Properties

Label 392.6.i.i.361.1
Level $392$
Weight $6$
Character 392.361
Analytic conductor $62.870$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-115})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 28x^{2} - 29x + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(-4.39354 - 3.11396i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.6.i.i.177.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-10.7871 + 18.6838i) q^{3} +(-7.36126 - 12.7501i) q^{5} +(-111.223 - 192.643i) q^{9} +O(q^{10})\) \(q+(-10.7871 + 18.6838i) q^{3} +(-7.36126 - 12.7501i) q^{5} +(-111.223 - 192.643i) q^{9} +(-29.2775 + 50.7101i) q^{11} -1179.39 q^{13} +317.626 q^{15} +(748.277 - 1296.05i) q^{17} +(249.419 + 432.006i) q^{19} +(944.670 + 1636.22i) q^{23} +(1454.12 - 2518.62i) q^{25} -443.456 q^{27} +1914.54 q^{29} +(397.288 - 688.124i) q^{31} +(-631.637 - 1094.03i) q^{33} +(-1493.96 - 2587.62i) q^{37} +(12722.2 - 22035.5i) q^{39} -11941.3 q^{41} +9820.19 q^{43} +(-1637.48 + 2836.19i) q^{45} +(-9817.98 - 17005.2i) q^{47} +(16143.5 + 27961.3i) q^{51} +(9937.48 - 17212.2i) q^{53} +862.077 q^{55} -10762.0 q^{57} +(17919.3 - 31037.2i) q^{59} +(24988.0 + 43280.4i) q^{61} +(8681.82 + 15037.4i) q^{65} +(-24088.1 + 41721.8i) q^{67} -40761.0 q^{69} +77179.1 q^{71} +(-29833.6 + 51673.4i) q^{73} +(31371.5 + 54337.1i) q^{75} +(-30371.5 - 52605.1i) q^{79} +(31810.7 - 55097.7i) q^{81} +46134.2 q^{83} -22033.1 q^{85} +(-20652.4 + 35770.9i) q^{87} +(39334.4 + 68129.1i) q^{89} +(8571.17 + 14845.7i) q^{93} +(3672.08 - 6360.22i) q^{95} +43573.3 q^{97} +13025.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 82 q^{5} - 222 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{3} + 82 q^{5} - 222 q^{9} - 340 q^{11} - 1820 q^{13} + 3648 q^{15} + 3216 q^{17} - 674 q^{19} + 1104 q^{23} - 3322 q^{25} + 6696 q^{27} + 16128 q^{29} - 6212 q^{31} + 3120 q^{33} + 8512 q^{37} + 29640 q^{39} + 2608 q^{41} - 20008 q^{43} - 3318 q^{45} - 12748 q^{47} + 5508 q^{51} + 11220 q^{53} - 52720 q^{55} - 58056 q^{57} - 12018 q^{59} + 102738 q^{61} + 43420 q^{65} - 24136 q^{67} - 105984 q^{69} + 179440 q^{71} - 55588 q^{73} + 159774 q^{75} - 48824 q^{79} + 122562 q^{81} - 71564 q^{83} + 288552 q^{85} + 54468 q^{87} - 18300 q^{89} + 126264 q^{93} + 120784 q^{95} + 139968 q^{97} + 25800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −10.7871 + 18.6838i −0.691992 + 1.19857i 0.279192 + 0.960235i \(0.409933\pi\)
−0.971184 + 0.238330i \(0.923400\pi\)
\(4\) 0 0
\(5\) −7.36126 12.7501i −0.131682 0.228080i 0.792643 0.609686i \(-0.208705\pi\)
−0.924325 + 0.381606i \(0.875371\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −111.223 192.643i −0.457706 0.792770i
\(10\) 0 0
\(11\) −29.2775 + 50.7101i −0.0729545 + 0.126361i −0.900195 0.435487i \(-0.856576\pi\)
0.827240 + 0.561848i \(0.189909\pi\)
\(12\) 0 0
\(13\) −1179.39 −1.93553 −0.967765 0.251853i \(-0.918960\pi\)
−0.967765 + 0.251853i \(0.918960\pi\)
\(14\) 0 0
\(15\) 317.626 0.364492
\(16\) 0 0
\(17\) 748.277 1296.05i 0.627972 1.08768i −0.359986 0.932958i \(-0.617219\pi\)
0.987958 0.154722i \(-0.0494482\pi\)
\(18\) 0 0
\(19\) 249.419 + 432.006i 0.158506 + 0.274540i 0.934330 0.356409i \(-0.115999\pi\)
−0.775824 + 0.630949i \(0.782666\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 944.670 + 1636.22i 0.372358 + 0.644943i 0.989928 0.141573i \(-0.0452160\pi\)
−0.617570 + 0.786516i \(0.711883\pi\)
\(24\) 0 0
\(25\) 1454.12 2518.62i 0.465320 0.805957i
\(26\) 0 0
\(27\) −443.456 −0.117069
\(28\) 0 0
\(29\) 1914.54 0.422737 0.211369 0.977406i \(-0.432208\pi\)
0.211369 + 0.977406i \(0.432208\pi\)
\(30\) 0 0
\(31\) 397.288 688.124i 0.0742509 0.128606i −0.826509 0.562923i \(-0.809677\pi\)
0.900760 + 0.434317i \(0.143010\pi\)
\(32\) 0 0
\(33\) −631.637 1094.03i −0.100968 0.174881i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1493.96 2587.62i −0.179406 0.310740i 0.762272 0.647257i \(-0.224084\pi\)
−0.941677 + 0.336518i \(0.890751\pi\)
\(38\) 0 0
\(39\) 12722.2 22035.5i 1.33937 2.31986i
\(40\) 0 0
\(41\) −11941.3 −1.10941 −0.554704 0.832047i \(-0.687169\pi\)
−0.554704 + 0.832047i \(0.687169\pi\)
\(42\) 0 0
\(43\) 9820.19 0.809933 0.404966 0.914332i \(-0.367283\pi\)
0.404966 + 0.914332i \(0.367283\pi\)
\(44\) 0 0
\(45\) −1637.48 + 2836.19i −0.120544 + 0.208787i
\(46\) 0 0
\(47\) −9817.98 17005.2i −0.648302 1.12289i −0.983528 0.180755i \(-0.942146\pi\)
0.335226 0.942138i \(-0.391187\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 16143.5 + 27961.3i 0.869103 + 1.50533i
\(52\) 0 0
\(53\) 9937.48 17212.2i 0.485945 0.841681i −0.513925 0.857835i \(-0.671809\pi\)
0.999870 + 0.0161545i \(0.00514235\pi\)
\(54\) 0 0
\(55\) 862.077 0.0384272
\(56\) 0 0
\(57\) −10762.0 −0.438739
\(58\) 0 0
\(59\) 17919.3 31037.2i 0.670180 1.16079i −0.307673 0.951492i \(-0.599550\pi\)
0.977853 0.209293i \(-0.0671163\pi\)
\(60\) 0 0
\(61\) 24988.0 + 43280.4i 0.859818 + 1.48925i 0.872102 + 0.489323i \(0.162756\pi\)
−0.0122848 + 0.999925i \(0.503910\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8681.82 + 15037.4i 0.254875 + 0.441457i
\(66\) 0 0
\(67\) −24088.1 + 41721.8i −0.655565 + 1.13547i 0.326187 + 0.945305i \(0.394236\pi\)
−0.981752 + 0.190166i \(0.939097\pi\)
\(68\) 0 0
\(69\) −40761.0 −1.03068
\(70\) 0 0
\(71\) 77179.1 1.81699 0.908497 0.417891i \(-0.137230\pi\)
0.908497 + 0.417891i \(0.137230\pi\)
\(72\) 0 0
\(73\) −29833.6 + 51673.4i −0.655238 + 1.13491i 0.326596 + 0.945164i \(0.394098\pi\)
−0.981834 + 0.189742i \(0.939235\pi\)
\(74\) 0 0
\(75\) 31371.5 + 54337.1i 0.643995 + 1.11543i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −30371.5 52605.1i −0.547519 0.948331i −0.998444 0.0557687i \(-0.982239\pi\)
0.450925 0.892562i \(-0.351094\pi\)
\(80\) 0 0
\(81\) 31810.7 55097.7i 0.538717 0.933084i
\(82\) 0 0
\(83\) 46134.2 0.735068 0.367534 0.930010i \(-0.380202\pi\)
0.367534 + 0.930010i \(0.380202\pi\)
\(84\) 0 0
\(85\) −22033.1 −0.330771
\(86\) 0 0
\(87\) −20652.4 + 35770.9i −0.292531 + 0.506678i
\(88\) 0 0
\(89\) 39334.4 + 68129.1i 0.526377 + 0.911712i 0.999528 + 0.0307303i \(0.00978330\pi\)
−0.473151 + 0.880982i \(0.656883\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8571.17 + 14845.7i 0.102762 + 0.177989i
\(94\) 0 0
\(95\) 3672.08 6360.22i 0.0417448 0.0723042i
\(96\) 0 0
\(97\) 43573.3 0.470209 0.235104 0.971970i \(-0.424457\pi\)
0.235104 + 0.971970i \(0.424457\pi\)
\(98\) 0 0
\(99\) 13025.3 0.133567
\(100\) 0 0
\(101\) −82094.2 + 142191.i −0.800772 + 1.38698i 0.118337 + 0.992974i \(0.462244\pi\)
−0.919109 + 0.394004i \(0.871090\pi\)
\(102\) 0 0
\(103\) 82273.3 + 142501.i 0.764127 + 1.32351i 0.940707 + 0.339221i \(0.110163\pi\)
−0.176579 + 0.984286i \(0.556503\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 92712.9 + 160583.i 0.782854 + 1.35594i 0.930273 + 0.366868i \(0.119570\pi\)
−0.147419 + 0.989074i \(0.547097\pi\)
\(108\) 0 0
\(109\) −95031.4 + 164599.i −0.766127 + 1.32697i 0.173522 + 0.984830i \(0.444485\pi\)
−0.939649 + 0.342141i \(0.888848\pi\)
\(110\) 0 0
\(111\) 64462.1 0.496589
\(112\) 0 0
\(113\) −116023. −0.854769 −0.427384 0.904070i \(-0.640565\pi\)
−0.427384 + 0.904070i \(0.640565\pi\)
\(114\) 0 0
\(115\) 13907.9 24089.2i 0.0980659 0.169855i
\(116\) 0 0
\(117\) 131175. + 227202.i 0.885904 + 1.53443i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 78811.2 + 136505.i 0.489355 + 0.847588i
\(122\) 0 0
\(123\) 128812. 223109.i 0.767702 1.32970i
\(124\) 0 0
\(125\) −88824.6 −0.508462
\(126\) 0 0
\(127\) 71785.5 0.394936 0.197468 0.980309i \(-0.436728\pi\)
0.197468 + 0.980309i \(0.436728\pi\)
\(128\) 0 0
\(129\) −105931. + 183478.i −0.560467 + 0.970757i
\(130\) 0 0
\(131\) −1008.11 1746.09i −0.00513250 0.00888975i 0.863448 0.504438i \(-0.168300\pi\)
−0.868580 + 0.495549i \(0.834967\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3264.40 + 5654.10i 0.0154159 + 0.0267011i
\(136\) 0 0
\(137\) 121952. 211227.i 0.555120 0.961496i −0.442774 0.896633i \(-0.646006\pi\)
0.997894 0.0648626i \(-0.0206609\pi\)
\(138\) 0 0
\(139\) −209413. −0.919319 −0.459660 0.888095i \(-0.652029\pi\)
−0.459660 + 0.888095i \(0.652029\pi\)
\(140\) 0 0
\(141\) 423630. 1.79448
\(142\) 0 0
\(143\) 34529.6 59807.1i 0.141206 0.244575i
\(144\) 0 0
\(145\) −14093.5 24410.6i −0.0556670 0.0964180i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11477.1 19879.0i −0.0423514 0.0733547i 0.844073 0.536229i \(-0.180152\pi\)
−0.886424 + 0.462874i \(0.846818\pi\)
\(150\) 0 0
\(151\) 138369. 239661.i 0.493850 0.855373i −0.506125 0.862460i \(-0.668923\pi\)
0.999975 + 0.00708694i \(0.00225586\pi\)
\(152\) 0 0
\(153\) −332901. −1.14971
\(154\) 0 0
\(155\) −11698.2 −0.0391101
\(156\) 0 0
\(157\) 138346. 239622.i 0.447937 0.775850i −0.550315 0.834957i \(-0.685492\pi\)
0.998252 + 0.0591076i \(0.0188255\pi\)
\(158\) 0 0
\(159\) 214393. + 371340.i 0.672540 + 1.16487i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −137129. 237514.i −0.404259 0.700197i 0.589976 0.807421i \(-0.299137\pi\)
−0.994235 + 0.107224i \(0.965804\pi\)
\(164\) 0 0
\(165\) −9299.30 + 16106.9i −0.0265913 + 0.0460576i
\(166\) 0 0
\(167\) 215716. 0.598537 0.299268 0.954169i \(-0.403257\pi\)
0.299268 + 0.954169i \(0.403257\pi\)
\(168\) 0 0
\(169\) 1.01967e6 2.74628
\(170\) 0 0
\(171\) 55482.0 96097.7i 0.145098 0.251317i
\(172\) 0 0
\(173\) 43126.4 + 74697.1i 0.109554 + 0.189753i 0.915590 0.402114i \(-0.131724\pi\)
−0.806036 + 0.591867i \(0.798391\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 386594. + 669601.i 0.927518 + 1.60651i
\(178\) 0 0
\(179\) 217911. 377433.i 0.508331 0.880456i −0.491622 0.870809i \(-0.663596\pi\)
0.999953 0.00964720i \(-0.00307085\pi\)
\(180\) 0 0
\(181\) −56972.2 −0.129261 −0.0646303 0.997909i \(-0.520587\pi\)
−0.0646303 + 0.997909i \(0.520587\pi\)
\(182\) 0 0
\(183\) −1.07819e6 −2.37995
\(184\) 0 0
\(185\) −21994.9 + 38096.3i −0.0472491 + 0.0818378i
\(186\) 0 0
\(187\) 43815.3 + 75890.4i 0.0916267 + 0.158702i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 175039. + 303176.i 0.347177 + 0.601328i 0.985747 0.168236i \(-0.0538071\pi\)
−0.638570 + 0.769564i \(0.720474\pi\)
\(192\) 0 0
\(193\) 311613. 539730.i 0.602175 1.04300i −0.390316 0.920681i \(-0.627634\pi\)
0.992491 0.122317i \(-0.0390324\pi\)
\(194\) 0 0
\(195\) −374606. −0.705486
\(196\) 0 0
\(197\) 223265. 0.409879 0.204939 0.978775i \(-0.434300\pi\)
0.204939 + 0.978775i \(0.434300\pi\)
\(198\) 0 0
\(199\) 378187. 655040.i 0.676978 1.17256i −0.298909 0.954282i \(-0.596623\pi\)
0.975887 0.218278i \(-0.0700440\pi\)
\(200\) 0 0
\(201\) −519681. 900114.i −0.907291 1.57147i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 87903.0 + 152252.i 0.146089 + 0.253034i
\(206\) 0 0
\(207\) 210137. 363968.i 0.340861 0.590388i
\(208\) 0 0
\(209\) −29209.4 −0.0462549
\(210\) 0 0
\(211\) −30644.3 −0.0473853 −0.0236927 0.999719i \(-0.507542\pi\)
−0.0236927 + 0.999719i \(0.507542\pi\)
\(212\) 0 0
\(213\) −832537. + 1.44200e6i −1.25735 + 2.17779i
\(214\) 0 0
\(215\) −72289.0 125208.i −0.106654 0.184730i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −643636. 1.11481e6i −0.906839 1.57069i
\(220\) 0 0
\(221\) −882513. + 1.52856e6i −1.21546 + 2.10524i
\(222\) 0 0
\(223\) −461375. −0.621286 −0.310643 0.950527i \(-0.600544\pi\)
−0.310643 + 0.950527i \(0.600544\pi\)
\(224\) 0 0
\(225\) −646925. −0.851918
\(226\) 0 0
\(227\) 173220. 300025.i 0.223117 0.386450i −0.732636 0.680621i \(-0.761710\pi\)
0.955753 + 0.294171i \(0.0950435\pi\)
\(228\) 0 0
\(229\) −260825. 451762.i −0.328671 0.569274i 0.653578 0.756859i \(-0.273267\pi\)
−0.982248 + 0.187585i \(0.939934\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −77060.1 133472.i −0.0929907 0.161065i 0.815778 0.578366i \(-0.196309\pi\)
−0.908768 + 0.417301i \(0.862976\pi\)
\(234\) 0 0
\(235\) −144545. + 250360.i −0.170740 + 0.295730i
\(236\) 0 0
\(237\) 1.31048e6 1.51551
\(238\) 0 0
\(239\) −478940. −0.542358 −0.271179 0.962529i \(-0.587414\pi\)
−0.271179 + 0.962529i \(0.587414\pi\)
\(240\) 0 0
\(241\) 43275.9 74956.1i 0.0479958 0.0831312i −0.841029 0.540989i \(-0.818050\pi\)
0.889025 + 0.457858i \(0.151383\pi\)
\(242\) 0 0
\(243\) 632409. + 1.09536e6i 0.687041 + 1.18999i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −294163. 509505.i −0.306793 0.531381i
\(248\) 0 0
\(249\) −497653. + 861961.i −0.508661 + 0.881027i
\(250\) 0 0
\(251\) 1.90322e6 1.90679 0.953397 0.301719i \(-0.0975605\pi\)
0.953397 + 0.301719i \(0.0975605\pi\)
\(252\) 0 0
\(253\) −110630. −0.108661
\(254\) 0 0
\(255\) 237673. 411661.i 0.228891 0.396451i
\(256\) 0 0
\(257\) −284961. 493567.i −0.269124 0.466137i 0.699512 0.714621i \(-0.253401\pi\)
−0.968636 + 0.248484i \(0.920068\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −212940. 368824.i −0.193489 0.335133i
\(262\) 0 0
\(263\) −649266. + 1.12456e6i −0.578806 + 1.00252i 0.416810 + 0.908993i \(0.363148\pi\)
−0.995617 + 0.0935284i \(0.970185\pi\)
\(264\) 0 0
\(265\) −292610. −0.255961
\(266\) 0 0
\(267\) −1.69721e6 −1.45699
\(268\) 0 0
\(269\) −26860.8 + 46524.2i −0.0226328 + 0.0392011i −0.877120 0.480271i \(-0.840538\pi\)
0.854487 + 0.519472i \(0.173872\pi\)
\(270\) 0 0
\(271\) −379027. 656493.i −0.313506 0.543009i 0.665612 0.746298i \(-0.268170\pi\)
−0.979119 + 0.203289i \(0.934837\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 85146.1 + 147477.i 0.0678943 + 0.117596i
\(276\) 0 0
\(277\) −1.03799e6 + 1.79785e6i −0.812819 + 1.40784i 0.0980643 + 0.995180i \(0.468735\pi\)
−0.910883 + 0.412664i \(0.864598\pi\)
\(278\) 0 0
\(279\) −176750. −0.135940
\(280\) 0 0
\(281\) 2.61195e6 1.97333 0.986664 0.162770i \(-0.0520427\pi\)
0.986664 + 0.162770i \(0.0520427\pi\)
\(282\) 0 0
\(283\) 496367. 859732.i 0.368414 0.638112i −0.620903 0.783887i \(-0.713234\pi\)
0.989318 + 0.145775i \(0.0465674\pi\)
\(284\) 0 0
\(285\) 79222.0 + 137217.i 0.0577742 + 0.100068i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −409910. 709985.i −0.288698 0.500040i
\(290\) 0 0
\(291\) −470029. + 814114.i −0.325381 + 0.563576i
\(292\) 0 0
\(293\) −371728. −0.252962 −0.126481 0.991969i \(-0.540368\pi\)
−0.126481 + 0.991969i \(0.540368\pi\)
\(294\) 0 0
\(295\) −527635. −0.353003
\(296\) 0 0
\(297\) 12983.3 22487.7i 0.00854069 0.0147929i
\(298\) 0 0
\(299\) −1.11414e6 1.92974e6i −0.720710 1.24831i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.77111e6 3.06766e6i −1.10826 1.91955i
\(304\) 0 0
\(305\) 367886. 637197.i 0.226446 0.392215i
\(306\) 0 0
\(307\) 2.83906e6 1.71921 0.859606 0.510958i \(-0.170709\pi\)
0.859606 + 0.510958i \(0.170709\pi\)
\(308\) 0 0
\(309\) −3.54996e6 −2.11508
\(310\) 0 0
\(311\) 379681. 657627.i 0.222596 0.385548i −0.732999 0.680229i \(-0.761880\pi\)
0.955596 + 0.294681i \(0.0952135\pi\)
\(312\) 0 0
\(313\) −900954. 1.56050e6i −0.519806 0.900331i −0.999735 0.0230234i \(-0.992671\pi\)
0.479929 0.877308i \(-0.340663\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 220950. + 382696.i 0.123494 + 0.213897i 0.921143 0.389224i \(-0.127257\pi\)
−0.797649 + 0.603121i \(0.793923\pi\)
\(318\) 0 0
\(319\) −56053.0 + 97086.7i −0.0308406 + 0.0534174i
\(320\) 0 0
\(321\) −4.00041e6 −2.16691
\(322\) 0 0
\(323\) 746538. 0.398149
\(324\) 0 0
\(325\) −1.71498e6 + 2.97044e6i −0.900640 + 1.55995i
\(326\) 0 0
\(327\) −2.05022e6 3.55109e6i −1.06031 1.83651i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.57890e6 + 2.73473e6i 0.792107 + 1.37197i 0.924660 + 0.380793i \(0.124349\pi\)
−0.132553 + 0.991176i \(0.542318\pi\)
\(332\) 0 0
\(333\) −332325. + 575604.i −0.164230 + 0.284455i
\(334\) 0 0
\(335\) 709275. 0.345305
\(336\) 0 0
\(337\) −1.66612e6 −0.799158 −0.399579 0.916699i \(-0.630844\pi\)
−0.399579 + 0.916699i \(0.630844\pi\)
\(338\) 0 0
\(339\) 1.25155e6 2.16775e6i 0.591493 1.02450i
\(340\) 0 0
\(341\) 23263.2 + 40293.1i 0.0108339 + 0.0187648i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 300052. + 519706.i 0.135722 + 0.235077i
\(346\) 0 0
\(347\) 1.70977e6 2.96140e6i 0.762277 1.32030i −0.179397 0.983777i \(-0.557415\pi\)
0.941674 0.336526i \(-0.109252\pi\)
\(348\) 0 0
\(349\) 3.18396e6 1.39928 0.699638 0.714497i \(-0.253345\pi\)
0.699638 + 0.714497i \(0.253345\pi\)
\(350\) 0 0
\(351\) 523009. 0.226590
\(352\) 0 0
\(353\) 1.51253e6 2.61978e6i 0.646051 1.11899i −0.338006 0.941144i \(-0.609753\pi\)
0.984058 0.177850i \(-0.0569141\pi\)
\(354\) 0 0
\(355\) −568135. 984039.i −0.239266 0.414421i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 561767. + 973010.i 0.230049 + 0.398457i 0.957822 0.287361i \(-0.0927780\pi\)
−0.727773 + 0.685818i \(0.759445\pi\)
\(360\) 0 0
\(361\) 1.11363e6 1.92886e6i 0.449752 0.778993i
\(362\) 0 0
\(363\) −3.40057e6 −1.35452
\(364\) 0 0
\(365\) 878453. 0.345133
\(366\) 0 0
\(367\) 1.69558e6 2.93682e6i 0.657131 1.13818i −0.324224 0.945980i \(-0.605103\pi\)
0.981355 0.192204i \(-0.0615635\pi\)
\(368\) 0 0
\(369\) 1.32814e6 + 2.30041e6i 0.507783 + 0.879506i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −669114. 1.15894e6i −0.249017 0.431309i 0.714237 0.699904i \(-0.246774\pi\)
−0.963253 + 0.268595i \(0.913441\pi\)
\(374\) 0 0
\(375\) 958159. 1.65958e6i 0.351852 0.609425i
\(376\) 0 0
\(377\) −2.25800e6 −0.818221
\(378\) 0 0
\(379\) 3.11403e6 1.11359 0.556795 0.830650i \(-0.312031\pi\)
0.556795 + 0.830650i \(0.312031\pi\)
\(380\) 0 0
\(381\) −774356. + 1.34122e6i −0.273293 + 0.473357i
\(382\) 0 0
\(383\) −167267. 289714.i −0.0582656 0.100919i 0.835421 0.549610i \(-0.185224\pi\)
−0.893687 + 0.448691i \(0.851890\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.09223e6 1.89179e6i −0.370711 0.642090i
\(388\) 0 0
\(389\) −799354. + 1.38452e6i −0.267834 + 0.463901i −0.968302 0.249782i \(-0.919641\pi\)
0.700469 + 0.713683i \(0.252974\pi\)
\(390\) 0 0
\(391\) 2.82750e6 0.935322
\(392\) 0 0
\(393\) 43498.2 0.0142066
\(394\) 0 0
\(395\) −447146. + 774479.i −0.144197 + 0.249757i
\(396\) 0 0
\(397\) −1.10394e6 1.91209e6i −0.351537 0.608880i 0.634982 0.772527i \(-0.281008\pi\)
−0.986519 + 0.163647i \(0.947674\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −946358. 1.63914e6i −0.293897 0.509044i 0.680831 0.732441i \(-0.261619\pi\)
−0.974728 + 0.223397i \(0.928285\pi\)
\(402\) 0 0
\(403\) −468559. + 811568.i −0.143715 + 0.248922i
\(404\) 0 0
\(405\) −936667. −0.283758
\(406\) 0 0
\(407\) 174958. 0.0523537
\(408\) 0 0
\(409\) 572090. 990889.i 0.169105 0.292898i −0.769001 0.639248i \(-0.779246\pi\)
0.938105 + 0.346350i \(0.112579\pi\)
\(410\) 0 0
\(411\) 2.63101e6 + 4.55704e6i 0.768277 + 1.33069i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −339606. 588215.i −0.0967955 0.167655i
\(416\) 0 0
\(417\) 2.25896e6 3.91262e6i 0.636162 1.10186i
\(418\) 0 0
\(419\) −5.17298e6 −1.43948 −0.719740 0.694244i \(-0.755739\pi\)
−0.719740 + 0.694244i \(0.755739\pi\)
\(420\) 0 0
\(421\) −1.40960e6 −0.387606 −0.193803 0.981040i \(-0.562082\pi\)
−0.193803 + 0.981040i \(0.562082\pi\)
\(422\) 0 0
\(423\) −2.18396e6 + 3.78273e6i −0.593463 + 1.02791i
\(424\) 0 0
\(425\) −2.17618e6 3.76925e6i −0.584415 1.01224i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 744949. + 1.29029e6i 0.195426 + 0.338488i
\(430\) 0 0
\(431\) −3.08538e6 + 5.34403e6i −0.800047 + 1.38572i 0.119538 + 0.992830i \(0.461859\pi\)
−0.919585 + 0.392892i \(0.871475\pi\)
\(432\) 0 0
\(433\) −387046. −0.0992071 −0.0496036 0.998769i \(-0.515796\pi\)
−0.0496036 + 0.998769i \(0.515796\pi\)
\(434\) 0 0
\(435\) 608110. 0.154084
\(436\) 0 0
\(437\) −471237. + 816207.i −0.118042 + 0.204455i
\(438\) 0 0
\(439\) 1.66487e6 + 2.88364e6i 0.412305 + 0.714134i 0.995141 0.0984559i \(-0.0313903\pi\)
−0.582836 + 0.812590i \(0.698057\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 720013. + 1.24710e6i 0.174314 + 0.301920i 0.939924 0.341385i \(-0.110896\pi\)
−0.765610 + 0.643305i \(0.777563\pi\)
\(444\) 0 0
\(445\) 579101. 1.00303e6i 0.138629 0.240113i
\(446\) 0 0
\(447\) 495219. 0.117227
\(448\) 0 0
\(449\) 4.28977e6 1.00420 0.502098 0.864811i \(-0.332562\pi\)
0.502098 + 0.864811i \(0.332562\pi\)
\(450\) 0 0
\(451\) 349611. 605544.i 0.0809363 0.140186i
\(452\) 0 0
\(453\) 2.98519e6 + 5.17050e6i 0.683480 + 1.18382i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.63944e6 + 4.57165e6i 0.591183 + 1.02396i 0.994073 + 0.108711i \(0.0346723\pi\)
−0.402890 + 0.915248i \(0.631994\pi\)
\(458\) 0 0
\(459\) −331828. + 574743.i −0.0735159 + 0.127333i
\(460\) 0 0
\(461\) 3.72322e6 0.815955 0.407977 0.912992i \(-0.366234\pi\)
0.407977 + 0.912992i \(0.366234\pi\)
\(462\) 0 0
\(463\) 1.04809e6 0.227220 0.113610 0.993525i \(-0.463759\pi\)
0.113610 + 0.993525i \(0.463759\pi\)
\(464\) 0 0
\(465\) 126189. 218566.i 0.0270639 0.0468760i
\(466\) 0 0
\(467\) 3.02122e6 + 5.23291e6i 0.641048 + 1.11033i 0.985199 + 0.171413i \(0.0548333\pi\)
−0.344151 + 0.938914i \(0.611833\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.98470e6 + 5.16965e6i 0.619938 + 1.07376i
\(472\) 0 0
\(473\) −287510. + 497983.i −0.0590882 + 0.102344i
\(474\) 0 0
\(475\) 1.45074e6 0.295024
\(476\) 0 0
\(477\) −4.42109e6 −0.889679
\(478\) 0 0
\(479\) −1.03434e6 + 1.79153e6i −0.205980 + 0.356767i −0.950444 0.310895i \(-0.899371\pi\)
0.744465 + 0.667662i \(0.232705\pi\)
\(480\) 0 0
\(481\) 1.76197e6 + 3.05182e6i 0.347245 + 0.601446i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −320754. 555563.i −0.0619182 0.107245i
\(486\) 0 0
\(487\) 1.41483e6 2.45056e6i 0.270323 0.468213i −0.698622 0.715491i \(-0.746203\pi\)
0.968944 + 0.247279i \(0.0795363\pi\)
\(488\) 0 0
\(489\) 5.91688e6 1.11898
\(490\) 0 0
\(491\) −4.44554e6 −0.832186 −0.416093 0.909322i \(-0.636601\pi\)
−0.416093 + 0.909322i \(0.636601\pi\)
\(492\) 0 0
\(493\) 1.43261e6 2.48135e6i 0.265467 0.459803i
\(494\) 0 0
\(495\) −95882.4 166073.i −0.0175884 0.0304640i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 673115. + 1.16587e6i 0.121015 + 0.209603i 0.920168 0.391524i \(-0.128052\pi\)
−0.799153 + 0.601127i \(0.794719\pi\)
\(500\) 0 0
\(501\) −2.32695e6 + 4.03039e6i −0.414183 + 0.717385i
\(502\) 0 0
\(503\) 4.88909e6 0.861604 0.430802 0.902446i \(-0.358231\pi\)
0.430802 + 0.902446i \(0.358231\pi\)
\(504\) 0 0
\(505\) 2.41727e6 0.421790
\(506\) 0 0
\(507\) −1.09993e7 + 1.90514e7i −1.90040 + 3.29160i
\(508\) 0 0
\(509\) 3.27759e6 + 5.67695e6i 0.560738 + 0.971228i 0.997432 + 0.0716173i \(0.0228160\pi\)
−0.436694 + 0.899610i \(0.643851\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −110606. 191576.i −0.0185561 0.0321401i
\(514\) 0 0
\(515\) 1.21127e6 2.09798e6i 0.201244 0.348565i
\(516\) 0 0
\(517\) 1.14978e6 0.189186
\(518\) 0 0
\(519\) −1.86083e6 −0.303242
\(520\) 0 0
\(521\) −2.38645e6 + 4.13345e6i −0.385175 + 0.667142i −0.991793 0.127851i \(-0.959192\pi\)
0.606619 + 0.794993i \(0.292525\pi\)
\(522\) 0 0
\(523\) −414067. 717186.i −0.0661937 0.114651i 0.831029 0.556229i \(-0.187752\pi\)
−0.897223 + 0.441578i \(0.854419\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −594564. 1.02982e6i −0.0932550 0.161522i
\(528\) 0 0
\(529\) 1.43337e6 2.48267e6i 0.222699 0.385726i
\(530\) 0 0
\(531\) −7.97212e6 −1.22698
\(532\) 0 0
\(533\) 1.40835e7 2.14730
\(534\) 0 0
\(535\) 1.36497e6 2.36419e6i 0.206176 0.357107i
\(536\) 0 0
\(537\) 4.70125e6 + 8.14281e6i 0.703523 + 1.21854i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.46678e6 6.00464e6i −0.509253 0.882051i −0.999943 0.0107172i \(-0.996589\pi\)
0.490690 0.871334i \(-0.336745\pi\)
\(542\) 0 0
\(543\) 614564. 1.06446e6i 0.0894473 0.154927i
\(544\) 0 0
\(545\) 2.79820e6 0.403541
\(546\) 0 0
\(547\) 559077. 0.0798920 0.0399460 0.999202i \(-0.487281\pi\)
0.0399460 + 0.999202i \(0.487281\pi\)
\(548\) 0 0
\(549\) 5.55845e6 9.62752e6i 0.787087 1.36327i
\(550\) 0 0
\(551\) 477524. + 827095.i 0.0670063 + 0.116058i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −474522. 821897.i −0.0653920 0.113262i
\(556\) 0 0
\(557\) 1.95222e6 3.38134e6i 0.266619 0.461797i −0.701368 0.712800i \(-0.747427\pi\)
0.967986 + 0.251002i \(0.0807602\pi\)
\(558\) 0 0
\(559\) −1.15819e7 −1.56765
\(560\) 0 0
\(561\) −1.89056e6 −0.253620
\(562\) 0 0
\(563\) −2.01154e6 + 3.48408e6i −0.267459 + 0.463252i −0.968205 0.250158i \(-0.919517\pi\)
0.700746 + 0.713411i \(0.252851\pi\)
\(564\) 0 0
\(565\) 854077. + 1.47930e6i 0.112558 + 0.194956i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.17900e6 + 2.04210e6i 0.152663 + 0.264421i 0.932206 0.361929i \(-0.117882\pi\)
−0.779542 + 0.626349i \(0.784548\pi\)
\(570\) 0 0
\(571\) 3.88367e6 6.72671e6i 0.498484 0.863400i −0.501514 0.865149i \(-0.667223\pi\)
0.999998 + 0.00174924i \(0.000556802\pi\)
\(572\) 0 0
\(573\) −7.55263e6 −0.960974
\(574\) 0 0
\(575\) 5.49467e6 0.693062
\(576\) 0 0
\(577\) 6.91813e6 1.19826e7i 0.865066 1.49834i −0.00191465 0.999998i \(-0.500609\pi\)
0.866981 0.498341i \(-0.166057\pi\)
\(578\) 0 0
\(579\) 6.72280e6 + 1.16442e7i 0.833401 + 1.44349i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 581889. + 1.00786e6i 0.0709037 + 0.122809i
\(584\) 0 0
\(585\) 1.93123e6 3.34499e6i 0.233316 0.404115i
\(586\) 0 0
\(587\) −2.13747e6 −0.256038 −0.128019 0.991772i \(-0.540862\pi\)
−0.128019 + 0.991772i \(0.540862\pi\)
\(588\) 0 0
\(589\) 396365. 0.0470768
\(590\) 0 0
\(591\) −2.40838e6 + 4.17144e6i −0.283633 + 0.491266i
\(592\) 0 0
\(593\) −5.56904e6 9.64586e6i −0.650345 1.12643i −0.983039 0.183395i \(-0.941291\pi\)
0.332695 0.943035i \(-0.392042\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.15908e6 + 1.41319e7i 0.936926 + 1.62280i
\(598\) 0 0
\(599\) −5.50222e6 + 9.53013e6i −0.626572 + 1.08525i 0.361663 + 0.932309i \(0.382209\pi\)
−0.988235 + 0.152946i \(0.951124\pi\)
\(600\) 0 0
\(601\) −1.28046e6 −0.144604 −0.0723019 0.997383i \(-0.523035\pi\)
−0.0723019 + 0.997383i \(0.523035\pi\)
\(602\) 0 0
\(603\) 1.07166e7 1.20022
\(604\) 0 0
\(605\) 1.16030e6 2.00970e6i 0.128879 0.223225i
\(606\) 0 0
\(607\) −1.04164e6 1.80417e6i −0.114748 0.198749i 0.802931 0.596072i \(-0.203273\pi\)
−0.917679 + 0.397323i \(0.869939\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.15793e7 + 2.00559e7i 1.25481 + 2.17339i
\(612\) 0 0
\(613\) 6.85581e6 1.18746e7i 0.736899 1.27635i −0.216986 0.976175i \(-0.569623\pi\)
0.953885 0.300172i \(-0.0970440\pi\)
\(614\) 0 0
\(615\) −3.79287e6 −0.404371
\(616\) 0 0
\(617\) −1.65172e7 −1.74672 −0.873361 0.487073i \(-0.838064\pi\)
−0.873361 + 0.487073i \(0.838064\pi\)
\(618\) 0 0
\(619\) 1.75661e6 3.04253e6i 0.184267 0.319160i −0.759062 0.651018i \(-0.774342\pi\)
0.943329 + 0.331858i \(0.107676\pi\)
\(620\) 0 0
\(621\) −418920. 725590.i −0.0435915 0.0755027i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −3.89027e6 6.73815e6i −0.398364 0.689987i
\(626\) 0 0
\(627\) 315085. 545743.i 0.0320080 0.0554395i
\(628\) 0 0
\(629\) −4.47160e6 −0.450647
\(630\) 0 0
\(631\) −8.54135e6 −0.853991 −0.426995 0.904254i \(-0.640428\pi\)
−0.426995 + 0.904254i \(0.640428\pi\)
\(632\) 0 0
\(633\) 330563. 572552.i 0.0327903 0.0567944i
\(634\) 0 0
\(635\) −528432. 915271.i −0.0520061 0.0900773i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.58405e6 1.48680e7i −0.831649 1.44046i
\(640\) 0 0
\(641\) 4.97759e6 8.62145e6i 0.478492 0.828772i −0.521204 0.853432i \(-0.674517\pi\)
0.999696 + 0.0246601i \(0.00785036\pi\)
\(642\) 0 0
\(643\) 3.98313e6 0.379924 0.189962 0.981791i \(-0.439163\pi\)
0.189962 + 0.981791i \(0.439163\pi\)
\(644\) 0 0
\(645\) 3.11915e6 0.295214
\(646\) 0 0
\(647\) −1.92060e6 + 3.32658e6i −0.180375 + 0.312419i −0.942008 0.335589i \(-0.891065\pi\)
0.761633 + 0.648008i \(0.224398\pi\)
\(648\) 0 0
\(649\) 1.04926e6 + 1.81738e6i 0.0977852 + 0.169369i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.21430e6 1.59596e7i −0.845628 1.46467i −0.885074 0.465450i \(-0.845893\pi\)
0.0394461 0.999222i \(-0.487441\pi\)
\(654\) 0 0
\(655\) −14841.9 + 25706.9i −0.00135172 + 0.00234124i
\(656\) 0 0
\(657\) 1.32727e7 1.19963
\(658\) 0 0
\(659\) 2.15854e7 1.93619 0.968093 0.250590i \(-0.0806245\pi\)
0.968093 + 0.250590i \(0.0806245\pi\)
\(660\) 0 0
\(661\) 7.20361e6 1.24770e7i 0.641278 1.11073i −0.343869 0.939017i \(-0.611738\pi\)
0.985148 0.171709i \(-0.0549289\pi\)
\(662\) 0 0
\(663\) −1.90395e7 3.29774e7i −1.68218 2.91362i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.80861e6 + 3.13261e6i 0.157410 + 0.272641i
\(668\) 0 0
\(669\) 4.97689e6 8.62023e6i 0.429925 0.744652i
\(670\) 0 0
\(671\) −2.92634e6 −0.250910
\(672\) 0 0
\(673\) −5.55230e6 −0.472536 −0.236268 0.971688i \(-0.575924\pi\)
−0.236268 + 0.971688i \(0.575924\pi\)
\(674\) 0 0
\(675\) −644840. + 1.11690e6i −0.0544744 + 0.0943524i
\(676\) 0 0
\(677\) −4.96005e6 8.59105e6i −0.415924 0.720402i 0.579601 0.814900i \(-0.303208\pi\)
−0.995525 + 0.0944989i \(0.969875\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 3.73707e6 + 6.47280e6i 0.308790 + 0.534841i
\(682\) 0 0
\(683\) 5.06457e6 8.77209e6i 0.415423 0.719534i −0.580050 0.814581i \(-0.696967\pi\)
0.995473 + 0.0950472i \(0.0303002\pi\)
\(684\) 0 0
\(685\) −3.59088e6 −0.292398
\(686\) 0 0
\(687\) 1.12542e7 0.909750
\(688\) 0 0
\(689\) −1.17202e7 + 2.03000e7i −0.940561 + 1.62910i
\(690\) 0 0
\(691\) 9.93735e6 + 1.72120e7i 0.791727 + 1.37131i 0.924897 + 0.380218i \(0.124151\pi\)
−0.133170 + 0.991093i \(0.542515\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.54154e6 + 2.67003e6i 0.121058 + 0.209679i
\(696\) 0 0
\(697\) −8.93540e6 + 1.54766e7i −0.696678 + 1.20668i
\(698\) 0 0
\(699\) 3.32502e6 0.257395
\(700\) 0 0
\(701\) −2.13147e7 −1.63826 −0.819132 0.573605i \(-0.805545\pi\)
−0.819132 + 0.573605i \(0.805545\pi\)
\(702\) 0 0
\(703\) 745246. 1.29080e6i 0.0568737 0.0985081i
\(704\) 0 0
\(705\) −3.11845e6 5.40131e6i −0.236301 0.409286i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.91600e6 8.51477e6i −0.367279 0.636146i 0.621860 0.783129i \(-0.286377\pi\)
−0.989139 + 0.146982i \(0.953044\pi\)
\(710\) 0 0
\(711\) −6.75600e6 + 1.17017e7i −0.501205 + 0.868113i
\(712\) 0 0
\(713\) 1.50123e6 0.110592
\(714\) 0 0
\(715\) −1.01673e6 −0.0743771
\(716\) 0 0
\(717\) 5.16637e6 8.94841e6i 0.375308 0.650052i
\(718\) 0 0
\(719\) −9.03368e6 1.56468e7i −0.651692 1.12876i −0.982712 0.185140i \(-0.940726\pi\)
0.331020 0.943624i \(-0.392607\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 933642. + 1.61712e6i 0.0664255 + 0.115052i
\(724\) 0 0
\(725\) 2.78398e6 4.82200e6i 0.196708 0.340708i
\(726\) 0 0
\(727\) 1.82003e7 1.27715 0.638576 0.769559i \(-0.279524\pi\)
0.638576 + 0.769559i \(0.279524\pi\)
\(728\) 0 0
\(729\) −1.18274e7 −0.824274
\(730\) 0 0
\(731\) 7.34823e6 1.27275e7i 0.508615 0.880947i
\(732\) 0 0
\(733\) 3.35315e6 + 5.80782e6i 0.230512 + 0.399258i 0.957959 0.286906i \(-0.0926267\pi\)
−0.727447 + 0.686164i \(0.759293\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.41048e6 2.44302e6i −0.0956527 0.165675i
\(738\) 0 0
\(739\) −1.08251e7 + 1.87496e7i −0.729156 + 1.26294i 0.228084 + 0.973641i \(0.426754\pi\)
−0.957240 + 0.289294i \(0.906579\pi\)
\(740\) 0 0
\(741\) 1.26926e7 0.849193
\(742\) 0 0
\(743\) −1.40437e7 −0.933276 −0.466638 0.884448i \(-0.654535\pi\)
−0.466638 + 0.884448i \(0.654535\pi\)
\(744\) 0 0
\(745\) −168972. + 292669.i −0.0111539 + 0.0193190i
\(746\) 0 0
\(747\) −5.13116e6 8.88743e6i −0.336445 0.582740i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.45691e6 7.71959e6i −0.288359 0.499453i 0.685059 0.728487i \(-0.259776\pi\)
−0.973418 + 0.229035i \(0.926443\pi\)
\(752\) 0 0
\(753\) −2.05302e7 + 3.55593e7i −1.31949 + 2.28542i
\(754\) 0 0
\(755\) −4.07427e6 −0.260125
\(756\) 0 0
\(757\) −1.04419e7 −0.662276 −0.331138 0.943582i \(-0.607433\pi\)
−0.331138 + 0.943582i \(0.607433\pi\)
\(758\) 0 0
\(759\) 1.19338e6 2.06699e6i 0.0751923 0.130237i
\(760\) 0 0
\(761\) 1.48107e7 + 2.56529e7i 0.927072 + 1.60574i 0.788194 + 0.615427i \(0.211016\pi\)
0.138878 + 0.990309i \(0.455650\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.45057e6 + 4.24452e6i 0.151396 + 0.262225i
\(766\) 0 0
\(767\) −2.11339e7 + 3.66050e7i −1.29715 + 2.24674i
\(768\) 0 0
\(769\) 4.24042e6 0.258579 0.129289 0.991607i \(-0.458730\pi\)
0.129289 + 0.991607i \(0.458730\pi\)
\(770\) 0 0
\(771\) 1.22956e7 0.744927
\(772\) 0 0
\(773\) −6.85359e6 + 1.18708e7i −0.412543 + 0.714546i −0.995167 0.0981963i \(-0.968693\pi\)
0.582624 + 0.812742i \(0.302026\pi\)
\(774\) 0 0
\(775\) −1.15541e6 2.00123e6i −0.0691008 0.119686i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.97838e6 5.15871e6i −0.175848 0.304577i
\(780\) 0 0
\(781\) −2.25961e6 + 3.91376e6i −0.132558 + 0.229597i
\(782\) 0 0
\(783\) −849016. −0.0494893
\(784\) 0 0
\(785\) −4.07360e6 −0.235942
\(786\)