.541123 + 0.937252i
\(290\) 0 0
\(291\) 205663. + 356218.i 0.142371 + 0.246595i
\(292\) 0 0
\(293\) 2.00830e6 1.36666 0.683328 0.730112i \(-0.260532\pi\)
0.683328 + 0.730112i \(0.260532\pi\)
\(294\) 0 0
\(295\) −4.62881e6 −3.09681
\(296\) 0 0
\(297\) 533543. + 924124.i 0.350977 + 0.607910i
\(298\) 0 0
\(299\) 105783. 183221.i 0.0684284 0.118521i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 569530. 986454.i 0.356377 0.617263i
\(304\) 0 0
\(305\) −2.55164e6 4.41957e6i −1.57062 2.72039i
\(306\) 0 0
\(307\) −1.71113e6 −1.03618 −0.518092 0.855325i \(-0.673358\pi\)
−0.518092 + 0.855325i \(0.673358\pi\)
\(308\) 0 0
\(309\) 1.36507e6 0.813314
\(310\) 0 0
\(311\) 301025. + 521391.i 0.176483 + 0.305677i 0.940673 0.339313i \(-0.110195\pi\)
−0.764191 + 0.644990i \(0.776861\pi\)
\(312\) 0 0
\(313\) 671042. 1.16228e6i 0.387159 0.670579i −0.604907 0.796296i \(-0.706790\pi\)
0.992066 + 0.125717i \(0.0401232\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −509016. + 881641.i −0.284500 + 0.492769i −0.972488 0.232953i \(-0.925161\pi\)
0.687987 + 0.725723i \(0.258494\pi\)
\(318\) 0 0
\(319\) −865367. 1.49886e6i −0.476128 0.824678i
\(320\) 0 0
\(321\) −1.79786e6 −0.973850
\(322\) 0 0
\(323\) −2.01663e6 −1.07552
\(324\) 0 0
\(325\) 839192. + 1.45352e6i 0.440710 + 0.763332i
\(326\) 0 0
\(327\) 913447. 1.58214e6i 0.472404 0.818228i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 266185. 461047.i 0.133541 0.231300i −0.791498 0.611171i \(-0.790699\pi\)
0.925039 + 0.379872i \(0.124032\pi\)
\(332\) 0 0
\(333\) −2559.04 4432.39i −0.00126464 0.00219042i
\(334\) 0 0
\(335\) −2.32523e6 −1.13202
\(336\) 0 0
\(337\) −234947. −0.112693 −0.0563463 0.998411i \(-0.517945\pi\)
−0.0563463 + 0.998411i \(0.517945\pi\)
\(338\) 0 0
\(339\) −1.41363e6 2.44848e6i −0.668092 1.15717i
\(340\) 0 0
\(341\) 985983. 1.70777e6i 0.459181 0.795324i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −591508. + 1.02452e6i −0.267555 + 0.463419i
\(346\) 0 0
\(347\) 950268. + 1.64591e6i 0.423665 + 0.733809i 0.996295 0.0860050i \(-0.0274101\pi\)
−0.572630 + 0.819814i \(0.694077\pi\)
\(348\) 0 0
\(349\) 341162. 0.149933 0.0749665 0.997186i \(-0.476115\pi\)
0.0749665 + 0.997186i \(0.476115\pi\)
\(350\) 0 0
\(351\) 1.02139e6 0.442511
\(352\) 0 0
\(353\) −336561. 582941.i −0.143756 0.248993i 0.785152 0.619303i \(-0.212585\pi\)
−0.928908 + 0.370310i \(0.879251\pi\)
\(354\) 0 0
\(355\) −606495. + 1.05048e6i −0.255421 + 0.442402i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −716507. + 1.24103e6i −0.293417 + 0.508212i −0.974615 0.223886i \(-0.928126\pi\)
0.681199 + 0.732099i \(0.261459\pi\)
\(360\) 0 0
\(361\) 550275. + 953104.i 0.222235 + 0.384922i
\(362\) 0 0
\(363\) −1.27459e6 −0.507694
\(364\) 0 0
\(365\) 394559. 0.155017
\(366\) 0 0
\(367\) 1.02391e6 + 1.77346e6i 0.396822 + 0.687315i 0.993332 0.115290i \(-0.0367798\pi\)
−0.596510 + 0.802606i \(0.703446\pi\)
\(368\) 0 0
\(369\) −2947.43 + 5105.10i −0.00112688 + 0.00195182i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.66789e6 2.88887e6i 0.620719 1.07512i −0.368633 0.929575i \(-0.620174\pi\)
0.989352 0.145542i \(-0.0464925\pi\)
\(374\) 0 0
\(375\) −2.33883e6 4.05097e6i −0.858857 1.48758i
\(376\) 0 0
\(377\) −1.65662e6 −0.600301
\(378\) 0 0
\(379\) 2.29135e6 0.819394 0.409697 0.912222i \(-0.365634\pi\)
0.409697 + 0.912222i \(0.365634\pi\)
\(380\) 0 0
\(381\) −826292. 1.43118e6i −0.291623 0.505105i
\(382\) 0 0
\(383\) −922109. + 1.59714e6i −0.321207 + 0.556347i −0.980737 0.195331i \(-0.937422\pi\)
0.659530 + 0.751678i \(0.270755\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4411.42 + 7640.80i −0.00149727 + 0.00259335i
\(388\) 0 0
\(389\) −1.83301e6 3.17486e6i −0.614172 1.06378i −0.990529 0.137302i \(-0.956157\pi\)
0.376357 0.926475i \(-0.377177\pi\)
\(390\) 0 0
\(391\) 1.35035e6 0.446688
\(392\) 0 0
\(393\) 4.67746e6 1.52767
\(394\) 0 0
\(395\) 576422. + 998392.i 0.185887 + 0.321965i
\(396\) 0 0
\(397\) 2.29691e6 3.97836e6i 0.731421 1.26686i −0.224855 0.974392i \(-0.572191\pi\)
0.956276 0.292466i \(-0.0944758\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 554918. 961146.i 0.172333 0.298489i −0.766902 0.641764i \(-0.778203\pi\)
0.939235 + 0.343275i \(0.111536\pi\)
\(402\) 0 0
\(403\) −943761. 1.63464e6i −0.289467 0.501372i
\(404\) 0 0
\(405\) −5.70089e6 −1.72705
\(406\) 0 0
\(407\) −3.23660e6 −0.968507
\(408\) 0 0
\(409\) −1.80345e6 3.12366e6i −0.533083 0.923327i −0.999254 0.0386321i \(-0.987700\pi\)
0.466170 0.884695i \(-0.345633\pi\)
\(410\) 0 0
\(411\) 715575. 1.23941e6i 0.208954 0.361919i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.96157e6 + 6.86164e6i −1.12914 + 1.95572i
\(416\) 0 0
\(417\) −1.19246e6 2.06540e6i −0.335818 0.581654i
\(418\) 0 0
\(419\) 5.51790e6 1.53546 0.767731 0.640773i \(-0.221386\pi\)
0.767731 + 0.640773i \(0.221386\pi\)
\(420\) 0 0
\(421\) −2.59092e6 −0.712440 −0.356220 0.934402i \(-0.615935\pi\)
−0.356220 + 0.934402i \(0.615935\pi\)
\(422\) 0 0
\(423\) 1532.76 + 2654.81i 0.000416507 + 0.000721411i
\(424\) 0 0
\(425\) −5.35628e6 + 9.27736e6i −1.43844 + 2.49145i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 590411. 1.02262e6i 0.154886 0.268270i
\(430\) 0 0
\(431\) 1.72682e6 + 2.99094e6i 0.447769 + 0.775558i 0.998240 0.0592958i \(-0.0188855\pi\)
−0.550472 + 0.834854i \(0.685552\pi\)
\(432\) 0 0
\(433\) 397522. 0.101892 0.0509461 0.998701i \(-0.483776\pi\)
0.0509461 + 0.998701i \(0.483776\pi\)
\(434\) 0 0
\(435\) 9.26338e6 2.34718
\(436\) 0 0
\(437\) 460539. + 797676.i 0.115362 + 0.199813i
\(438\) 0 0
\(439\) −804514. + 1.39346e6i −0.199238 + 0.345090i −0.948282 0.317430i \(-0.897180\pi\)
0.749044 + 0.662521i \(0.230513\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.54091e6 6.13304e6i 0.857246 1.48479i −0.0172989 0.999850i \(-0.505507\pi\)
0.874545 0.484944i \(-0.161160\pi\)
\(444\) 0 0
\(445\) 4.68953e6 + 8.12250e6i 1.12261 + 1.94442i
\(446\) 0 0
\(447\) 7.76531e6 1.83819
\(448\) 0 0
\(449\) −6.46156e6 −1.51259 −0.756295 0.654230i \(-0.772993\pi\)
−0.756295 + 0.654230i \(0.772993\pi\)
\(450\) 0 0
\(451\) 1.86391e6 + 3.22839e6i 0.431503 + 0.747385i
\(452\) 0 0
\(453\) −1.63224e6 + 2.82713e6i −0.373714 + 0.647292i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.68536e6 2.91914e6i 0.377488 0.653828i −0.613208 0.789921i \(-0.710121\pi\)
0.990696 + 0.136093i \(0.0434546\pi\)
\(458\) 0 0
\(459\) 3.25960e6 + 5.64579e6i 0.722159 + 1.25082i
\(460\) 0 0
\(461\) 6.20821e6 1.36055 0.680274 0.732958i \(-0.261861\pi\)
0.680274 + 0.732958i \(0.261861\pi\)
\(462\) 0 0
\(463\) −5.82940e6 −1.26378 −0.631890 0.775058i \(-0.717721\pi\)
−0.631890 + 0.775058i \(0.717721\pi\)
\(464\) 0 0
\(465\) 5.27726e6 + 9.14048e6i 1.13182 + 1.96036i
\(466\) 0 0
\(467\) 87370.8 151331.i 0.0185385 0.0321096i −0.856607 0.515969i \(-0.827432\pi\)
0.875146 + 0.483859i \(0.160765\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 57482.1 99561.9i 0.0119393 0.0206795i
\(472\) 0 0
\(473\) 2.78971e6 + 4.83192e6i 0.573332 + 0.993040i
\(474\) 0 0
\(475\) −7.30707e6 −1.48597
\(476\) 0 0
\(477\) −3851.93 −0.000775143
\(478\) 0 0
\(479\) −185873. 321941.i −0.0370150 0.0641118i 0.846924 0.531713i \(-0.178452\pi\)
−0.883939 + 0.467601i \(0.845118\pi\)
\(480\) 0 0
\(481\) −1.54900e6 + 2.68295e6i −0.305273 + 0.528748i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.27726e6 2.21227e6i 0.246561 0.427056i
\(486\) 0 0
\(487\) 4.35654e6 + 7.54574e6i 0.832375 + 1.44172i 0.896150 + 0.443751i \(0.146353\pi\)
−0.0637754 + 0.997964i \(0.520314\pi\)
\(488\) 0 0
\(489\) 6.04519e6 1.14324
\(490\) 0 0
\(491\) 6.88530e6 1.28890 0.644450 0.764646i \(-0.277086\pi\)
0.644450 + 0.764646i \(0.277086\pi\)
\(492\) 0 0
\(493\) −5.28683e6 9.15705e6i −0.979665 1.69683i
\(494\) 0 0
\(495\) 6057.64 10492.1i 0.00111120 0.00192465i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 22721.3 39354.5i 0.00408491 0.00707527i −0.863976 0.503533i \(-0.832033\pi\)
0.868061 + 0.496458i \(0.165366\pi\)
\(500\) 0 0
\(501\) 1.31010e6 + 2.26916e6i 0.233190 + 0.403898i
\(502\) 0 0
\(503\) −623417. −0.109865 −0.0549324 0.998490i \(-0.517494\pi\)
−0.0549324 + 0.998490i \(0.517494\pi\)
\(504\) 0 0
\(505\) −7.07406e6 −1.23436
\(506\) 0 0
\(507\) 2.32616e6 + 4.02903e6i 0.401902 + 0.696115i
\(508\) 0 0
\(509\) −3.84546e6 + 6.66053e6i −0.657891 + 1.13950i 0.323270 + 0.946307i \(0.395218\pi\)
−0.981161 + 0.193193i \(0.938116\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.22338e6 + 3.85101e6i −0.373010 + 0.646072i
\(514\) 0 0
\(515\) −4.23884e6 7.34188e6i −0.704253 1.21980i
\(516\) 0 0
\(517\) 1.93858e6 0.318976
\(518\) 0 0
\(519\) 5.00730e6 0.815991
\(520\) 0 0
\(521\) −3.66134e6 6.34163e6i −0.590943 1.02354i −0.994106 0.108415i \(-0.965422\pi\)
0.403162 0.915128i \(-0.367911\pi\)
\(522\) 0 0
\(523\) −2.58988e6 + 4.48580e6i −0.414024 + 0.717110i −0.995325 0.0965781i \(-0.969210\pi\)
0.581302 + 0.813688i \(0.302544\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.02371e6 1.04334e7i 0.944795 1.63643i
\(528\) 0 0
\(529\) 2.90979e6 + 5.03991e6i 0.452088 + 0.783039i
\(530\) 0 0
\(531\) 21298.8 0.00327807
\(532\) 0 0
\(533\) 3.56819e6 0.544038
\(534\) 0 0
\(535\) 5.58274e6 + 9.66959e6i 0.843263 + 1.46057i
\(536\) 0 0
\(537\) 4.76496e6 8.25316e6i 0.713056 1.23505i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.65902e6 + 8.06966e6i −0.684387 + 1.18539i 0.289243 + 0.957256i \(0.406597\pi\)
−0.973629 + 0.228136i \(0.926737\pi\)
\(542\) 0 0
\(543\) −2.03612e6 3.52666e6i −0.296349 0.513292i
\(544\) 0 0
\(545\) −1.13458e7 −1.63623
\(546\) 0 0
\(547\) 1.26417e7 1.80650 0.903250 0.429114i \(-0.141174\pi\)
0.903250 + 0.429114i \(0.141174\pi\)
\(548\) 0 0
\(549\) 11741.0 + 20336.0i 0.00166254 + 0.00287961i
\(550\) 0 0
\(551\) 3.60616e6 6.24605e6i 0.506018 0.876448i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 8.66159e6 1.50023e7i 1.19362 2.06741i
\(556\) 0 0
\(557\) 1.92347e6 + 3.33154e6i 0.262692 + 0.454996i 0.966956 0.254942i \(-0.0820564\pi\)
−0.704264 + 0.709938i \(0.748723\pi\)
\(558\) 0 0
\(559\) 5.34050e6 0.722856
\(560\) 0 0
\(561\) 7.53680e6 1.01107
\(562\) 0 0
\(563\) −1.84597e6 3.19731e6i −0.245444 0.425122i 0.716812 0.697266i \(-0.245600\pi\)
−0.962256 + 0.272144i \(0.912267\pi\)
\(564\) 0 0
\(565\) −8.77927e6 + 1.52061e7i −1.15701 + 2.00400i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.32087e6 5.75191e6i 0.430002 0.744786i −0.566871 0.823807i \(-0.691846\pi\)
0.996873 + 0.0790209i \(0.0251794\pi\)
\(570\) 0 0
\(571\) −146299. 253398.i −0.0187781 0.0325246i 0.856484 0.516174i \(-0.172644\pi\)
−0.875262 + 0.483650i \(0.839311\pi\)
\(572\) 0 0
\(573\) 1.09533e7 1.39367
\(574\) 0 0
\(575\) 4.89287e6 0.617154
\(576\) 0 0
\(577\) −1.77784e6 3.07931e6i −0.222307 0.385048i 0.733201 0.680012i \(-0.238026\pi\)
−0.955508 + 0.294964i \(0.904692\pi\)
\(578\) 0 0
\(579\) −4.02133e6 + 6.96516e6i −0.498510 + 0.863444i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.21795e6 + 2.10955e6i −0.148408 + 0.257050i
\(584\) 0 0
\(585\) −5798.24 10042.8i −0.000700497 0.00121330i
\(586\) 0 0
\(587\) −2.64810e6 −0.317204 −0.158602 0.987343i \(-0.550699\pi\)
−0.158602 + 0.987343i \(0.550699\pi\)
\(588\) 0 0
\(589\) 8.21758e6 0.976013
\(590\) 0 0
\(591\) −1.11027e6 1.92305e6i −0.130756 0.226476i
\(592\) 0 0
\(593\) −526782. + 912413.i −0.0615168 + 0.106550i −0.895144 0.445778i \(-0.852927\pi\)
0.833627 + 0.552328i \(0.186260\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −7.66901e6 + 1.32831e7i −0.880651 + 1.52533i
\(598\) 0 0
\(599\) −4.59506e6 7.95888e6i −0.523268 0.906326i −0.999633 0.0270790i \(-0.991379\pi\)
0.476366 0.879247i \(-0.341954\pi\)
\(600\) 0 0
\(601\) 3.46924e6 0.391785 0.195893 0.980625i \(-0.437240\pi\)
0.195893 + 0.980625i \(0.437240\pi\)
\(602\) 0 0
\(603\) 10699.2 0.00119828
\(604\) 0 0
\(605\) 3.95787e6 + 6.85523e6i 0.439616 + 0.761437i
\(606\) 0 0
\(607\) 372075. 644453.i 0.0409882 0.0709936i −0.844804 0.535077i \(-0.820283\pi\)
0.885792 + 0.464083i \(0.153616\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 927784. 1.60697e6i 0.100541 0.174142i
\(612\) 0 0
\(613\) −5.72889e6 9.92274e6i −0.615772 1.06655i −0.990249 0.139312i \(-0.955511\pi\)
0.374477 0.927236i \(-0.377822\pi\)
\(614\) 0 0
\(615\) −1.99524e7 −2.12719
\(616\) 0 0
\(617\) −3.90052e6 −0.412486 −0.206243 0.978501i \(-0.566124\pi\)
−0.206243 + 0.978501i \(0.566124\pi\)
\(618\) 0 0
\(619\) −1.32515e6 2.29522e6i −0.139007 0.240767i 0.788114 0.615529i \(-0.211058\pi\)
−0.927121 + 0.374762i \(0.877724\pi\)
\(620\) 0 0
\(621\) 1.48879e6 2.57866e6i 0.154919 0.268328i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.79042e6 + 8.29724e6i −0.490539 + 0.849638i
\(626\) 0 0
\(627\) 2.57044e6 + 4.45212e6i 0.261119 + 0.452271i
\(628\) 0 0
\(629\) −1.97735e7 −1.99277
\(630\) 0 0
\(631\) −8.97599e6 −0.897447 −0.448723 0.893671i \(-0.648121\pi\)
−0.448723 + 0.893671i \(0.648121\pi\)
\(632\) 0 0
\(633\) 1.89098e6 + 3.27528e6i 0.187576 + 0.324892i
\(634\) 0 0
\(635\) −5.13164e6 + 8.88826e6i −0.505035 + 0.874747i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2790.69 4833.63i 0.000270371 0.000468296i
\(640\) 0 0
\(641\) 1.43576e6 + 2.48681e6i 0.138018 + 0.239054i 0.926746 0.375688i \(-0.122593\pi\)
−0.788728 + 0.614742i \(0.789260\pi\)
\(642\) 0 0
\(643\) 1.38761e7 1.32354 0.661772 0.749705i \(-0.269805\pi\)
0.661772 + 0.749705i \(0.269805\pi\)
\(644\) 0 0
\(645\) −2.98626e7 −2.82637
\(646\) 0 0
\(647\) 3.62426e6 + 6.27741e6i 0.340376 + 0.589549i 0.984503 0.175370i \(-0.0561123\pi\)
−0.644126 + 0.764919i \(0.722779\pi\)
\(648\) 0 0
\(649\) 6.73450e6 1.16645e7i 0.627616 1.08706i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.18595e6 1.07144e7i 0.567706 0.983296i −0.429086 0.903264i \(-0.641164\pi\)
0.996792 0.0800326i \(-0.0255024\pi\)
\(654\) 0 0
\(655\) −1.45245e7 2.51572e7i −1.32282 2.29118i
\(656\) 0 0
\(657\) −1815.50 −0.000164090
\(658\) 0 0
\(659\) −572294. −0.0513341 −0.0256670 0.999671i \(-0.508171\pi\)
−0.0256670 + 0.999671i \(0.508171\pi\)
\(660\) 0 0
\(661\) −3.36840e6 5.83423e6i −0.299861 0.519374i 0.676243 0.736678i \(-0.263607\pi\)
−0.976104 + 0.217305i \(0.930274\pi\)
\(662\) 0 0
\(663\) 3.60703e6 6.24755e6i 0.318688 0.551984i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.41471e6 + 4.18240e6i −0.210160 + 0.364008i
\(668\) 0 0
\(669\) 6.20680e6 + 1.07505e7i 0.536170 + 0.928673i
\(670\) 0 0
\(671\) 1.48496e7 1.27324
\(672\) 0 0
\(673\) −1.22608e7 −1.04348 −0.521738 0.853106i \(-0.674716\pi\)
−0.521738 + 0.853106i \(0.674716\pi\)
\(674\) 0 0
\(675\) 1.18109e7 + 2.04570e7i 0.997750 + 1.72815i
\(676\) 0 0
\(677\) 231043. 400178.i 0.0193741 0.0335568i −0.856176 0.516685i \(-0.827166\pi\)
0.875550 + 0.483128i \(0.160499\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 203410. 352316.i 0.0168075 0.0291115i
\(682\) 0 0
\(683\) 5.76890e6 + 9.99203e6i 0.473196 + 0.819600i 0.999529 0.0306786i \(-0.00976682\pi\)
−0.526333 + 0.850278i \(0.676433\pi\)
\(684\) 0 0
\(685\) −8.88807e6 −0.723738
\(686\) 0 0
\(687\) −1.18612e7 −0.958816
\(688\) 0 0
\(689\) 1.16579e6 + 2.01921e6i 0.0935564 + 0.162044i
\(690\) 0 0
\(691\) −1.54961e6 + 2.68400e6i −0.123460 + 0.213839i −0.921130 0.389255i \(-0.872732\pi\)
0.797670 + 0.603094i \(0.206066\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.40571e6 + 1.28271e7i −0.581574 + 1.00732i
\(696\) 0 0
\(697\) 1.13873e7 + 1.97233e7i 0.887846 + 1.53780i
\(698\) 0 0
\(699\) 1.02455e7 0.793122
\(700\) 0 0
\(701\) 5.83889e6 0.448782 0.224391 0.974499i \(-0.427961\pi\)
0.224391 + 0.974499i \(0.427961\pi\)
\(702\) 0 0
\(703\) −6.74378e6 1.16806e7i −0.514653 0.891406i
\(704\) 0 0
\(705\) −5.18792e6 + 8.98574e6i −0.393116 + 0.680897i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −37717.8 + 65329.2i −0.00281794 + 0.00488081i −0.867431 0.497558i \(-0.834230\pi\)
0.864613 + 0.502438i \(0.167564\pi\)
\(710\) 0 0
\(711\) −2652.32 4593.95i −0.000196767 0.000340810i
\(712\) 0 0
\(713\) −5.50255e6 −0.405359
\(714\) 0 0
\(715\) −7.33343e6 −0.536466
\(716\) 0 0
\(717\) −7.51756e6 1.30208e7i −0.546109 0.945888i
\(718\) 0 0
\(719\) 6.54344e6 1.13336e7i 0.472045 0.817607i −0.527443 0.849590i \(-0.676849\pi\)
0.999488 + 0.0319839i \(0.0101825\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −273048. + 472933.i −0.0194264 + 0.0336476i
\(724\) 0 0
\(725\) −1.91563e7 3.31797e7i −1.35353 2.34438i
\(726\) 0 0
\(727\) −3.58160e6 −0.251328 −0.125664 0.992073i \(-0.540106\pi\)
−0.125664 + 0.992073i \(0.540106\pi\)
\(728\) 0 0
\(729\) 1.43751e7 1.00182
\(730\) 0 0
\(731\) 1.70433e7 + 2.95199e7i 1.17967 + 2.04325i
\(732\) 0 0
\(733\) 4.61913e6 8.00057e6i 0.317541 0.549998i −0.662433 0.749121i \(-0.730476\pi\)
0.979974 + 0.199123i \(0.0638094\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.38300e6 5.85952e6i 0.229421 0.397369i
\(738\) 0 0
\(739\) 9.52221e6 + 1.64929e7i 0.641397 + 1.11093i 0.985121 + 0.171861i \(0.0549780\pi\)
−0.343725 + 0.939070i \(0.611689\pi\)
\(740\) 0 0
\(741\) 4.92073e6 0.329218
\(742\) 0 0
\(743\) 9.30669e6 0.618477 0.309238 0.950985i \(-0.399926\pi\)
0.309238 + 0.950985i \(0.399926\pi\)
\(744\) 0 0
\(745\) −2.41130e7 4.17650e7i −1.59170 2.75690i
\(746\) 0 0
\(747\) 18228.6 31572.8i 0.00119523 0.00207020i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.28122e7 + 2.21913e7i −0.828939 + 1.43576i 0.0699319 + 0.997552i \(0.477722\pi\)
−0.898871 + 0.438213i \(0.855612\pi\)
\(752\) 0 0
\(753\) −1.02486e7 1.77510e7i −0.658682 1.14087i
\(754\) 0 0
\(755\) 2.02739e7 1.29441
\(756\) 0 0
\(757\) 5.60956e6 0.355786 0.177893 0.984050i \(-0.443072\pi\)
0.177893 + 0.984050i \(0.443072\pi\)
\(758\) 0 0
\(759\) −1.72118e6 2.98117e6i −0.108448 0.187838i
\(760\) 0 0
\(761\) 1.41992e7 2.45938e7i 0.888799 1.53944i 0.0475020 0.998871i \(-0.484874\pi\)
0.841297 0.540574i \(-0.181793\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 37008.2 64100.1i 0.00228636 0.00396009i
\(766\) 0 0
\(767\) −6.44612e6 1.11650e7i −0.395649 0.685284i
\(768\) 0 0
\(769\) −2.41205e6 −0.147086 −0.0735429 0.997292i \(-0.523431\pi\)
−0.0735429 + 0.997292i \(0.523431\pi\)
\(770\) 0 0
\(771\) −8.25123e6 −0.499899
\(772\) 0 0
\(773\) −2.96946e6 5.14325e6i −0.178743 0.309591i 0.762707 0.646744i \(-0.223870\pi\)
−0.941450 + 0.337152i \(0.890536\pi\)
\(774\) 0 0
\(775\) 2.18264e7 3.78044e7i 1.30535 2.26093i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.76729e6 + 1.34533e7i −0.458591 + 0.794304i
\(780\) 0 0
\(781\) −1.76479e6 3.05671e6i −0.103530 0.179319i
\(782\) 0 0
\(783\) −2.33154e7 −1.35906
\(784\) 0 0
\(785\) −713979. −0.0413534